

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

ISSN: 2456-3307 OPEN

Available Online at :www.ijsrcseit.com doi : https://doi.org/10.32628/IJSRCSEIT

Enabling Trust and Privacy Preserving E-KYC System Using Blockchain

Prof. Nalawade V. S., Ahire Kunal, Divate Devendra, Pawar Saurabh

Department of Computer Engineering, S. B. Patil College of Engineering, Indapur, Pune, Maharashtra, India

ARTICLEINFO

Article History:

Accepted: 10 Oct 2023 Published: 30 Oct 2023

Publication Issue

Volume 9, Issue 13 September-October-2023 Page Number

01-09

ABSTRACT

Banks and identity providers use the electronic Know Your client (e-KYC) system to set up client identity verification procedures with reliant parties. Because cloud-based e-KYC systems are more accessible and efficient with resources, many banks choose them. But e-KYC data security in the cloud is a serious issue. Strong authentication and conventional encryption are generally used in existing e-KYC platforms, which results in encryption dependencies and administration overheads when files are uploaded to the cloud. In this work, we introduce the "e-KYC Trust Block," a revolutionary blockchain-based e-KYC solution that improves trust, security, and privacy compliance through the use of ciphertext policy attribute-based encryption (CP-ABE) and client consent enforcement. Furthermore, we present attribute-based encryption to support privacy protection and granular access control for delicate transactions recorded in the blockchain.

KEYWORDS: E-KYC, Authentication, CP-ABE, Identity Verification, Authorization System, blockchain,.

I. INTRODUCTION

By electronically authenticating and validating customer identities, the Electronic Know Your Customer (e-KYC) service helps banks and other financial institutions (FIs) improve the effectiveness and consumer satisfaction of virtual banking activities. Using this technology, FIs can electronically confirm the clients' identity, whether they be private individuals or businesses. FIs can choose to use pre-built e-KYC software that includes all necessary elements or design a customised solution in order to implement the e-KYC system. There are on-premises and cloud-based deployment options.

The majority of businesses now prefer cloud-based platforms to host their e-KYC systems and data as a result of the expanding outsourcing trend. In comparison to host-based authentication, which depends on centralised validation and can result in traffic jams and single points of failure, a cloud-based e-KYC system offers a more effective and adaptable authentication technique. Although customer data documents are stored in the cloud and may be available to other cloud tenants or even the cloud service providers (CSPs), the drawback of a

cloud-based solution is the possible security and privacy problems. For more reliable and secure communication a Cryptographic Key Generationmethods can be used [1]. As per authors [2], two-point information security protection can be provided for cloud storage system [3].

II. LITERATURE SURVEY

Sr.	Paper	Author	Year of	Problem solved in	The technique used	What will be
no	title	name	Publication	this paper: Existing	to solve the	future work:
				Problem Statement	problem: Existing	Future Scope
					Problem Solution	
1.	Enabling	Mr. Y.	2023	Electronic-Know	A cloud-based e-	For future works,
	Trustand	Rajasekha		Your customer (e-	KYC system	we will test a
	Privacypr	r, K.		KYC) is a service that	provides a more	larger sample of
	eserving	Chandra		banks or financial	efficient and flexible	data in the real
	e-KYC	Sekhar,G.		institutions (FIs)	authentication	cloud environment
	[5]	Ranil,		provide virtual	method compared to	and measure the
		L.V.N.		banking operation	the host based e-	throughput of the
		Maneesh,		related to	KYC authentication	system in
		K.Venu		authentication and	method where	accommodating
				verification of	documents need to	high number of e-
				identity electronically	be validated	KYC registration
				to their customers for	via the centralized	and verification
				improving cost	host. This causes a	requests. In
				efficiency and	traffic bottleneck	addition, we will
				customer satisfaction.	and single point of	investigate the
					failure problem.	technique to
						enable batch
						verification of e-
						KYC transactions
						stored in the
						blockchain with
						the searchable
						encryption feature.
2.	Enabling	Viraj	2023	A Blockchain based	A secure and	We have
	Trust and	Ashok		totally protection	efficient	presented the
	Privacy	Patil,		management device is	blockchain-based e-	privacy-preserving
	Preservin	Akshay		for offering security	KYC	e-KYC approach
	g e-KYC	Kumar		to the bank	documents	based on the block
	System	Mishra,		transactions and to	registration and	chain In
	Using	Ketan		implement the KYC	verification process	our scheme, the
	Blockchai	Kishor		manner in an easier	with	privacy of both

