

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

ISSN : 2456-3307 OPEN CACCESS

Available Online at :www.ijsrcseit.com doi : https://doi.org/10.32628/IJSRCSEIT



# Survey Paper on 3-D Hand Geometry Based Recognition System for User Authentication Using Image Processing

Prof. Y. L. Tonape<sup>1</sup>, Akshata A. Ajatrao<sup>2</sup>, Mrunal R. Chaudhari<sup>2</sup>, Jaydeep P. Lakade<sup>2</sup>, Gayatri C. Randive<sup>2</sup>

<sup>1</sup>Associate Professor, <sup>2</sup>UG Student

Department of Computer Engineering, S. B. Patil College of Engineering, Pune, Maharashtra, India

### ARTICLEINFO

ABSTRACT

### Article History:

Accepted: 10 Oct 2023 Published: 30 Oc t2023

Publication Issue Volume 9, Issue 10 September-October-2023 Page Number

10-17

User authentication is a critical aspect of modern security systems, ranging from personal devices to secure facilities. Traditional authentication methods often rely on passwords, PINs, or biometric features like fingerprints or facial recognition. However, these methods can be vulnerable to unauthorized access or spoofing. This paper presents a novel approach to user authentication using 3D hand geometry-based recognition, leveraging image processing techniques. A Palm print, biometric characteristics, was mostly found in civil and commercial applications for security system because it has more reliable and easy to capture by low resolution devices. This research focuses on the development of hand identification and hand geometry using hand features, including the length of the hand, length and width of each finger, size of palm. We use radius distance methods to find the position of the fingertip and the concave of the finger from the hand contour. The radius distance method is highly flexible, accurately detecting the curves of fingertip and concave of finger. We use these reference points to identify the characteristics of individual hands. The sample images are acquired from the simple and low-cost acquisition system. The experimental results demonstrate the efficiency of the proposed method. 3D shape reconstruction from multiple handdrawn sketches is an intriguing way to 3D shape modelling. Currently, state-ofthe-art methods employ neural networks to learn a mapping from multiple sketches from arbitrary view angles to a 3D voxel grid. Because of the cubic complexity of 3D voxel grids, however, neural networks are hard to train and limited to low resolution reconstructions, which leads to a lack of geometric detail and low accuracy. To resolve this issue, we propose to reconstruct 3D shapes from multiple sketches using direct shape optimization (DSO), which does not involve deep learning models for direct voxel-based 3D shape generation. Specifically, we first leverage a conditional generative adversarial network (CGAN) to translate each sketch into an attenuance image that captures the predicted geometry from a given viewpoint. Then, DSO minimizes a project-and-compare loss to reconstruct the 3D shape such that it matches the predicted attenuance images from the view

**Copyright © 2023 The Author(s):** This is an open-access article distributed under the terms of the Creative Commons Attribution **4.0 International License (CC BY-NC 4.0)** which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited.



angles of all input sketches. Based on this, we further propose a progressive update approach to handle inconsistencies among a few hand-drawn sketches for the same 3D shape. Our experimental results show that our method significantly outperforms the state-of-the-art methods under widely used benchmarks and produces intuitive results in an interactive application.

**Keywords:** - Hand geometry, hand features, radius distance methods, computational intelligence, hand biometrics, palm geometry analysis, palm equations.

