

ISSN : 2456-3307 OPEN CACCESS

12S

Available Online at : www.ijsrcseit.com doi : https://doi.org/10.32628/IJSRCSEIT

JPEG Vigilant : AI-Powered Malware Image Detection

Prof. J. N. Ekatpure, Nilesh Kharade, Digvijay Korake, Dipak Kshirsagar, Rushikesh Mind Department of Computer Engineering, S. B. Patil College of Engineering, Indapur, Maharashtra, India

ARTICLEINFO	ABSTRACT				
Article History:	Cyberattacks against people, companies, and organizations have risen in recent				
Accepted: 10 Oct 2023 Published: 30 Oct 2023	years.In order to conduct an attack, cybercriminals are constantly searching for efficient channels to spread malware to targets. Millions of people use photos every day, and the majority of consumers believe that they are safe to use. However, some types of images may contain malicious payloads that carry out				
Publication Issue Volume 9, Issue 10 September-October -2023 Page Number 66-70	dangerous functions. Due in large part to its lossy compression, JPEG is the most widely used image for mat.In this study, we introduce JPEGVigilant, the first machine learning-based method designed exclusively for the quick and accurate identification of unknown malicious JPEG images. In order to distinguish between benign and malicious JPEG images, JPEGVigilant statically derives 10 straightforward yet discriminative properties from the JPEG LE structure. Keywords: Machine learning, malware, detection, JPEG, image, features.				

I. INTRODUCTION

to Cyber assaults often involve damaging actions like stealing sensitive data, snooping, or monitoring and affect the target (sometimes significantly). Attackers could be spurred on by ideology, criminal purpose, a need for attention, etc. Attackers are always looking for innovative and efficient ways to initiate assaults and deliver a harmful payload to targets. Frequently, this has been done through sending files over the Internet. Attackers are increasingly employing non-executable files, such as.pdf and.docx, which are incorrectly thought to be safe to use by most users, as executable files (.exe) are recognized to be harmful. Some non-executable les enable an attacker to launch arbitrary malicious code when the le is opened on the computer of the intended victim. The most widely used picture format is JPEG (Joint Photographic Experts Group), mostly due to its lossy compression. everyone uses JPEG photos, from little businesses to major corporations, and on a variety of platforms. Computers (personal photos, papers), gadgets (smartphones, digital cameras, etc.), and the internet all include JPEG images.

Copyright © 2023 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution **4.0 International License (CC BY-NC 4.0)** which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited.

S r N o	PaperTitle	Author	Y e a r	Problem solved in this paper: Existing Problem Statement	Technique used to solve problem : Existing Problem Solution	Whatwillbefuturework:F utureScope
1	ANovelMa- chineLearn- ing Ap- proachforM al- wareDetec- tion	Tarun Kumar, Sanveev Sharma, Himansh-u Goel, Sumit Chaudha-ry, Parag Jain	2 0 1 9	This studyANove lMa- chineLearni ngApproach forMalware Detec-tion.	We have proposed a frame-work for malware analysis based onsemiautomatedm al- waredetectionusual lymachinelearning which is based on dynamic malware detection.	Improve accu-rancy.
2	Detection of Advanced Malware by Machine Learning TechNiques	SanjaySharma,C. RamaKrishnaandSan- jay K.Sahay	2 0 1 9	This studyDetecti on of Ad- vanced Malwareby MachineLea rningTech- niques.	We study the frequency of op- codeoccurrencetod etectun- knownmalwarebyu singma- chinelearningtechn ique.	Infuture, wewill imple- ment proposedapproach on dif-ferentdatasetsand will performinthedeepanalysi sfortheclassificationofadv ancedmali- cioussoftware.
3	Novel active learning methods for enhanced PC malware detection in windows OS	NirNissim,RobertMos kovitch - Rokach,YuvalElovici	2 0 1 9	WestudyNo velactivelear ningmethod sfor enhancedPC malwaredet ec- tion in windowsOS	In this paperweproposedaf ramework basedon new active1274 learningmethods (Ex-ploitation andCombination)d esigned for1275 acquiring unknownmalware.	Infuturework, weare inter ested in implementing this frame- 1361 work also on Android appli-cations where it is not very feasible to 1362 apply advanced detec tion tech-niques over the device it self due to 1363 its resource limi- tations (CPU, battery, etc.)
4	Trust Sign: Trusted Malware Signature Generation in Private	DanielNah- mias,AviadCohen,Nir Nissim,YuvalElovicia	2 0 1 9	Toobtainand developeTru st- Sign:Trusted MalwareSig na-ture	This paperpresentsTrust - Sign,anovel,trusted automaticmalwares ignature	Firstdirectionforfuturew orkisrelatedtomaintainin gtheupdatability and efficiencyofourproposeds olution.

