
Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed under
the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use,
distribution, and reproduction in any medium, provided the original work is properly cited

International Journal of Scientific Research in Computer Science, Engineering

and Information Technology

ISSN : 2456-3307

Available Online at : www.ijsrcseit.com

doi : https://doi.org/10.32628/CSEIT2342434

848

Embedding and Extracting Hidden Messages in Images Using

LSB-Based Steganography
Dr. G. Sreedhar

Professor, Department of Computer Science, National Sanskrit University, Tirupati, Andhra Pradesh, India

A R T I C L E I N F O

A B S T R A C T

Article History:

Accepted: 01 April 2023

Published: 12 April 2023

 This paper explores the implementation of image-based steganography

utilizing the Least Significant Bit (LSB) method to embed and extract

hidden messages within digital images. The approach leverages the

imperceptibility of minor pixel alterations to conceal information,

ensuring the visual integrity of the cover image. The study provides a

detailed explanation of the LSB technique, its implementation, and

potential applications in secure communication.

Keywords : Steganography, Least Significant Bit (LSB), Image hiding,

Secure communication, Data embedding

Publication Issue

Volume 9, Issue 2

March-April-2023

Page Number

848-851

I. INTRODUCTION

Steganography, the art of concealing information

within other non-suspicious data, has been employed

for centuries to facilitate covert communication.

With the advent of digital media, particularly images,

steganography has found new avenues for application.

The Least Significant Bit (LSB) method is one of the

most widely used techniques due to its simplicity and

effectiveness. This paper delves into the LSB method,

demonstrating its application in embedding and

extracting hidden messages within digital images.

II. BACKGROUND AND RELATED WORK

The LSB technique involves modifying the least

significant bit of the pixel values in an image to

embed secret information. This method is preferred

for its simplicity and the minimal perceptible change

it introduces to the image. However, the method's

security is limited, as the embedded information can

be extracted through statistical analysis and image

processing techniques. Recent advancements have

introduced more robust techniques, such as adaptive

LSB and encrypted LSB methods, to enhance security

and capacity.

III. METHODOLOGY

3.1 Encoding Process

The encoding process involves the following steps:

Volume 9, Issue 2, March-April-2023 | http://ijsrcseit.com

Dr. G. Sreedhar Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., January-February-2023, 9 (2) : 848-851

849

1. Convert the Secret Message to Binary:

o Convert each character of the secret message to

its ASCII value.

o Convert each ASCII value to an 8-bit binary

string.

o Concatenate all the binary strings to form a

single binary stream.

2. Prepare the Cover Image:

o Obtain the pixel data of the cover image.

o Ensure the image has sufficient pixels to

accommodate the secret message.

o Initialize a variable to keep track of the current

bit position in the secret message.

3. Embed the Secret Message:

o Iterate through each pixel of the cover image:

o For each pixel, extract the Red, Green, and Blue

(RGB) values.

o For each color channel (R, G, B):

▪ Retrieve the current bit from the secret message.

▪ Set the least significant bit (LSB) of the color

channel to the current bit.

▪ Update the color channel with the modified

value.

▪ Move to the next bit in the secret message.

o If all bits of the secret message have been

embedded, terminate the process.

4. Save the Stego Image:

o After embedding all bits, save the modified

image as the stego image.

3.2 Decoding Process

The decoding process entails:

1. Prepare the Stego Image:

o Obtain the pixel data of the stego image.

o Initialize a variable to store the extracted binary

stream.

2. Extract the Secret Message:

o Iterate through each pixel of the stego image:

▪ For each pixel, extract the Red, Green, and Blue

(RGB) values.

▪ For each color channel (R, G, B):

▪ Retrieve the least significant bit (LSB) of the

color channel.

▪ Append the LSB to the extracted binary stream.

3. Convert Binary to Text:

o Group the extracted binary stream into 8-bit

segments.

o Convert each 8-bit segment to its corresponding

ASCII character.

• Concatenate all characters to form the secret

message.

III. IMPLEMENTATION

The implementation utilizes HTML5 and JavaScript

to create a client-side application for embedding and

extracting hidden messages in images. The HTML5

<canvas> element is employed to manipulate image

data, while JavaScript's FileReader API facilitates

image loading. The encoding and decoding functions

operate directly within the browser, ensuring user

privacy and data security. The encoding and decoding

process are implemented with a small web program.

1. Encoding Process (Embedding the Secret Message)

Input:

• coverImage: The original image to embed the

message into.

• secretMessage: The text message to be concealed.

Output:

• stegoImage: The image with the embedded secret

message.

function encodeMessage(coverImage, secretMessage):

 binaryMessage =

convertTextToBinary(secretMessage) + "00000000" //

Append null byte to indicate end

 imageData = getImageData(coverImage)

Volume 9, Issue 2, March-April-2023 | http://ijsrcseit.com

Dr. G. Sreedhar Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., January-February-2023, 9 (2) : 848-851

850

 pixelIndex = 0

 for each bit in binaryMessage:

 pixel = imageData[pixelIndex]

 for each colorChannel in pixel:

 lsb = getLSB(colorChannel)

 newColorChannel = setLSB(colorChannel, bit)

 updatePixel(pixel, newColorChannel)

 pixelIndex += 1

 stegoImage = createImageFromData(imageData)

 return stegoImage

Figure 1: Encoding Process

2. Decoding Process (Extracting the Hidden Message)

Input:

• stegoImage: The image containing the hidden

message.

