
Copyright © 2023 The Author(s): This is an open-access article distributed under the terms of the Creative

Commons Attribution 4.0 International License (CC BY-NC 4.0)

International Journal of Scientific Research in Computer Science, Engineering and

Information Technology

ISSN : 2456-3307

Available Online at : www.ijsrcseit.com

doi : https://doi.org/10.32628/CSEIT23564521

676

Design Patterns and Performance Strategies for Scalable
Frontend Applications

Sree Harsha Palli

College of Arts and Sciences, Lamar University, Beaumont, Texas, 77705, USA

A R T I C L E I N F O

A B S T R A C T

Article History:

Accepted: 10 July 2023

Published: 24 July 2023

 The current alarming increase in scale and complexity of web applications ought

to be addressed significantly using various viable strategies. Also, there currently

exists a vast gap in research on design patterns and performance for scalable

frontend applications. This study attempts to increase the volume of research on

this important theme, while innovatively bridging a laid-bare knowledge gap.

The study is aimed at exploring the nexus between design patterns and

performance strategies for optimization and sustainable development of scalable

frontend applications. It focuses state management paradigm, component-based

architecture, and container-separation. These are analyzed to determine their

impact on system performance, reusability and maintainability of code. The

analysis shows that using built tools, splitting of code, effective rendering

techniques, and lazy loading are some of the viable strategies for design patterns

and performance optimization. Further illustrations of the efficacy of these

approaches in real-world applications are demonstrated with performance

benchmarks and several case studies. The novelty of the study lies majorly in its

intersection of design patterns and performance strategies for the realization of

best practices and enhanced performance. The proposed framework displays

practicability, built-in responsiveness, maintainability, and frontend systems

having high performance, which can scale the expansion of features and

improved user growth.

Keywords : Design patterns, Performance strategies, Scalable frontend

applications, Optimization

Publication Issue

Volume 9, Issue 4

July-August-2023

Page Number

676-684

Introduction

As the scale and complexity of web applications increase worrisomely these days (Paladugu, 2023; Perera &

Jayasuriya, 2023), there is need to devise and sustainably apply viable design patterns and performance strategies

for scalable frontend applications. Freeman and Freeman (2014) observe that the misapplication of design patterns

Volume 9, Issue 4, July-August -2023 | http://ijsrcseit.com

Sree Harsha Palli Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., July-August-2023, 9 (4) : 676-684

677

can increase complexity, eventually reducing the effectiveness of the web development procedure. To that end,

this study rises to examine the design patterns and performance strategies that can yield the desired results in

addressing the issues of scale and complexity of web applications. The advent of frameworks has eased the

difficulties in web programming to some extent (Akinloye & Shawana, 2023; Mwiinga, 2023; Oguntona, 2023;

Shawana, 2022; Alkharabsheh et al., 2019; Recupero et al., 2019). Consequently, full-stack web design is now

possible.

Optimizing and managing websites and online applications now entail the full-stack developers’ reliance on

frameworks and the requisite digital tools (Wijaya et al., 2021). Although it is difficult to decide on which tools

to employ, developers can surmount the challenges by learning and mastering how to tackle the challenges using

effective, well-designed and performance-driven full-stack web development roadmap (Prasad, 2022; Vemuri,

2020). The following diagram shows categories of web developers:

Fig. 1: Kinds of web developers

Source: Prasad (2022)

As Mohammed and Faraj (2021) rightly note, server-side technologies, including PHP, Python, Java, and Ruby,

among others, are utilized by developers for connection of the server to application and the database. The

implication of the foregoing is that different criteria are required and met in designing, implementing and

operating scalable frontend applications. Additional to the aforementioned requisitions are design patterns and

performance strategies for the realization of effective and suitable scalable frontend applications. That is why this

study seeks to explore design patterns and performance strategies for scalable frontend applications.

Aim and Objectives

The aim of this study is to explore the nexus between design patterns and performance strategies for optimization

and sustainable development of scalable frontend applications. Its objectives are to:

(i) Explore the impact of design patterns on scalable frontend applications.

(ii) Determine performance strategies for scalable frontend applications.

(iii) Demonstrate the essential role of design patterns in fostering the performance of scalable frontend

applications.