	n[6]	Shinde,		and secured manner.	lightweight key	customers' identity
	[-]	Prof A.		Blockchain	cryptographic	documents
		A. Patil		technology is a	protocols run in the	stored in the cloud
				brand-new	cloud	is guaranteed by
				technology which is	Interplanetary File	the symmetric key
				based totally on	System (IPFS). To	and
				mathematical,	facilitate the	public key
				cryptographic and	foundational privacy	encryption while
				monetary	requirement	the sensitive
				concepts for	regarding the user's	transaction data
				preserving a database	consent	stored in the block
				among diverse	collection, we	chain is encrypted
				contributors	develop a smart	by symmetric key
				without the need of	contract to generate	encryption and
				any 0.33 party or	and	CP-ABE.
				central authority.	enforce the consent	
					to be digitally signed	
					by the customer.	
3.	E-KYC	Manas	2023	A Blockchain-based	Banks' Know Your	Today's
	System	Patil,		security management	Customer (KYC)	Blockchain is
	using	Sakshi		system is	processes on its	similar to the
	Blockchai	Patil,		used to secure bank	consumers are	Internet in its
	n	Aaditya		transactions and to	unneeded,	early 20s in many
	Technolo	Patil,		make the KYC	inefficient, and	aspects. Every day,
	gy: A	Amir		process more simple	costly. As a result, a	the advancement
	Review	Ahmad,		and secure.	system is proposed	of
	[7]	Prof.D.B.		Blockchain	to automate	
		Mane		technology is a novel	unskilled operations	technology and
				technology that uses	and allow for the	internet commerce
				mathematical,	sharing of KYC data.	has a greater and
				cryptographic, and	Blockchain	greater impact on
				economic concepts to	technology, with its	all aspects of
				maintain a database	distributed database	contemporary life.
				amongst multiple	idea and time-	Blockchain
				participants without	stamped ledgers, can	technology aims to
				the need for a third	significantly assist	challenge the
				party or central	banks in improving their KYC	conventional
				authority.	procedure.	understanding of how users
					procedure.	how users communicate with
						one another

						online.
4.	E-KYC	1angurde	2023	The current KYC	The presented	The scope of
	using	Priyanka		process consists of an	system introduces	popular KYC
	Blockchai	Sahebrao,		exchange of	effectiveness and	methods like
	n	2Kasture		documents between	time efficiency of	eKYC is limited to
	Technolo	Nikita		the customer and the	operations through	India, as these
	gy [8]	Rajendra,		financial	its schema	methods base their
		3Shaikh		institution that intend	simplicity and smart	verification
		Saniya		to work together. The	integration of the	process on the
		Asif,		process includes the	different technology	Indian Govt.
		4Nemade		collection of basic	modules and	authorized Aadhar
		Gunjali		identity information	components.	Card. Our
		Anil,		from all beneficiaries	Once the user has	solution, however,
		5V.A.		to check for illicit	logged in, s/he will	can be applied
		Khairnar		activity and	be asked to fill out	globally without
				politically exposed	the KYC form. This	any restrictions. If
				persons. The process	form requires the	a customer wants
				also includes risk	user to fill	to apply to any
				management with	His/her name,	other banks, all
				regard to on boarding	phone both of	s/he needs to do is
				newcustomers, the	which are already	select it from the
				monitoring of	filled in by the user	list of banks
				transactions, and	and will be	provided in the
				specific customer	retrieved from the	mobile application.
				policies for banks.	database.	Thus, the entire
						KYC process can
						be limited to just
						one tap, giving the
						ultimate
						convenience to
						customers.
5.	Enabling	SOMCH	2022	The electronic know	In this model, the	We have
	Trust and	ART		your customer (e-	KYC system owner	presented the
	Privacy-	FUGKEA		KYC) is a system for	encrypts the file	privacy-preserving
	Preservin	W ,		the banking or	with their host's key	e-KYC approach
	g e-KYC	(Member,		identity provider to	and uploads it to the	based on the
	System	IEEE)		establish a customer	cloud. In this paper,	blockchain. Our
	Using			identity data	we introduce a	proposed scheme
	Blockchai			verification process	novel blockchain-	delivers secure and
	n [9]			between relying	based e-KYC	decentralized
				parties. Due to the	scheme called e-	authentication and

