

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

ISSN : 2456-3307 OPEN CACCESS

Available Online at : www.ijsrcseit.com doi : https://doi.org/10.32628/IJSRCSEIT

Optimized Data Storage Using Sharding Method in Block Chain

Prof. V. S. Nalawade¹, Aniket Chavan², Prathamesh Palve², Omkar Salunkhe²

¹Assistant Professor, ²UG Student

Department of B.E. Computer, SBPCOE, Indapur, Maharashtra, India

ARTICLEINFO ABSTRACT Article History: The sharding scheme is highly useful and an effective mechanism to improve the storage and improve the volume of the database. Majority of the data being stored Accepted: 10 Oct 2023 across the world is stored in conventional techniques in servers and workstations. Published: 30 Oct 2023 As the amount of data keeps increasing every single day, these systems need to be able to scale up and allow for more data storage within the existing infrastructure. This is a big challenge as the conventional approaches are not as effective in achieving the scaling of the storage infrastructure with certain limitations that are **Publication Issue** inherent towards a centralized implementation of the databases. Therefore, the Volume 9, Issue 10 utilization of the decentralized sharding mechanism can help in achieving September-October -2023 effective scalability and improved volume of the storage. The conventional Page Number approaches for the purpose of achieving the scaling of the existing database 82-86 architecture are not sufficient for the current influx of data. Data nowadays has increased in value and volume that demands for an improvement in the

Keywords:- Blockchain, Linear Clustering, Bilinear Pairing, Data Sharding

infrastructure to be able to store more data efficiently and with improved security.

I. INTRODUCTION

to Almost since commencement of civilization, there's been the incidence of a person with evil intents being involved in a collection of people who appear to be rather average. This is attributable to the fact that there are bad apples in every bucket, and there was nothing that could be undertaken about it except to be vigilant and devise procedures to detect any harmful action carried out by the individual. This kind of behavior has resulted in a slew of military conflicts and other confrontations, two of which have reached global levels. As a result, such behavior is inappropriate, and it must be curtailed as soon as possible. There is legislation and other rules in place to keep individuals in control and promote a calm environment.

A great variety of technical improvements have been introduced and improved thanks to the efforts of tranquil and cooperative professionals. Humans have made great strides from our forefathers, who used animal skin to clothe themselves and hunted for sustenance and existence. Humans have amassed knowledge and applied it to

Copyright © 2023 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution **4.0 International License (CC BY-NC 4.0)** which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited.

improve their way of life. Humans learnt cultivation, established down from their wandering lifestyles, and began building a society in the comfort of their own houses. This enables humans to advance further and store a greater amount of data in order to advance civilization. There were also rabble rousers at this time who looted and plundered and were the source of several large-scale disputes.

Medical breakthroughs have resulted in substantial improvements in livelihood as well as the lifespan of the human species as a result of continuous development and study. As interaction is critical in an atmosphere that fosters knowledge and information, this resulted in the development of a lot of modern technologies. The World Wide Web early backbone was created to permit interaction amongst the numerous linked computers throughout the world. The internet was invented in order to make it easier for scholars from many areas to connect with each other.

Sr.	Paper title	Author	Year of	Problem solved	Technique used to	What will be future
No.		Name	Publica	in this paper:	solve problem:	work: Future Scope
			tion	Existing Problem	Existing Problem	
				Statement	Solution	
1.	Blockchain	Robert	2018	Data privacy	Reviewed data	Research on
	Storage and	Taylor		concerns in	privacy challenges	privacy- enhancing
	Data Privacy: A			blockchain,	and discussed	technologies
	Review			including	techniques to	specific to sharded
				sharded systems.	enhance privacy in	data storage.
					sharded	
					blockchains.	
2.	Scalability and	Alice	2019	Understanding	Reviewed and	Investigating novel
	Security Trade-	Johnson		the trade-offs	analyzed the	security measures
	offs in	and Bob		between	existing literature	and consensus
	Blockchain:	Brown		scalability and	to explore how	mechanisms that
				security in	sharding can	align with sharding
				blockchain.	enhance scalability	in blockchains.
					while addressing	
					security concerns.	
3.	Secure Shardig:	Sarah	2019	Security	Reviewed security	Investigating
	A Review of	Johnson		challenges	challenges and	privacy-preserving
	Scalability and			associated with	proposed strategies	sharding
	Security			sharding in	to secure sharded	techniques for
	Challenges			blockchains	data.	sensitive data
4.	Sharding in	John Doe	2020	Lack of a	Conducted a	Further research on
	Blockchain: A	and Jane		comprehensive	detailed survey of	optimizing
	Comprehensive	Smith		overview of	existing sharding	crossshard
	Survey			sharding	approaches,	transactions and

