

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

ISSN : 2456-3307 OPEN CACCESS

Available Online at : www.ijsrcseit.com doi : https://doi.org/10.32628/IJSRCSEIT

A Survey on IoT Based Electric Vehicle Charging System

Prof. K. A. Aaglave, Daphal Pratiksha, Kadam Sukanya, Kawade Pravina, Madane Maheshwari Department of B.E. Computer, SBPCOE, Indapur, Maharashtra, India

ARTICLEINFO	ABSTRACT
Article History:	Reducing the availability of non-renewable sources and transitioning to
Accepted: 10 Oct 2023 Published: 30 Oct 2023	renewable energy, such as solar power, isacrucialsteptowardasustainable future. This shift can help decrease our dependence on fossil fuels and mitigate the environmental impact of energy production. Governments, businesses, and individuals are increasingly investing in renewable energy technologies likesolar
Publication Issue Volume 9, Issue 10 September-October -2023 Page Number 87-93	 panelsto harnessthepowerofsunlight andreduce carbonemissions. Inthisproject, theconceptbeingdiscussedinvolvesthewirelesstransmissionof electric powerusingrenewableenergysources, specificallysolarpanels. Theglobalpopulation growth and increased vehicle usage contribute to air pollution and environmental concerns. Electric vehicle charging stations play a vital role in mitigating this issue by promoting the adoption of electric vehicles (EVs.) KEYWORDS : Power Supply, Charging Cable, Connector, Control Panel, User Interface.

I. INTRODUCTION

Transmitting electric power wirelessly to supply electricity to devices and for charging purposes has been considered for a long time, dating back to the era of Nikola Tesla. However, this concept was not achievable during Tesla's time because the necessary technologies and infrastructure required to make wireless powertransmissionpracticalwere not yet developed or available [1]. Breakthrough in wireless power transmission thatoccurred in 2007. Researchers were ableto illuminate a light bulb using a wireless power source located at a distance of two meters. This achievement marked a milestone in the development of wireless power transfer technology [2]. The analysis primarily concentrated on how these models interacted with the powers system, likely referring to how the yimpacted or utilized the electrical power infrastructure. The objective was to draw general and clear semi-quantitative (partially numerical) conclusions, allowing for a better understanding of the implications and differences among these transportation models in terms of their energy and power requirements [3].

Electric vehicles (EVs) have seen widespread adoption globally due to their potential to significantly reduce the consumption of fossil fuels. This makes EVs a environmentally friendly mode of transportation compared to

Copyright © 2023 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution **4.0 International License (CC BY-NC 4.0)** which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited.

traditional gasoline or diesel-powered vehicles [4]. A specific type of transformer known as a two-coil loosely coupled transformer, which is notable for its ability to transfer power wirelessly with high efficiency even across significant air gaps. It also references four basic topologies used in wireless power transfer systems, which are often categorized based on how compensation capacitors are connected to the transmitting and receiving coils. [5]. Advancement in IOT technology helps us to use sensors technology in day to day life applications [6].