Gap and Novelty

The need for this research is premised on the current vast gap in research on design patterns and performance for

scalable frontend applications. In other words, following the current vast gap in research on design patterns and

performance strategies for scalable frontend applications, this study rises to engage with the thematic concerns,

Volume 9, Issue 4, July-August -2023 | http://ijsrcseit.com

Sree Harsha Palli Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., July-August-2023, 9 (4) : 676-684

678

bridge a laid-bare knowledge gap, contribute to the growing volume of research on the thematic concerns, and

demonstrate how design patterns enhance performance for scalable frontend applications. By so doing, the study

makes significant contributions to knowledge and practices.

More so, the study’s intersection of design patterns and performance strategies for the realization of best practices

and enhanced performance makes it undoubtedly novel. Also, it draws attention to the thematic concerns, the

associated issues and the impact of design patterns and performance strategies on scalable frontend applications.

Besides, by presenting the innovations offered by design patterns to scalable frontend applications, the study

underscores the importance of technological innovations, the dire need for significant technology integration, and

the role of design patterns in enhancing the performance of scalable frontend applications.

Design Patterns

It is noted that design patterns provide comprehensive and repeatable approaches to tackling common issues of

design; thereby assisting developers build adaptable and easy-to-maintain code (Paladugu, 2023; Ruponen, 2019;

Ampatzoglou et al. 2012; Rohnert, 1996). The study by Prasad (2022) shows that frontends applications are

valuable in e-businesses, trade and commerce, public administration, library and information management,

informatics, and many other essential sectors. It points out that frontend programming using frontend

development frameworks and libraries optimizes web services. It also shows that the advantages of web

development frameworks and libraries outweigh the disadvantages. Thus, there is need to address the challenges

to lessen the disadvantages while exploiting the advantages. The following figure itemizes some major elements

of design patterns:

Fig. 2: Major components of common design patterns

Source: Ampatzoglou et al. (2012)

The creation of any web applications requires the use of tools like MySQL and ASP.NET, Oracle or SQL Server

alongside other backend databases. The use of frameworks is also required, which a developer ought to be

knowledgeable in. For example, the use of PHP frameworks, such as Symfony, Zend and CakePHP, is imperative.

A developer also ought to be experienced and knowledgeable in utilizing version control tools, such as SVN or

CVS, and Linux. These are additional to utilizing a development and an implementation platform respectively

(Amoretti, 2021; Pratomo, et al. 2021).

There are different design patterns. These include state management patterns, component-based architecture,

container-separation pattern, render props, observer pattern, micro-frontends, and higher-order components.

State management patterns (SMPs) consist of use patterns, such as Redux, Flux and Context API, which are used

for managing the state of applications (Paladugu, 2023; Geary, 2016). The SMPs are beneficial in various ways.

These include easing debug and maintenance of scalable frontend applications, and centralizing state management.

Volume 9, Issue 4, July-August -2023 | http://ijsrcseit.com

Sree Harsha Palli Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., July-August-2023, 9 (4) : 676-684

679

The component-based architecture is the design pattern that breaks down the UI into reusable components. Each

of the components manages its own state and lifecycle. It comprises react, vue.js, and angular (Sharma, 2022).

Luo and Wang (2019) note that web designers can create efficient frontend applications and other web app

frameworks using Angular. The performance impact of Angular made Google to acquire it in 2010 and advanced

it to Angular 2 in 2016 for more results. Its initial design was targeted at creating more effective consistent online

form. Angular is proven to be an outstanding framework, used for building web and mobile platforms, such as

Windows, Linux and Mac. It is also efficient for hardware design of nodes (Node Hardware), as in NFC labels and

tags, A PIC16F1947 nanoWatt XLP microcontroller, RN4020 Communication module, and DRF2619C ZigBee

module (Angular Team, 2022). The following table highlights Angular in data binding:

Table 1: Data binding in frontend frameworks

 Angular 1 Angular 2 React

vue

Data binding Two way One way & two way

One way One way two way

Source: Prasad (2022)

The component-based architecture is beneficial in several regards. These include promoting reusability of

components, making testing easier and better, and improving the separation of concerns (Aviv et al., 2023; Degawa

et al., 2023; Kothapalli, 2021; Gunnulfsen, 2013). React.JS & React Native are two of the most popular front-end

frameworks (Jonathan & Suprihadi, 2023; Wieruch, 2018). Facebook and Instagram websites rely heavily on these

frameworks and get huge positive results. The innovative and influential ability of React.JS made Facebook to

release React as an open-source JavaScript ES6-based library to developers and enterprises across the globe. In

2015, Facebook launched React Native, a mobile app that can run on both Android and iOS (Prasad, 2022).