				efficient resource	KYC TrustBlock	verification of the
				consumption and the	based on the	e-KYC process
				high degree of	ciphertext policy	with the user's
				accessibility and	attribute-based	consent
				availability of cloud	encryption (CP-	enforcement
				computing, most	ABE) method	feature.
				banks implement	binding with the	
				their e-KYC system	client consent	
				on the cloud.	enforcement to	
					deliver trust,	
					security and privacy	
					compliance.	
6.	Secured	Viraj	2022	Know Your client	A Blockchain-based	In many
	and	Ashok		(KYC) strategies	totally protection	approaches,
	Privacy	Patil,		performed through	management device	Blockchain these
	preservin	Akshay		banks on their clients	is for offering	days is similar to
	g e-KYC	Kumar		are needless,	security to the bank	in which the net
	system	Mishra,		unmanageable and	transactions and to	was in early 20s.
	Using	Ketan		highly-priced.	implement the KYC	Thedevelopment
	Blockchai	Kishor		therefore, a gadget is	manner in a easier	of facts generation
	n [10]	Shinde,		proposed to automate	and secured	and digital
		Prof.		unskilled obligations	manner. Blockchain	business each day
		A.A. Patil		and allow sharing of	technology is a	has an increasing
				facts related to KYC.	brand new	number of
				Blockchain	technology which is	tremendous
				technology, with its	based totally on	impacts on all
				concept of dispensed	mathematical,	spheres of the
				database, time-	cryptographic and	modernexistence.
				stamped ledgers, can	monetary concepts	
				correctly assist banks	for preserving a	
				enhance their KYC	database among	
				technique.	diverse contributors	
					without the need of	
					any 0.33 party or	
				_	central authority.	_
7.	Privacy-	Nigang	2022	research proposes a	The scheme	This article
	Preservin	Sun 1		KYC-compliant	includes four	proposes a KYC
	g KYC-	, Yuanyi		identity system. It	entities: users, the	compliant identity
	Complian	Zhang		solves the privacy	KYCprovider,VASPs	scheme for
	t Identity	1,2,* and		issue of existing	, and supervisors. In	Ethereum-based
	Scheme	Yining		solutions and	the scheme, there is	blockchain

	forAccou	Liu 3		therefore does not	only one KYC	wallet accounts
	nts on All			affect the anonymity	provider but there	using Merkle trees
	Public			of theblockchain. The	may be	and smart
	Blockchai			solution supports all	multiplesupervisors.	contracts. First, in
	ns [11]			public blockchains	TheKYC provider is	order to solve the
				and only needs to be	a government	above
				deployed on an EVM-	department that	privacy issues, the
				compatible	manages users'	scheme divides the
				blockchain. It	identities. The	IdP of the three-
				addresses the	supervisors are	party model into
				limitations of existing	government	supervisors and
				solutions that require	departments	KYC providers and
				extra work to support	different from the	uses a four-party
				new blockchains.	KYC provider, such	model consisting
					as inspection	of supervisors,
					agencies responsible	KYC providers,
					for crime	users, and VASPs.
					investigation.	The supervisor is
					VASPs include	responsible for
					exchanges, OTC	identitytracking,
					(over-the-	and the KYC
					counter)platforms,	provider is
					etc.	responsible for
						checking the user's
						identity.
8.	Designin	Vincent	2021	KYC processes place a	To comprehensively	To improve on the
	g a	Schlatt,		great burden on	address the	current
	Framewo	Johannes		banks, because they	challenges of the	shortcomings in
	rk for	Sedlmeir,		are costly,inefficient,	KYC process (as	theKYC process
	Digital	Simon		and inconvenient for	identified in Section	through an end-
	KYC	Feulner,		customers. While	2),stage 2 in our	to-end digital
	Processes	Nils		blockchain	DSR process	process that
	Built on	Urbach		technology is often	involved the	leverages
	Blockchai			mentioned as	derivation of	blockchain-based
	n-Based			apotential solution, it	objectives to be met	SSI. Research
	Self-			is not clear how to	by a useful SSI-	on SSI is still in its
	Sovereign			use the technology's	basedeKYC	infancy, and little
	Identity			advantages without	framework. We	has been published
	[12]			violating	derived these	on the design of
				dataprotection	objectives from the	applications for
				regulations and	literature on the	SSI.

		customer privacy.	KYC process, KYC-	
			related regulatory	
			requirements, and	
			three formative	
			interviews with	
			experts.	

III.LIMITATIONS OF EXISTING WORK

Using blockchain technology to enable trustworthy and privacy-preserving e-KYC systems has several drawbacks.