#### I. INTRODUCTION

Biometric characteristics such as palmprint [1], hand and finger geometry [2], finger-print [3], Iris [4], etc. are mostly popular used in security systems over the traditional secure measures, password or ID cards. The biometric systems are more reliable be-cause they cannot easily be lost, stolen, shared and duplicated. Palmprint features have advantages compared with other features. For example, palmprint has more information than fingerprint and it can be captured by low resolution devices such as digital camera, video camera. Furthermore, iris capture devices are more expensive than palm print capture devices. The Principal lines and wrinkles are normally features extracted from palm print image. The most researchers usually used them for identification process. The palm print alignment which is the crucial pre-processing steps prior to the identification steps in the palm print recognition system [5]. The previous works almost used three approaches for palm print alignment. At the first approach, tangent-based approach [6] is a tangent calculation between two boundaries to find the key points for further used in palm print alignment. A bisector-based approach [7, 8] is constructed the lines from the centre of gravity of a finger boundary to find the key points. The last approach is a finger-based approach [9]. This method used a wavelet to detect the fingertips to assign the key points. Most of the previous approaches usually used hand acquisition devices with guidance pegs [2, 6, 8, 9] to fix the hand position to avoid the scaling, translation and rotation problems for correctly palm print image alignment. But this mechanism makes some user feel uncomfortable and the palm must becontacted to image capture device during acquisition process so it is not hygiene for the user. In this paper, we proposed a new contactless palm print image alignment method and further used in the person identification We find the robust reference point in the middle of palm using distance map applied on the binaries hand image. We use radius distance methods to find the position of the fingertip and the concave of the finger from the hand contour which are served as fiducially points used to estimate the affine transformation matrix. The reference palm print image can then be aligned against the query palm print image. The distance map error can be computed and used for person identification. A pixel form can be used for palm print image [10]. Author presented an algorithm for detecting and preventing Node isolation attack where attacker become the sole MPR of victim and isolated the victim from the rest of the network[11].9





Fig. 1 Reference–Proposed contactless person identification using palm print.

# II. LITERATURE SURVEY

| Sr.N<br>o. | Topic Name     | Author<br>Name        | Year of<br>Publicatio<br>n | Problem solved<br>in this paper :<br>Existing Problem<br>Statement | Technique used<br>to solve problem<br>: Existing<br>Problem<br>Solution | What will be<br>future work :<br>Future Scope |
|------------|----------------|-----------------------|----------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------|
| 11         | Identity       | Markus                | 2021                       | Hand                                                               | Collect a                                                               | Using the                                     |
| 1.         | Verification   | Mu <sup>"</sup> ller, |                            | geometrybased                                                      | sufficient                                                              | geometry of                                   |
|            | Using Geometry | Georg                 |                            | authentication                                                     | number of hand                                                          | human hands                                   |
|            | of Human hands | Poier                 |                            | systems need to                                                    | images or scans                                                         | for identity                                  |
|            |                |                       |                            | be accurate and                                                    | from the                                                                | verification has                              |
|            |                |                       |                            | reliable in                                                        | individuals who                                                         | promising                                     |