Consider the following diagram for best JavaScript framework:

Fig. 3: Frontend JavaScript Frameworks

Source: Prasad (2022)

React stores the different components constituting website’s content in the Document Object Model (DOM);

whereas the content is displayed in browsers like JavaScript (Mawer, 2016). The JavaScript rendering performs

faster than any typical dynamic webpages having Chrome V8 technology. As Mawer (2016) notes, React builds

an updated virtual DOM in the first place, before comparing the virtual DOM to the shown DOM in order to

Volume 9, Issue 4, July-August -2023 | http://ijsrcseit.com

Sree Harsha Palli Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., July-August-2023, 9 (4) : 676-684

680

determine any differences. Afterwards, re-rendering follows with only the actual transform part being done after

each component’s differences are summarized.

Container-separation pattern, also regarded as container-presentational pattern, is the type that separates

components into container components and presentational components (Abramov & Clark, 2015). While the

former components comprise handlNe state and logic, the presentational components focus on the rendering of

UI. This design pattern is reputed for enhancing code organization and reusability. Higher-order components

(HOCs) describe a function that obtains a component and thereafter returns a component with additional props

and/or behavior. The benefits of HOCs include separation of concerns and allowing for the reuse of codes

(Jonathan & Suprihadi, 2023).

Render props are deign patterns deployed for sharing of code between/among React components, using a

functional prop (Paladugu, 2023). These design patterns generate props in different contexts and present

suppleness in how components render. Micro-frontends are the design patterns that break down a monolithic

frontend into smaller autonomous applications, which can be developed, arranged and used separately (Nikulina

& Khatsko, 2023; Titova et al., 2021). They enable teams to work autonomously, pave way for technology diversity,

and reduce operation risks. And, observer pattern is one in which components can subscribe or adjust to changes

in state and re-render wherever necessary (Macenski, 2020). The benefits of this pattern include improving

performance, reducing manual updates, and automating frontend applications and their operations.

Performance Strategies

Performance strategies for scalable frontend applications include code splitting, lazy loading, memoization,

virtualization, debouncing and throttling, service workers and caching, optimizing images and assets, minification

and bundling, and performance monitoring (Petcu et al.,2023; Ain et al., 2019). Accordingly, code splitting is the

strategy that splits code into smaller chunks, which can be loaded on demand. As noted by Dawson and Szakonyi

(2020), frontend developers have the task of developing code that visitors see and interact with on a website. Code

splitting techniques are React.lazy, Webpack and dynamic imports. This performance strategy improves

performance and reduces initial load time. The strategy only loads load images or load components when they are

needed, as in when they get into the viewpoint. Its benefits include improving perceived performance and

reducing initial load time (Nambisan et al., 2017).

Debouncing and throttling are dual performance strategies that limit the rate in which a function is being executed.

For example, during resize or scroll events, debouncing and throttling obtain. The role played by debouncing and

throttling helps to reduce the numbers of function calls and enhances performance. These are the top benefits of

debouncing and throttling. The virtualization strategy renders only portions of a large table or list that is visible.

Its main tools or techniques are React Window and React Virtualized (Dimitrov & Ostrovska, 2020). Virtualization

is important because it reduces the number of rendered DOM nodes. By so doing, it helps improves the

performance of scalable frontend applications.

Memoization is the strategy for cache management, as it caches the results of expensive function calls and returns

the cached results when the same inputs take place again (Degawa et al., 2023). Its techniques are useCallback,

React.memo, and useMemo. The actions carried out by memoization lead to better performance and the reduction

of unnecessary re-renders. Optimizing assets and images employ suitable formats and sizes (Jonathan & Suprihadi,

2023). Additionally, they compress images and other assets using appropriate formats and sizes. The techniques

for optimizing images and assets are WebP format, SVGs, and image optimization tools. Load times are reduced

and performance enhanced. These make them beneficial. Service workers and caching utilize service workers to

Volume 9, Issue 4, July-August -2023 | http://ijsrcseit.com

Sree Harsha Palli Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., July-August-2023, 9 (4) : 676-684

681

cache API responses and assets for offline access and faster load times. By doing so, performance is improved and

user experience is made better and satisfactory. Improved performance and user experience particularly obtain

with repeat visits.