II. LITERATURE SURVEY

						· · · · · · · · · · · · · · · · · · ·
5	Clouds Using Deep Feature Transfer Learning. Keeping pace with the creation of new malicious PDF files using an active learn based detection framework. ANovelMa- chineLearn- ing Ap- proachforM al- wareDetec- tion	NirNissim,AviadCohe n,RobertMoskovitch , AsafShabtai,MatanEd ri, O. Baradand Y. Elovici TarunKu- mara,SanjeevShar- maa,Himan- shuGoela,SumitChaud -harya	2 0 1 9 2 0 1 9	Generationi n Private Clouds Using DeepFeature TransferLear n-ing To developeKee ping pacewith the cre- ation of newmalicio us PDFfiles using anactive- learningbase ddetectionfr amework. Toobtainand develope ANovel Ma- chineLearni ngApproach forMalware Detec-tion	generationmethodb asedonhigh-level deepfeaturestrans- ferredfromaVGG- 19neuralnetworkm odel pretrained ontheImageNet dataset. In this studywe present anactive learning(AL) basedframework,sp ecificallydesigned to efficiently assistanti- virusvendorsfocust heiranalyticaleffort s imedatacquiringno velmaliciousconten t. In this paper, wehave proposedaframewo rkformalwareanaly -sis based on semiautomatedmal- waredetectionusual lymachinelearning whichisbasedondy-	Infuturework,inadditiont oadditionaltypesofmalici ousdocumentsweareinter ested In extendingthisframework to Androidapplications. Improvingaccu-racy.
7	Surveyof Ma-	DanieleUcci,Leonardo Aniello,RobertoBaldo	2 0	Tostudy Sur-	namicmalware detection. This survey aimsatprovidingano	Thenovelcon-cept of malwareanalysis eco-
	chineLearn- ing Tech- niquesforM al- wareAnaly- sis	ni	1 8	veyofMachi neLearningT ech- niquesforMa l- wareAnalysi s.	verviewontheway machinelearningha sbeen used so farin the context ofmalwareanaly- sisinWindowsenvir onments.	nomics canencourage fur-ther researchdirections,where appropriatetuningstrateg ies canbeprovidedtobalancec om- petingmetrics(e.g.accura cyandcost)whendesignin g a mal-ware analysis environment.
8	DynamicMa	Ori or- meir, Nir nis-	2	To study	Wedescribetheadva	futureresearchstemsfrom
	l-wareAnal-	sim, Yuval Elovici,	0	Surveyof	ncementsmadeinan	thefactthatdy-
	ysis in	And Lior Rokach		Dynamic	alysistechniques	namicanalysisproducesat

	theModern		1	Mal-ware	dur-ing this	imesequence outputof
	Era—		9	Analysisinth	time.Early	observedbehavior.
	AStateofthe			eModernEra	researchcentered	
	ArtSurvey.				on	
				AStateofthe	functioncallanalysis	
				ArtSurvey.	,execu-	
					tioncontrol,andflo	
					wtracking.	
9	DynamicMa	Nirnissim,aviadcohen	2	To study	Inthisstudy,wepres	Infuturework,we
	l-wareAnal-	1,jianwu,andrealanzi,l	0	Surveyof	ent	suggestevaluatingthemali
	ysis in	iorrokach,Yuvalelovic	1	Dynamic	relatedvulnerabiliti	ciousPDFpresenceinad-
	theModern	iand leegiles	9	Mal-ware	esand	ditionaldigitallibraries
	Era—			Analysisinth	malwaredistributio	suchas MAS,
	AStateofthe			eModernEra	napproachesthatex	WebofScience,andPubM
	ArtSurvey				ploitthevul	ed, as wellasinvestigat-
				AStateofthe	nerabilities	ingthemforvulnerabilitie
				ArtSurvey.	ofscholarlydigitalli	S.
					braries.	
1	MalwareDe	Young-	2	To study	In this paper,we	Asafuturework,wewillco
0	tec-tion	SeobJeong,JiyoungW	0	Surveyof	design	llect dataofotherfiletypes
	onByteStrea	oo ,andAhReumKang	1	Malware	aconvolutionalneur	(e.g.,.rtffiles)andperform
	msofPDFFil		8	De-	al networkto tackle	furtherinvestigation.
	esUsingCon			tectiononBy	themalware detec-	
	vo-			teStreamsof	tiononthePDFfiles.	
	lutionalNeu			PDFFiles	We	
	ralNet-			Using Con-	collectmalicious	
	works.			volutionalN	andbenignPDFfiles	
				eu-	and manuallylabel	
				ralNetworks	the	
				•	bytesequenceswithi	
					n thefiles.	