- 1. **Scalability:** When it comes to processing a huge volume of transactions fast, blockchain networks, especially open ones like Ethereum, may experience scalability challenges. This scalability issue may compromise the effectiveness of the system because e-KYC operations necessitate many verifications.
- **2. Performance Overhead:** Compared to conventional centralised systems, blockchain transactions require a consensus mechanism, which might result in performance overhead. The speed of e-KYC processes can be impacted by how long it takes to validate transactions.
- **3. Privacy Issues:** Although blockchain offers data immutability, it also makes all transaction data on the ledger publicly accessible. Even using encryption approaches like CP-ABE (Ciphertext-Policy), it can be difficult to guarantee the privacy of sensitive customer data and transactions.
- **4. Regulatory Compliance:**E-KYC procedures frequently must adhere to stringent legal standards, which can differ by jurisdiction. The use of blockchain technology can make it challenging and possibly much more difficult to comply with these rules.
- **5. Key Administration:** Data confidentiality must be managed with security while managing encryption keys. Key management issues may arise with blockchain systems, particularly in ensuring that only authorised parties have access to the required decryption keys.
- **6. Interoperability:**Different blockchain platforms or versions may be used by diverse institutions and systems. It can be challenging to achieve interoperability between various systems, which could cause the e-KYC ecosystem to become fragmented.

IV.CONCLUSION

We have outlined the blockchain-based, privacy-preserving e-KYC solution. Our suggested solution provides user consent enforcement together with secure, decentralised authentication and verification of the e-KYC procedure. In our system, the sensitive transaction data kept in the blockchain is protected using symmetric key encryption and CP-ABE, while the privacy of both customers' identification documents saved in the cloud is guaranteed by public key and symmetric key encryption. The data owner or the customer may also amend the KYC data using our system. We also developed an algorithm for updating access policies to support dynamic access authorization. Regarding computation cost, communication cost, and performance, we conducted comparison analysis between our scheme and similar works for the evaluation. According to the experimental data, our method performs better than other current schemes.

V. REFERENCES

- [1]. Swapnali, Londhe, et al. "A Cryptographic Key Generation on a 2D Graphics Using RGB Pixel Shuffling and Transposition." Proceedings of the International Conference on Data Engineering and Communication Technology: ICDECT 2016, Volume 2. Springer Singapore, 2017.
- [2]. Ajinath, B. S., Sunil, H. S., Digambar, K. S., Anandkumar, B. P., Nalawade, V. S., & Sayyad, G. G. (2018). Optimizing Information Leakage and Improve Security over Public Multi-Cloud Environment. Journal of emerging technologies and innovative research.
- [3]. K. S. Gaikwad and S. B. Waykar, "Detection and Removal Of Node Isolation Attack In OLSR Protocol Using Imaginary Nodes with Neighbour Response in MANET," 2017 International Conference on Computing, Communication, Control and Automation (ICCUBEA), Pune, India, 2017, pp. 1-5, doi: 10.1109/ICCUBEA.2017.8463762.
- [4]. Mr. Y. Rajasekhar, K.ChandraSekhar, G.Ranil, L.V.N. Maneesh, K.Venu 2023Enabling Trust and Privacy preserving e-KYChttps://www.indusedu.org/pdfs/IJREISS/IJREISS_4120_14404.pdf
- [5]. Viraj Ashok Patil, Akshay Kumar Mishra, KetanKishorShinde, Prof A. A. Patil 2023Enabling Trust and Privacy Preserving e-KYC System Using Blockchain https://ijsrem.com/download/enabling-trust-and-privacy-preserving-e-kyc-system-using-blockchain-2/
- [6]. Manas Patil, Sakshi Patil, Aaditya Patil, Amir Ahmad, Prof.D.B.Mane 2023E-KYC System using Blockchain Technology: A Review https://ijcrt.org/papers/IJCRT2304818.pdf
- [7]. Sairise, Raju M., Limkar, Suresh, Deokate, Sarika T., Shirkande, Shrinivas T., Mahajan, RupaliAtul& Kumar, Anil(2023) Secure group key agreement protocol with elliptic curve secret sharing for authentication in distributed environments, Journal of Discrete Mathematical Sciences and Cryptography, 26:5, 1569–1583, DOI: 10.47974/JDMSC-1825
- [8]. E-KYC using Blockchain Technology 2023GangurdePriyankaSahebrao, Kasture Nikita Rajendra, Shaikh Saniya Asif, NemadeGunjali Anil, 5V.A. Khairnar https://www.ijirmps.org/papers/2023/3/230138.pdf
- [9]. SOMCHART FUGKEAW , (Member, IEEE) 2022Enabling Trust and Privacy-Preserving e-KYC System Using Block chain https://ieeexplore.ieee.org/iel7/6287639/9668973/09770032.pdf
- [10]. Viraj Ashok Patil, Akshay Kumar Mishra, KetanKishorShinde, Prof. A.A. Patil 2022
- [11]. Secured and Privacy preserving e-KYC system using Blockchain https://www.irjmets.com/uploadedfiles/paper//issue_2_february_2023/33872/final/fin_irjmets1677561174. pdf
- [12]. Gaikwad, Yogesh J. "A Review on Self Learning based Methods for Real World Single Image Super Resolution." (2021).
- [13]. V. Khetani, Y. Gandhi and R. R. Patil, "A Study on Different Sign Language Recognition Techniques," 2021 International Conference on Computing, Communication and Green Engineering (CCGE), Pune, India, 2021, pp. 1-4, doi: 10.1109/CCGE50943.2021.9776399.
- [14]. Vaddadi, S., Arnepalli, P. R., Thatikonda, R., &Padthe, A. (2022). Effective malware detection approach based on deep learning in Cyber-Physical Systems. International Journal of Computer Science and Information Technology, 14(6), 01-12.
- [15]. Thatikonda, R., Vaddadi, S.A., Arnepalli, P.R.R. et al. Securing biomedical databases based on fuzzy method through blockchain technology. Soft Comput (2023). https://doi.org/10.1007/s00500-023-08355-x