The minification and bundling performance strategies minify CSS, HTML files and JavaScript, and bundle them

afterwards to reduce the number of requests (Santoso, 2021; Crockford, 2008). The techniques of minification and

bundling are UglifyJS, Webpack and Terser. Additional to reducing file sizes, these strategies enhance the

performance of scalable frontend systems. Prasad (2022) observes that frontend developers must familiarize

themselves with the three major languages of the computer: CSS, HTML, and JavaScript, and must be

knowledgeable in ReactJS, EmberJS, AngularJS, Bootstrap Foundation, and Bootstrap, among other frameworks

and libraries (Santoso, 2021). These are needed to be able to produce visually appealing content across different

devices.

Finally, performance monitoring strategy employs techniques, such as WebPageTest and Lighthouse, to monitor

and analyze performance metrics (Petcu et al., 2023; Wedyan & Abufakher, 2020). As it does that, performance

rate is determined and areas of improvement are identified alongside the needed actions being taken. The overall

importance of the performance monitoring strategy rests on its detection of failures and prompting of success-

driven actions to make up for lapses in areas needing improvement (Degawa et al., 2023; Aladib & Lee, 2019). The

following figure offers valuable insights into performance metrics in scalable frontend applications:

Fig. 4: Comparative performance metrics

Source: Petcu et al. (2023); Macenski (2020)

Summary of Findings

The following findings are established:

(i) Management paradigm, component-based architecture, and container-separation are some of the major

performance strategies applied to scalable frontend applications.

(ii) The strategies have the capacity to significantly optimize the performance of scalable frontend

applications.

(iii) They particularly exert huge impact on system performance, reusability and maintainability of code.

(iv) Through effective management paradigm, component-based architecture, and container-separation,

maximum scalability and performance, usability and maintenance of frontend applications are realized.

Volume 9, Issue 4, July-August -2023 | http://ijsrcseit.com

Sree Harsha Palli Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., July-August-2023, 9 (4) : 676-684

682

(v) In leveraging management paradigm, component-based architecture and container-separation for design

patterns and performance optimization, built tools, splitting of code, effective rendering techniques, and

lazy loading are used.

(vi) The explored strategies and approaches have practical realizations in real-world applications.

(vii) The overall impact of design patterns on scalable frontend applications manifests in the performance

optimization of the applications, allowing for effectiveness, innovative design, functionality and

operations.

Conclusion

The study has been concerned with design patterns and performance strategies for scalable frontend applications.

It has explored several categories of design patterns and performance strategies that can be leveraged for scalable

frontend applications. The strategies are needed to allow for optimization, automation and scalability of the

applications. As evident in its analysis and illustrations of real-world applications, the study has shown that design

patterns and performance optimization of scalable frontend applications can be attained by using effective

rendering techniques, built tools, splitting of code and lazy loading, among other strategies. The illustrations and

several case studies made in the study typify performance benchmarks. The proposed framework shows

practicability, maintainability, built-in responsiveness and scalability of frontend systems.

In all, by showing how high performance can scale the expansion of features and improved user growth, the study

underscores the importance of leveraging design patterns and performance strategies for the attainment of high

performance in scalable frontend applications. From all indications, it is quite understandable that by combining

the presented design patterns and performance strategies, effective, optimized, practicable, and maintainable

scalable frontend applications can be created and sustained. Such applications are highly characterized by

satisfactory user experience. As such, scalable applications should be tactfully designed, patterned, and made

flexible for continuous improvement. Besides, stakeholders in the industry should imbibe the proposed framework

in scalable frontend systems in order to attain high performance and significant, operational efficiency, digital

system security, web innovations and organizational productivity.