III.LIMITATIONS OF EXISTING WORK

- a) Machine learning methods have not been used particularly for the detection of malicious JPEG images.
- b) Addressing these limitations requires ongoing research and development to improve the robustness, accuracy, and applicability of machine learning-based solutions for detecting malicious JPEG images.

IV.CONCLUSION

We present JPEGVigilant, a machine learning based solution for efficient detection of unknown malicious JPEG images. To the best of our knowledge, we are the first to present a machine learning-based solution tailored specifically for the detection of malicious JPEG images. JPEGVigilant extracts 10 simple but discriminative features from the JPEG le structure and leverages them with a machine learning classifier, in order to discriminate between benign and malicious JPEG images. JPEGVigilant features are extracted based on the structure of the

Prof. J. N. Ekatpure et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., September-October -2023, 9 (10) : 66-70

JPEG image. JPEGVigilant features were defined based on an understanding of how attackers use JPEG images in order to launch attacks and how it affects the JPEG le structure in comparison to regular benign JPEG images.

V. REFERENCES

- T. Kumar, S. Sharma, Goel, S. Chaudhary, and P. Jain. A Novel Machine Learning Approach for Malware Detection. Accessed: 2019. [Online]. Available:https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3383953
- [2]. S. Sharma, C. R. Krishna, and S. K. Sahay, ``Detection of advanced malware by machine learning techniques,'' in Soft Computing: Theories and Applications. Singapore: Springer, 2019, pp. 333342.
- [3]. N. Nissim, R. Moskovitch, L. Rokach, and Y. Elovici, ``Novel active learning methods for enhanced PC malware detection in windows OS," Expert Syst. Appl., vol. 41, no. 13, pp. 58435857, Oct. 2014.
- [4]. D. Nahmias, A. Cohen, N. Nissim, and Y. Elovici, ``TrustSign: Trusted malware signature generation in private clouds using deep feature transfer learning," in Proc. Int. Joint Conf. Neural Netw. (IJCNN), Jul. 2019,pp. 18.
- [5]. N. Nissim, A. Cohen, R. Moskovitch, A. Shabtai, M. Edri, O. Bar-Ad, and Y. Elovici, ``Keeping pace with the creation of new malicious PDF les using an active-learning based detection framework," Secur. Inform., vol. 5, p. 1, Dec. 2016.
- [6]. T. Denemark, P. Bas, and J. Fridrich, ``Natural steganography in JPEG compressed images," Electron. Imag., vol. 2018, no. 7, pp. 316-1316-10, Jan. 2018.
- [7]. D. Ucci, L. Aniello, and R. Baldoni, ``Survey of machine learning techniques for malware analysis," Comput. Secur., vol. 81, pp. 123147,Mar. 2019.
- [8]. O. Or-Meir, N. Nissim, Y. Elovici, and L. Rokach, ``Dynamic malware analysis in the modern eraA state of the art survey," CSURACMComput. Surv., vol. 52, no. 5, pp. 148, Sep. 2019.
- [9]. N. Nissim, A. Cohen, J. Wu, A. Lanzi, L. Rokach, Y. Elovici, and L. Giles, ``Sec-lib: Protecting scholarly digital libraries from infected papers using active machine learning framework," IEEE Access, vol. 7,pp. 110050110073, 2019.
- [10]. Y.-S. Jeong, J. Woo, and A. R. Kang, ``Malware detection on byte streams of PDF les using convolutional neural networks," Secur. Commun. Netw., vol. 2019, pp. 19, Apr. 2019.