- [16]. Rashmi, R. Patil, et al. "Rdpc: Secure cloud storage with deduplication technique." 2020 fourth international conference on I-SMAC (IoT in social, mobile, analytics and cloud)(I-SMAC). IEEE, 2020.
- [17]. Khetani, V., Gandhi, Y., Bhattacharya, S., Ajani, S. N., &Limkar, S. (2023). Cross-Domain Analysis of ML and DL: Evaluating their Impact in Diverse Domains. International Journal of Intelligent Systems and Applications in Engineering, 11(7s), 253-262.
- [18]. Khetani, V., Nicholas, J., Bongirwar, A., &Yeole, A. (2014). Securing web accounts using graphical password authentication through watermarking. International Journal of Computer Trends and Technology, 9(6), 269-274.
- [19]. Nigang Sun, Yuanyi Zhang and Yining Liu 2022Privacy-Preserving KYC-Compliant Identity Scheme for Accounts on All Public Blockchains https://mdpi-res.com/d_attachment/sustainability/sustainability-14-14584/article deploy/sustainability-14-14584-v2.pdf?version=1667898781
- [20]. Kale, R., Shirkande, S. T., Pawar, R., Chitre, A., Deokate, S. T., Rajput, S. D., & Kumar, J. R. R. (2023). CR System with Efficient Spectrum Sensing and Optimized Handoff Latency to Get Best Quality of Service. International Journal of Intelligent Systems and Applications in Engineering, 11(10s), 829-839.
- [21]. Nagtilak, S., Rai, S., & Kale, R. (2020). Internet of things: A survey on distributed attack detection using deep learning approach. In Proceeding of International Conference on Computational Science and Applications: ICCSA 2019 (pp. 157-165). Springer Singapore.
- [22]. Mane, Deepak, and AniketHirve. "Study of various approaches in machine translation for Sanskrit language." International Journal of Advancements in Research & Technology 2.4 (2013): 383.
- [23]. Shivadekar, S., Kataria, B., Limkar, S. et al. Design of an efficient multimodal engine for preemption and post-treatment recommendations for skin diseases via a deep learning-based hybrid bioinspired process. Soft Comput (2023). https://doi.org/10.1007/s00500-023-08709-5
- [24]. Shivadekar, Samit, et al. "Deep Learning Based Image Classification of Lungs Radiography for Detecting COVID-19 using a Deep CNN and ResNet 50." International Journal of Intelligent Systems and Applications in Engineering 11.1s (2023): 241-250.
- [25]. Vincent Schlatt, Johannes Sedlmeir, Simon Feulner, Nils Urbach 2021Designing a Framework for Digital KYC Processes Built on Blockchain-Based Self-Sovereign Identity https://arxiv.org/pdf/2112.01237