Output:

• decodedMessage: The extracted secret

message.

function decodeMessage(stegoImage):

 imageData = getImageData(stegoImage)

 binaryMessage = ""

 pixelIndex = 0

 while True:

 pixel = imageData[pixelIndex]

 for each colorChannel in pixel:

 lsb = getLSB(colorChannel)

 binaryMessage += lsb

 pixelIndex += 1

 if binaryMessage ends with "00000000":

 break

 decodedMessage =

 convertBinaryToText(binaryMessage)

 return decodedMessage

Helper Functions

function convertTextToBinary(text):

 binaryString = ""

 for each character in text:

 asciiValue = getASCII(character)

 binaryString += convertTo8BitBinary(asciiValue)

 return binaryString

function convertBinaryToText(binaryString):

 text = ""

 for i from 0 to length(binaryString) by 8:

 byte = binaryString[i:i+8]

 asciiValue = convertBinaryToDecimal(byte)

 character = getCharacterFromASCII(asciiValue)

 text += character

 return text

function getImageData(image):

 // Extract pixel data from the image

 return pixelData

function createImageFromData(pixelData):

 // Create an image from the pixel data

 return image

function getLSB(colorChannel):

 return colorChannel & 1 // Extract the least

significant bit

function setLSB(colorChannel, bit):

 if bit == 1:

Volume 9, Issue 2, March-April-2023 | http://ijsrcseit.com

Dr. G. Sreedhar Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., January-February-2023, 9 (2) : 848-851

851

 return colorChannel | 1 // Set the least

significant bit to 1

 else:

 return colorChannel & 0xFE // Set the least

significant bit to 0

function updatePixel(pixel, newColorChannels):

 // Update the pixel with the new color channels

 pixel = newColorChannels

Figure 2: Decoding Process

IV. RESULTS AND DISCUSSION

The implemented tool successfully encodes and

decodes messages within images, with the hidden

information remaining imperceptible to the human

eye. The approach demonstrates the feasibility of

client-side steganography using standard web

technologies. However, the method's security is

limited by the simplicity of the LSB technique, which

is vulnerable to statistical analysis and image

processing attacks. Future enhancements could

involve integrating more robust algorithms and

employing encryption to bolster security.

V. CONCLUSION

This study illustrates the potential of HTML5 and

JavaScript in implementing accessible, client-side

steganographic solutions. While the current

implementation serves as an introductory tool for

educational purposes, it lays the groundwork for

more sophisticated applications in secure

communication and digital watermarking.

REFERENCES

[1]. Fridrich, J., & Goljan, M. (2002). Digital Image

Steganography Using the LSB Matching Revisited.

Proceedings of the 4th Information Hiding

Workshop.

[2]. Bassil, Y. (2012). Image Steganography based on a

Parameterized Canny Edge Detection Algorithm.

arXiv:1212.6259.

[3]. Hashemi, S. H. O., Majidi, M. H., &

Khorashadizadeh, S. (2022). Color Image

Steganography using Deep Convolutional

Autoencoders based on ResNet Architecture.

arXiv:2211.09409.

[4]. Halboos, E. H. J., & Albakry, A. M. (2022). Hiding

text using the least significant bit technique to

improve cover image in the steganography system.

Bulletin of Electrical Engineering and Informatics,

11(6), 4337–4344.

[5]. Rashid, A., Missen, M. M. S., & Salamat, N. (2015).

Analysis of Steganography Techniques using Least

Significant Bit in Grayscale Images and its Extension

to Colour Images. Journal of Scientific Research and

Reports, 9(3), 1–14.

[6]. Gupta, S., Goyal, A., & Bhushan, B. (2012).

Information Hiding Using Least Significant Bit

Steganography and Cryptography. International

Journal of Modern Education and Computer

Science, 4(6), 27–34.

[7]. Gangurde, S., & Tiwari, K. (2020). LSB

Steganography Using Pixel Locator Sequence with

AES. arXiv preprint arXiv:2012.02494.)

[8]. Abdulla, A. A., Sellahewa, H., & Jassim, S. A. (2020).

Improving embedding efficiency for digital

steganography by exploiting similarities between

secret and cover images. arXiv preprint

arXiv:2004.11974.

[9]. Lerch-Hostalot, D., & Megías, D. (2017).

Unsupervised Steganalysis Based on Artificial

Training Sets. arXiv preprint arXiv:1703.00796.

[10]. Khan, M., Ahmad, J., Farman, H., & Zubair, M.

(2015). A Novel Image Steganographic Approach for

Hiding Text in Color Images using HSI Color Model.

arXiv preprint arXiv:1503.00388.