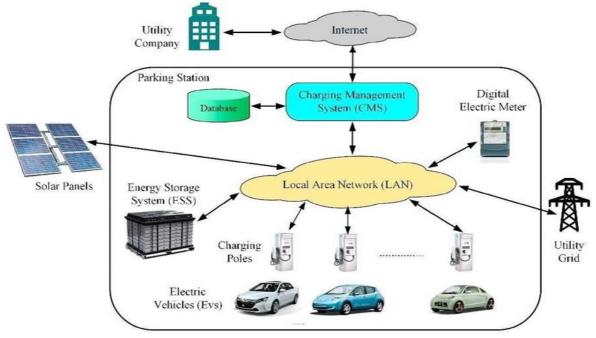


Fig. 1 Reference–Optimal charging and electric vehicle charging

II. LITERATURESURVEY

Sr.No:	1
PaperTitle	Wireless Charging System For Electric Vehicle
Author	Muhammad, Amjad, Muhammad Farooq-i-Azam,QiangNi,Mianxiong Don
Year	2022
Problemsolved in	The wireless charging system for electric vehicles is to develop a reliable
thispaper:Existing	andefficient chargingsystemthat utilizesrenewableenergysources, such as solar
ProblemStatement	panels, to wirelesslytransfer power to the electric vehicle.
Technique used to solve	Thetechniqueusedtosolvetheproblemofwirelesschargingforelectric vehicles is
problem: Existing	inductive power transfer through electromagnetic coupling between the primary
Problem Solution	and secondary coils.
Whatwillbefuture	Improving Power Transfer Efficiency: Further research can be conducted to
work: Future Scope	optimize the power transfer efficiency between the primary and secondary coils.
	This can involve exploring different coil designs,
	materials, and configurations to minimize powerloss esduring wireless charging.
Sr.No:	2
PaperTitle	WhyweneedbatteryswappingTechnology
Author	ValleraA.M,NunesP.M,BritoM.C.

Year	2021
Problem solved in	Theproblemstatement forbatteryswappingtechnologyistodevelopa reliable and
thispaper:Existing	efficient systemthat allows for the quick and convenient exchangeofdepleted
ProblemStatement	EVbatterieswithfullychargedones.
Techniqueusedto solve	Thetechniqueusedto solvetheproblemofbatteryswappingtechnology for electric
Problem: Existing	vehicles is the development of automated battery swapping stations.
Problem Solution	
What willbe	One of the future works is to establish industry standards and
futurework:	compatibility protocols for battery swapping systems. This will ensure
FutureScope	interoperabilitybetween different electric vehicle models and battery
	$swapping stations, allowing for seamless and universal battery\ swapping capabilities.$
Sr.No:	3
PaperTitle	Thekeyissuesofelectricvehiclechargingviahybridpowersources: Technoeconomic
	viability, analysis, and recommendation
Author	Eltoumi,FouadM.,Becherif, Mohamed,Djerdir, Abdesslem, Ramadan, Haitham.S.
Year	2021
Problem solved in	Thepaperaimstoidentifyandanalyzethekeyissuesrelatedtocharging electric
thispaper:Existing	vehiclesusing hybrid power sources, considering the economic feasibility and
ProblemStatement	technological aspects. The goal is to provide recommendations for improving the
	efficiency, cost effectiveness, and sustainability of electric vehicle charging
	systemsusinghybridpowersources.
Techniqueusedto solve	The technique used to solve the problem of electric vehicle charging via hybrid
problem: Existing	power sources in the paper. The Key Issues of Electric Vehicle Charging via Hybrid
Problem Solution	Power Sources: Technoeconomic Viability, Analysis,and
	Recommendations"isnotexplicitlymentioned.
What willbe	Future work can involve the development of policy and regulatory frameworks to
futurework:	support the deployment and operation of electric vehicle charging infrastructure
FutureScope	powered by hybrid power sources.
Sr.No:	4
PaperTitle	ASinglePhaseWirelessPowerTransferSystemwithaHighFrequency AC Link
	$Converter in the {\tt Secondary} for {\tt Three Phase Applications}.$
Author	AlirezaJafari,Amirbabaki,Alizakerian.
Year	2021
Problem solved in	The existing problem statement is about developing a wireless power transfer system
thispaper:Existing	that uses a high frequency AC link converter in the
ProblemStatement	secondary side. This systema imstobe used in three-phase applications.
Techniqueusedto solve	Implementresonantinductivecouplingtechniquesinthewirelesspower transfer
problem: Existing	system. Resonant circuitscan improve powertransfer efficiencyby
Problem Solution	ensuring that the primary and secondary coils are in resonance, reducing energy losses.