References

1. Abramov, D., & Clark, A. (2015). Redux: a predictable state container for JavaScript Apps. redux.js.org.

2. Ain, Q. U., Butt, W. H., Anwar, M. W., Azam, F., & Maqbool, B. (2019). A systematic review on code

clone detection. IEEE access, 7, 86121-86144.

3. Akinloye, A., & Shawana, T. A. (2023). Gas caps detection, hydrocarbon recovery and environmental

sustainability. Journal of Applied Ecology and Environmental Design (JAEED), 2(2), 118-130.

4. Aladib, L., & Lee, S. P. (2019). Pattern detection and design rationale traceability: an integrated approach

to software design quality. IET Software, 13(4), 249-259.

5. Alkharabsheh, K., Crespo, Y., Manso, E., & Taboada, J. A. (2019). Software design smell detection: a

systematic mapping study. Software Quality Journal, 27, 1069-1148.

6. Amoretti, M. (2021). An effective framework for full-stack benchmarking of quantum computers.

Quantum Views, 5. 10.22331/qv-2021-04-26-52.

7. Ampatzoglou, A., Frantzeskou, G., & Stamelos, I. (2012). A methodology to assess the impact of design

patterns on software quality. Information and Software Technology, 54(4), 331- 346.

Volume 9, Issue 4, July-August -2023 | http://ijsrcseit.com

Sree Harsha Palli Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., July-August-2023, 9 (4) : 676-684

683

8. Angular Team (2022). Angular documentation. angular.io.

9. Crockford, D. (2008). JavaScript: the good parts. O'Reilly Media.

10. Dawson, M., & Szakonyi, A. (2020). Cybersecurity education to create awareness in artificial intelligence

applications for developers and end users. Scientific Bulletin, 25(2), 85-92. 10.2478/bsaft-2020-0012.

11. Degawa, Y., Kolzumi, T., Nakamura, T., Shioya, R., Kadomoto, J., Irie, H., & Sakai, S. (2023). A principal

factor of performance in decoupled front-end. IEICE Trans. Inf. Syst, 106(12), 1960-1968.

12. Dimitrov, W., & Ostrovska, T. (2020). Overview of virtual and augmented reality application development

tools. Online, available: https://doi.org/10.13140/RG.2.2.29293.82407/1

13. Freeman, E., & Freeman, E. (2014). Head first design patterns: a brain-friendly guide. O’Reilly Media.

14. Geary, D. (2016). Introducing redux. IBM DEVELOPER. https://developer.ibm.com/tutorials/wa-manage-

state-with-redux-p1-david-geary/

15. Gunnulfsen, M. K. (2013). Scalable and efficient web application architectures. Master thesis, Department

of Informatics, University of Oslo.

16. Jonathan, R., & Suprihadi (2023). Development of front-end web applications utilizing single page

application framework and react.js library. International Journal Software Engineering and Computer

Science (IJSECS) 3(3), 529-536. DOI: https://doi.org/10.35870/ijsecs.v3i3.1943

17. Kothapalli, M. (2021). The evolution of component-based architecture in front-end development. Journal

of Scientific and Engineering Research, 8(7), 261-264.

18. Luo, G., & Wang, Q. (2019). Developers competition behaviour of land reserve in assembled buildings

development: Based on game analysis framework. E3S Web of Conferences, 136, 040-44.

10.1051/e3sconf/201913604044.

19. Macenski, S., Foote, T., Gerkey, B., Lalancette, C., & Woodall, W. (2022). Robot operating system 2:

Design, architecture, and uses in the wild. Science Robotics, 7(66), eabm6074.

20. Mawer, C. (2016). Something must be done but chemotherapy isn’t the only option. BMJ, i6455.

10.1136/BMJ.i6455.

21. Mohammed, H., & Faraj, K. (2021). A Python-WSGI and PHP-Apache web server performance analysis

by search page generator (SPG). UKH Journal of Science and Engineering, 5(1), 132-138, 2021.

10.25079/use.v5n1y2021.pp132-138.

22. Mwiinga, P. (2023). Privacy-preserving technologies: Balancing security and user privacy in the digital

age. Int. J. Sci. Res. Publ, [Online]. https://zenodo.org/records/10406538

23. Nambisan, S., Lyytinen, K., Majchrzak, A., & Song, M. (2017). Digital innovation management. MIS

Quarterly, 41(1), 223-238.