|      |                  |              |      | recognizing        | will be using the | future scope in |
|------|------------------|--------------|------|--------------------|-------------------|-----------------|
|      |                  |              |      | individuals.       | svstem.           | various fields, |
|      |                  |              |      |                    |                   | particularly in |
|      |                  |              |      |                    |                   | security and    |
|      |                  |              |      |                    |                   | authentication  |
|      |                  |              |      |                    |                   | systems.        |
| 2 2. | Reconstructing   | Zhizhon      | 2020 | Given a set of 2D  | The problem of    | Machine         |
|      | 3D Shapes From   | σ            | _0_0 | sketches from      | reconstructing    | learning        |
|      | Multiple         | o<br>Han Bao |      | different          | 3D shapes from    | techniques      |
|      | Sketches Using   | rui Ma       |      | viewpoints the     | multiple          | particularly    |
|      | Direct Shape     | i ui iviu    |      | goal is to         | sketches using    | deen learning   |
|      | Ontimization     |              |      | reconstruct a      | direct shape      | could be        |
|      | Optimization     |              |      | coherent and       | ontimization can  | integrated into |
|      |                  |              |      | accurate 3D        | be approached     | the             |
|      |                  |              |      | shape that best    | using a           | reconstruction  |
|      |                  |              |      | represents the     | combination of    | process.        |
|      |                  |              |      | underlying         | techniques from   | 1               |
|      |                  |              |      | object.            | computer vision.  |                 |
| 33   | 3D Shape         | Jiayun       | 2022 | Hand-drawn         | Gather a diverse  | Future research |
| 3.   | Reconstruction   | Wang,        |      | sketches can be    | dataset of hand-  | can focus on    |
|      | from Free-Hand   | Jierui       |      | ambiguous,         | drawn sketches    | improving the   |
|      | Sketches         | Lin,         |      | lacking precise    | paired with their | accuracy and    |
|      |                  |              |      | measurements       | corresponding     | realism of the  |
|      |                  |              |      | and details        | 3D models.        | reconstructed   |
|      |                  |              |      | required for       |                   | 3D shapes.      |
|      |                  |              |      | accurate 3D        |                   | 1               |
|      |                  |              |      | reconstruction.    |                   |                 |
| 4.   | Human Palm       | Johnson      | 2019 | The problem is to  | The proposed      | As technology   |
|      | Geometry         | I            |      | develop an         | solution involves | advances, the   |
|      | Modelling for    | Agbinya      |      | accurate and       | a multi-step      | accuracy and    |
|      | Biometric        | 0 ,          |      | reliable biometric | approach to       | reliability of  |
|      | Security Systems |              |      | security system    | address the       | palm geometry   |
|      |                  |              |      | based on human     | challenges        | recognition     |
|      |                  |              |      | palm geometry      | modelling for     | systems are     |
|      |                  |              |      | modelling.         | biometric         | likely to       |
|      |                  |              |      |                    | security systems. | improve.        |
| 5    | Biometric        | Hesham       | 2020 | Design and         | Developing a      | Future research |
|      | identity         | Hashim       |      | develop a robust   | biometric         | could focus on  |
| 5.   | Authentication   | Moham        |      | biometric          | identity          | improving the   |
|      | System Using     | med ,        |      | identity           | authentication    | accuracy of     |
|      | Hand Geometry    | Shatha       |      | authentication     | system using      | hand geometry   |



|    | Measurements      | A Baker |      | system utilizing   | hand geometry     | measurements     |
|----|-------------------|---------|------|--------------------|-------------------|------------------|
|    |                   |         |      | hand geometry      | measurements      | for              |
|    |                   |         |      | mansuraments       | involves several  | authentication   |
|    |                   |         |      | incasurements.     | steps and         | autilentication. |
|    |                   |         |      |                    | steps and         |                  |
| 6  | DIOMETRIC         | Marcas  | 2010 | Diamatria          | The proposed      | Hand goom street |
| 0  | DIONEIKIC         |         | 2019 | Diometric          | The proposed      | Hand geometry    |
| 6. | VERIFICATION      | Faundez |      | verification       | solution involves | Diometrics       |
|    | OF HUMANS BY      | -Zanuy  |      | systems are        | utilizing hand    | could enable     |
|    | MEANS OF          |         |      | crucial for        | geometry as a     | personalized     |
|    | HAND              |         |      | ensuring secure    | biometric         | user experiences |
|    | GEOMETRY1         |         |      | access control     | identifier for    | in various       |
|    |                   |         |      | and identity       | human             | industries.      |
|    |                   |         |      | verification.      | verification.     |                  |
| 7  | Hand Pose         | Min-Yu  | 2020 | In virtual reality | To address the    | Hand pose        |
| 7  | Estimation in     | Wua ,   |      | (VR)               | challenge of      | estimation in    |
| 7. | Object-           | Pai-Wen |      | applications,      | hand pose         | object-          |
|    | Interaction based | Tinga   |      | realistic object   | estimation for    | interaction      |
|    | on Deep Learning  |         |      | interaction is     | object            | based on deep    |
|    | for Virtual       |         |      | crucial for        | interaction in    | learning has     |
|    | Reality           |         |      | creating           | VR applications,  | significant      |
|    | Applications      |         |      | immersive          | a deep learning-  | potential for    |
|    |                   |         |      | experiences.       | based approach    | future           |
|    |                   |         |      | 1                  | can be            | developments in  |
|    |                   |         |      |                    | emploved.         | virtual reality  |
|    |                   |         |      |                    | 1 2               | applications.    |
| 8  | BIOMETRIC         | Marcos  | 2020 | Hand geometry      | Utilize           | Research on      |
|    | VERIFICATION      | Faundez |      | refers to the      | specialized       | techniques for   |
| 8. | OF HUMANS BY      | -Zanuv  |      | physical           | hardware, such    | securely storing |
|    | MEANS OF          |         |      | measurements       | as hand scanners  | and              |
|    | HAND              |         |      | and features of a  | or cameras to     | transmitting     |
|    | GEOMETRY'         |         |      | person's hand      | capture high-     | hand geometry    |
|    | GLOMETRI          |         |      | including the size | resolution        | templates to     |
|    |                   |         |      | and chang and      | images or 2D      | nrevent          |
|    |                   |         |      | the overall hand   | models of         | revent           |
|    |                   |         |      | structure          | individuale'      |                  |
|    |                   |         |      | structure.         | handa             | access 01        |
| 0  | IJuman Dalaa      | Johnson | 2010 | The muchless       | Cothor bi-l       | Combine relu     |
| 9  | ruman Palm        | jonnson | 2019 | rine problem       | Gatner nign-      | Combine paim     |
| 9. | Geometry          | 1       |      | revolves around    | quality palm      | geometry with    |
|    | iviodelling for   | Agbinya |      | capturing,         | images using      | other biometric  |
|    | Biometric         |         |      | processing to      | specialized       | modalities like  |
|    | Security System   |         |      | establish a secure | scanners,         | fingerprint,     |