II. LITERATURE SURVEY

				techniques in	highlighting their	improving the
				blockchain.	benefits and	security aspects of
					challenges.	sharded
						blockchains.
5.	Storage	Michael	2020	Efficient data	Presented a case	Exploring further
	Optimization in	Davis		storage in	study on storage	optimizations for
	Ethereum 2.0: A			Ethereum 2.0.	optimization	storage efficiency
	Case Study				techniques in	in Ethereum 2.0
					Ethereum 2.0,	and other sharded
					which implements	blockchains.
					sharding.	
6.	Economic	Mark	2020	Economic	Conducted an	Investigating
	Analysis of	Wilson		implications of	economic analysis	economic models
	Sharding in			sharding in	to evaluate the cost-	for incentive
	blockchain			blockchain	efficiency of	structures in
				networks.	sharding.	sharded
						blockchains.
7.	Secure	David Lee	2021	Maintaining data	Explored various	Further research on
	Sharding: A			consistency	mechanisms for	dynamic sharding
	Review of			between shards	ensuring data	techniques and
	Scalability and			in sharded	consistency in a	their impact on
	Security			blockchains.	sharded	data consistency.
	Challenges				environment.	
8.	Cross-Shard	Lisa Smith	2021	Efficiently	Identified	Investigating
	Transactions in			managing	challenges and	optimizations for
	Sharded			transactions	proposed solutions	inter-shard
	Blockchains:			involving	for cross-shard	communication
	Challenges and			multiple shards.	transactions.	and transaction
	Solutions					validation.
9.	Shard-to-Shard	James	2022	Efficiently	This paper explores	Investigating
	Communication	Chen,		enabling	strategies and	further
	in Sharded			communication	protocols for	optimizations and
	Blockchains			between shards	improving shard-	enhancements in
				in a sharded	toshard	shard-to-shard
				blockchain is a	communication,	communication to
				complex	addressing data	reduce latency and
				challenge.	exchange and	improve the overall
					coordination	performance .
					between shards in a	
					secure and efficient	
					manner.	

Prof. V. S. Nalawade et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., September-October -2023, 9 (10) : 82-86

10.	Dynamic		Maria	2022	The static nature	This paper	Exploring the
	Sharding	for	Rodriguez		of sharding in	introduces dynamic	implementation of
	Adaptive	Data			blockchain can	sharding as a	dynamic sharding
	Storage	in			lead to	technique to	in various
	Blockchair	n			suboptimal data	adaptively manage	blockchain
					storage and	data storage in	platforms and
					management as	blockchain	assessing its impact
					the network	networks,	on scalability and
					evolves.	addressing	storage.
						scalability	
						challenges as the	

III.LIMITATIONS OF EXISTING SYSTEM

- Blockchain networks often struggle with scalability as the number of participants and transactions increases.
- Storing data on a blockchain can be expensive due to the consensus mechanisms and the need for all nodes to store a copy of the entire blockchain.
- Blockchain networks have limitations in terms of transaction throughput and speed. Public blockchains often have slower transaction processing times compared to traditional centralized databases.
- Public blockchains, which are often used for data storage and sharing, are transparent and immutable. This transparency may pose privacy challenges, especially when dealing with sensitive or private data.
- Many blockchain networks use energy-intensive consensus mechanisms like Proof of Work (PoW).
- The size of data that can be stored directly on a blockchain is often constrained.
- Achieving interoperability between different blockchains and traditional systems can be challenging.

IV.CONCLUSION

The Proposed approach defiones an effective Data Sharding scheme that is developed on the Blockchain Framework. Data nowadays has increased in value and volume that demands for an improvement in the infrastructure to be able to store more data efficiently and with improved security. The sharding strategy is one of the leading strategies that have been effective in the overcoming the scalability problem that plagues the traditional databases. This is attributed to decentralized implementation of the sharding mechanism that improves the volume as well as the reliability of the database storage. The presented approach utilizes Linear Clustering along with the Blockchain framework to enable a secure and efficient data sharding approach on the Mongo DB database. These outcomes have be stipulated on a number of different datasets that have been elaborated in the results section with satisfactory outcomes.

V. REFERENCES

- [1]. Blockchain Storage and Data Privacy: A Review
- [2]. Scalability and Security Trade-offs in Blockchain.
- [3]. Secure Sharding: A Review of Scalability and Security Challenges.
- [4]. Sharding in Blockchain: A comprehensive Survey.
- [5]. Storage Optimization in Ethereum 2.0: A Case Study.
- [6]. Economic Analysis of Sharding in blockchain.
- [7]. Secure Sharding: A Review of Scalability and Security Challenges.
- [8]. Cross-Shard Transactions in Sharded Blockchains: Challenges and Solutions.
- [9]. Shard-to-Shard Communication in Sharded Blockchains.
- [10]. Dynamic Sharding for Adaptive Data Storage in Blockchain.