24. Nikulina, O., & Khatsko, K. (2023). Method of converting the monolithic architecture of a front- end

application to microfrontends. Bull. Natl. Tech. Univ. “KhPI” Ser. Syst. Anal. Manag. Inf. Technol, 10(2),

79-84.

25. Oguntona, T. I. (2023, March). Mitigating the impact of high energy prices on UK households using

machine learning techniques. International Journal of Modelling & Applied Science Research, 27(9), 215-

230.

26. Paladugu, S. (2023). Design patterns for effective front-end development in modern web applications.

International Journal of Leading Research Publication (IJLRP), 3(12), 1-5.

Volume 9, Issue 4, July-August -2023 | http://ijsrcseit.com

Sree Harsha Palli Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., July-August-2023, 9 (4) : 676-684

684

27. Perera, Y., & Jayasuriya, D. (2023). “Enhancing the front-end web applications performance using design

patterns and microservices based architecture.” Online. https://doi.org/10.13140/RG.2.2.36067.53286

28. Petcu, A., Frunzete, M., & Stoichescu, Dan A. (2023). Benefits, challenges, and performance analysis of a

scalable web architecture based on micro-frontends. U.P.B. Sci. Bull., Series C, 85(3), 319-334.

29. Prasad, A. (2022). Research and analysis of the frontend development frameworks and libraries with voice

recognition in remote areas for developing ecommerce business for people of remote areas where people

have less or no knowledge of technical devices. International Journal of Engineering Applied Sciences and

Technology, 6(11), 47-52.

30. Pratomo, A., Schriek, E., & Veen, T. (2020). Test-driven development in OWOW’s full-stack web

development. International Journal of Industrial Research and Applied Engineering, 4(2),

10.9744/jirae.4.2.46-50.

31. Recupero, D., Dessì, D., Concas, E. (2019). A flexible and scalable architecture for human-robot

interaction. Proc. 15th Eur. Conf. Ambient Intell., Cham, Switzerland, 311-317.

32. Rohnert, H. (1996). {Pattern-oriented} Software architecture. In 2nd USENIX Conference on Object-

Oriented Technologies (COOTS 96).

33. Ruponen, E. (2019). The front-end architectural design and implementation of a modularized web portal.

Master’s Degree Programme in Information Technology, Faculty of Information Technology and

Communication, Tempere University.

34. Santoso, M. F. (2021). Teknik single page application (Spa) layout web Dengan Menggunakan react js dan

bootstrap. Jurnal Khatulistiwa Informatika, 9(2), 107–114. DOI: https://doi.org/10.31294/jki.v9i2.11357

35. Sharma, I. (2022). Benefits of react js for your front-end development process. TatvaSoft.

https://www.tatvasoft.com/outsourcing/2022/02/benefits-of-react-js.html

36. Shawana, T. A. (2022). Carbon emissions as threats to environmental sustainability: Exploring

conventional and technology-based remedies. African Journal of Environmental Sciences and Renewable

Energy, 8 (1). https://publications.afropolitanjournals.com/index.php/ajesre/article/view/736

37. Titova, O., Luzan, P., Sosnytska, N., Kulieshov, S., & Suprun, O. (2021). Information and communication

technology tools for enhancing engineering students’ creativity. Lect. notes Mech. Engin, 332-340.

https://doi.org/10.1007/978-3-030-77719-7_33

38. Vemuri, V. P. K. (2020). Addressing critical challenges in front-end performance and scalability.

International Journal of Multidisciplinary Research and Growth Evaluation, 1(5), 156- 161. DOI:

https://doi.org/10.54660/.IJMRGE.2020.1.5.156-161

39. Wedyan, F., & Abufakher, S. (2020). Impact of design patterns on software quality: a systematic literature

review. IET Software, 14(1), 1-17.

40. Wieruch, R. (2018). The road to react: Your journey to master react.js. An independent blog post.

41. Wijaya, E, Kosasi, S., & David, D. (2021). Implementasi Aplikasi web full stack Pendataan Cloversy.id.

Jurnal Sisfokom (Sistem Informasi dan Komputer), 10(3), 320-327. 10.32736/sisfokom.v10i3.1293.