|     |                  |           |      | and convenient     | cameras, or       | facial           |
|-----|------------------|-----------|------|--------------------|-------------------|------------------|
|     |                  |           |      | biometric          | sensors.          | recognition, or  |
|     |                  |           |      | identification     |                   | iris scanning to |
|     |                  |           |      | method.            |                   | enhance          |
|     |                  |           |      |                    |                   | accuracy and     |
|     |                  |           |      |                    |                   | security.        |
| 10  | Usinga Variable- | Krishnan  | 2019 | In the realm of    | This dataset will | Exploring how    |
| 10  | Friction Robot   | Srinivasa |      | robotic            | include           | the VFRH can     |
| 10. | Hand to          |           |      | manipulation, a    | proprioceptive    | collaborate with |
|     | Determine        |           |      | significant        | sensor readings   | humans in tasks  |
|     | Proprioceptive   |           |      | challenge arises   | and ground truth  | requiring        |
|     | Features for     |           |      | when a robot       | object labels for | delicate         |
|     | Object           |           |      | attempts to        | each              | manipulation,    |
|     | Classification   |           |      | manipulate         | manipulation      | suchas medical   |
|     | during Within-   |           |      | objects within its | scenario.         | procedures or    |
|     | Hand-            |           |      | own hand.          |                   | intricate        |
|     | Manipulation     |           |      |                    |                   | assembly tasks.  |

## III. LIMITATIONS OF EXISTING SYSTEM

- Performance of 3D Hand geometry systems can be affected by the medical conditions of the hand like swelling, injuries, arthritis that obscure or changes the basic structure of the hand and cause recognition difficulties.
- The geometric structure of the hand is affected with respect to weight and aging and thus affects 3D Hand Geometry recognition.
- 3D Hand Geometry systems require re-enrollment once or twice for the users who are under growth and thus possess hindrance in verification.
- Hand geometry can be affected by changes in an individual's hand shape, such as injuries or weight gain/loss. It can also be compromised by the use of fake hands or gloves to spoof the system.
- Researchers continue to work on improving the accuracy, robustness, and practicality of 3D hand geometry recognition systems for various applications

# IV. CONCLUSION

The conclusion of 3-D Hand Geometry Based Recognition System For User Authentication Using Image Processing is that we proposed the new contactless palm print alignment method with the general web camera and the black screen without guidance pegs. This method used the corresponding key points from the fingertips and the concave of the fingers to find the affine transformation matrix which was used to align set of inquiry palm-print image against set of reference palm print image. The distance map error was used to find the correct matching between inquiry and reference palm print image. To improve the specificity for person identification, another features vector which contains the physical parameter extracted from the finger and palm including



Prof. Y. L. Tonape et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., September-October-2023,9 (10) : 10-17

the length and width of the finger was used. The proposed technique was tested successfully for person identification. The result is very promising with 100% accuracy.