What willbe	Single-PhaseWirelessPowerTransferSystemwithaHighFrequencyAC Link
futurework:	Converter in the Secondary.
FutureScope	
Sr.No:	5
PaperTitle	OntheAsymptoticBehaviorandParameterEstimationofaDoubleSided LCC
	CompensatedWirelessPowerTransferSystem.
Author	Feng-RungHuJiaShengHu.
Year	2021
Problem solved in this	The existing problem statement is about developing a wireless power transfer
paper: Existing Problem	system that uses a high frequency AC link converter in the
Statement	secondaryside. Thissystemaimstobeused in three-phase applications.
Technique used to solve	Thisresearchpaperdiscussestheconceptofawirelesschargingstationfor
problem Existing	electric vehicle susing renewable energy sources, specifically solar panels.
Problem Solution	
What will be future	Additionally, thereispotentialfordevelopingadvancedcontrol algorithms and
work: Future Scope	optimizationtechniques to enhancethe efficiencyand
	reliabilityofthewirelesspowertransfersystem.
Sr.No:	6
PaperTitle	WirelessPowerTransferusingDominoResonatorfor110kVPower Grid
	OnlineMonitoring Equipment
Author	QU.J,HE.L,TangN,LeeCK
Year	2020
Problem solved in this	The development of a wireless power transfersy stem for online monitoring equipment
paper: Existing Problem	in a 110 kV power grid. The paper aims to overcome the limitations of traditional
Statement	wired power supply methods by proposing a domino resonator-based wireless
	power transfer system.
Technique used to solve	This technique involves the use ofresonant magnetic coupling between a
problem: Existing	transmitter coil (primary coil) and a receiver coil (secondary coil) to transfer electric
Problem Solution	power wirelessly to the monitoring equipment.
What will be future	Wirelesspowertransferusingadominoresonatorfor110kVpowergrid online
work: Future Scope	monitoring equipment includes several potential areas of development.
Sr.No:	7
PaperTitle	Vehicleto-vehiclechargingsystemfundamentalanddesigncomparison.
Author	Mou.X,Zhao.R,andGladwi
Year	2019
Problem solved in this	The development and implementation of Vehicle-to-Vehicle (V2V) charging
paper :	systems present a multifaceted set ofchallenges encompassing fundamental
ExistingStatement	principles and design considerations.
Techniqueusedto solve	Collaboratewithinternationalorganizations,automakers,andtechnology providers
problem: Existing	to develop standardized V2V communication protocols and charging connectors.
Problem Solution	· · · · · · · · · · · · · · · · · · ·

	Encourage industry-wide adoption of these standards to ensure interoperability
	between different EV makes and models.
What willbe future	Therecould also be advancements in wireless charging technology, allowing for
work: Future Scope	longer-range and more efficient power transfer.
Sr.No	8
PaperTitle	AComprehensiveReviewofWirelessChargingTechnologiesfor ElectricVehicle
Author	AqueelAhmad,MohammadsaadAlam.
Year	2018
Problemsolvedinthis	In this paper electric vehicles (EVs) continues to grow, the demand for
paper: Existing ProblemStatement	efficientandconvenientchargingsolutionsbecomesincreasinglycrucial for
Froblemstatement	mainstream acceptance. While conventional plug-in charging methods have been
	prevalent, there is a pressing need to evaluate and understandthestate-of-the-
Techniqueucod	artinwirelesschargingtechnologiesfor electricvehicles. Provide clear and data-driven recommendations for the most suitable
Techniqueused to solveproblem:Existing	wirelesschargingtechnologybasedonspecificuse cases, suchashome charging, public
ProblemSolution	charging, and fast-charging networks. Encourage
rioblemsolution	standardizationbodiestoconsiderthefindingsandpotentiallyconverge
	towardthemost effectivewirelesschargingsolutions.
What willbe	Wirelesschargingtechnologiesforelectricvehiclesisquite promising! Astechnology
futurework:	continuestoadvance, we can expect to see further improvements in efficiency,
FutureScope	charging speed, and convenience.
Sr.No:	9
PaperTitle	9 OptimizingtheEnergyTransfer,WithaHighSystemEfficiencyin Dynamic Inductive
raperride	Charging of EVs.
Author	Karakitsios,IoannisPalaiogiannis,FoivosMarkou,Achilleas Hatziargyriou,Nikos.
Year	2018
Problemsolvedinthis	One problem is the energy losses during the wireless power transfer process, which
	can reduce overall efficiency. Another issue is maintaining a stable connection and
paper : Existing ProblemStatement	alignment between the charging
Troblemstatement	infrastructureandthevehiclewhileinmotion,whichcanimpactthe
	chargingefficiency.
Techniqueusedtosolve	Specific information or solutions regarding optimizing energy transfer and
problem: Existing	achieving high system efficiency in dynamic inductive charging of electric
ProblemSolution	vehicles.One solutioncould beto focusonimprovingthedesign
	andengineeringofthecharginginfrastructureandthevehicles themselves.
What willbe	The future scope of optimizing energy transfer with high system efficiency in
futurework:	dynamic inductive charging of electric vehicles (EVs) is
FutureScope	promisingandholdssignificant potentialforadvancingthefieldofEV charging.
Sr.No:	10
PaperTitle	Economicanalysisontheuseofwiredandwirelessrechargingsystems
Author	M.Longo,D.Zaninelli,G.Cipriani.

Year	2017
Problemsolvedinthis	Theuseofwiredandwirelessrechargingsystemsistocomparethecosts and benefits of
paper: Existing	implementing wired and wireless charging systems for electric vehicles (EVs). The
ProblemStatement	analysis aims to assess the economic feasibilityand potentialadvantages of
	eachcharging method interms of
	installationcosts, operational costs, efficiency, and user convenience.
Techniqueused to	Thetechniqueusedtosolvetheproblemofcomparingthe
solveproblem:Existing	economicanalysisofwiredandwirelessrechargingsystemsfor electric vehicles (EVs)
ProblemSolution	is a comparative cost analysis.
What willbe	The future scopeofeconomic analysisonthe use ofwired and wireless recharging
futurework:	systems is significant, asthe electric vehicle (EV) charging infrastructure continues
FutureScope	to evolve. Here are some key areas of future
	developmentandopportunities in economic analysis for both wired and wireless
	recharging systems.

III.LIMITATIONS OF EXISTING SYSTEM

- Limited Charging Infrastructure: The existing system may rely on outdated or biased data or algorithms that may data or algorithms that may lead to erroneous or unfair predictions andecisions. For example, some predictive policing tools that use machine learning to forecast where and when crimes are likely to occur based on historical data have been criticized for being biased and in accurate.
- SlowChargingSpeed: Thechargingprocesscanbetime-consuming, especiallywith traditional charging methods, which may discourage potential users from adopting electric vehicles. The existing systemmay not be acceptedortrusted by the public or the police, affecting its legitimacy and effectiveness. For example, some people may oppose or resist the use of facial recognition cameras.
- Compatibility Issues: Different electric vehicle models may have different charging requirements and connectortypes, leading to compatibilityissues and inconvenience for users.
- Limited Grid Capacity: The existing power grid may not have enough capacity to handle the increased demand from widespread electric vehicle charging, leading to potential strain on the grid and power outages.
- Lack of Standardization: There is a lack of standardization in terms of charging protocols, payment methods, and interoperability between charging networks, which can create confusion and inconvenience for electric vehicle owners.

IV.CONCLUSION

The conclusion regarding an electric vehicle charging system is that it offersefficient and convenient charging solutions for electric vehicles (EVs). This means that such systems are designed to effectively and conveniently provide the necessary electricity to charge EVs, making it easier and more practical for users to keep their electric vehicles powered up. Indeed, the statement emphasizes that electric vehicle charging systems offer multiple benefits. Firstly, they aid in reducing carbon emissions, which is crucial for environmental sustainability. Secondly, these systems promote sustainable transportation by encouraging the use of electric vehicles, which

produce fewer emissions compared to traditional gasoline or diesel vehicles. Furthermore, the statement underscores the convenience aspect of these charging systems. They provide an easy and user-friendly method for charging electric vehicles, making it convenient for EV owners to maintain their vehicles' power levels. This convenience factor can significantly contribute to the adoption of electric vehicles as a practical and accessible mode of transportation.

V. REFERENCES

- [1]. Makaa, Benard. (2015). Wireless Power Transmission using Solid State Tesla Coils. 10.13140/RG.2.1.1552.7449
- [2]. Chhawchharia, Saransh& Sahoo, Sarat Kumar & M, Balamurugan &Sukchai, Sukruedee&Yanine, Franco. (2018). Investigation of wireless power transfer applications with a focus on renewable energy. Renewable and Sustainable Energy Reviews.91. 10.1016/j.rser.2018.04.101.
- [3]. https://www.mdpi.com/1996-1073/10/8/1217
- [4]. https://doi.org/10.3390/electronics11091355
- [5]. https://doi.org/10.3390/machines9110287.
- [6]. M. Mrinal, L. Priyanka, M. Saniya, K. Poonam and A. B. Gavali, "Smart home Automation and security system based on sensing mechanism," 2017 Second International Conference on Electrical, Computer and Communication Technologies (ICECCT), Coimbatore, India, 2017, pp. 1-3, doi: 10.1109/ICECCT.2017.8117986.