### V. REFERENCES

- Meiru Mu, QiuQi Ruan and Yongsheng Shen, "Palmprint Recognition Based on Discriminative Local Binary Patterns Statistic Feature," Signal Acquisition and Processing, 2010. ICSAP '10. International Conference on, pp. 193-197, 9-10 Feb. 2010
- [2]. X. Wu, K. Wang and D. Zhang, "HMMs Based Palmprint Identification," Biometric Authentication, vol. 3072, no. 4, pp. 775- 781, 2004.
- [3]. C. C. Han, "A hand-based personal authentication using a coarse-tofine strategy," Image and Vision Computing, vol. 22, no. 11, pp. 909- 918, Sept. 2004.
- [4]. D. Zhang, W. K. Kong, J. You and M. Wong, "Online palmprint identification," Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 25, no. 9, pp. 1041-1050, Sept. 2003.
- [5]. honghua Lin, "A novel iris recognition method based on the naturalopen eyes," Signal Processing (ICSP),
  2010 IEEE 10th International Conference on, pp. 1090-1093, 24-28 Oct. 2010.
- [6]. Da Silva, Sandro, and J. I. Agbinya. "Face Recognition Programming on Mobile Handsets." In Proceedings of ICT. 2005.
- [7]. Amit Kumar Singh, Amrit Kumar Agrawal, Chandra Bhan Pal, "Hand geometry verification system: a review", Proc ICUMT 2009.
- [8]. Nesrine Charfi, "Biometric recognition based on hand schape and palmprint modalities", PhD thesis. Ecole nationale supérieure Mines-Télécom Atlantique, 2017.
- [9]. Shi Chuan Soh, M. Z. Ibrahim and Marlina Binti Yakno, "A review: personal identification based on vein infrared pattern", Journal of Telecommunication, Electronic and Computer Engineering, vol. 10, No. 1-4, 2018, pp. 175 – 180.
- [10]. Swapnali, Londhe, et al. "A Cryptographic Key Generation on a 2D Graphics Using RGB Pixel Shuffling and Transposition." Proceedings of the International Conference on Data Engineering and Communication Technology: ICDECT 2016, Volume 2. Springer Singapore, 2017.
- [11]. K. S. Gaikwad and S. B. Waykar, "Detection and Removal Of Node Isolation Attack In OLSR Protocol Using Imaginary Nodes with Neighbour Response in MANET," 2017 International Conference on Computing, Communication, Control and Automation (ICCUBEA), Pune, India, 2017, pp. 1-5, doi: 10.1109/ICCUBEA.2017.8463762.
- [12]. Dietterich T., "Do Hidden Units Implement ErrorCorrecting Codes?" Technical report 1991.
- [13]. Wicker, Stephen B., Error Control Systems for Digital Communication and Storage, Upper Saddle River, N.J., Prentice Hall, 1995.
- [14]. S. T. Shirkande and M. J. Lengare, "Optimization of Underwater Image Enhancement Technique by Combining WCID and Wavelet Transformation Technique," 2017 International Conference on Computing, Communication, Control and Automation (ICCUBEA), Pune, India, 2017, pp. 1-6, doi: 10.1109/ICCUBEA.2017.8463759.
- [15]. Kale, R., Shirkande, S. T., Pawar, R., Chitre, A., Deokate, S. T., Rajput, S. D., & Kumar, J. R. R. (2023). CR System with Efficient Spectrum Sensing and Optimized Handoff Latency to Get Best Quality of Service. International Journal of Intelligent Systems and Applications in Engineering, 11(10s), 829-839.



Prof. Y. L. Tonape et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., September-October-2023,9 (10) : 10-17

- [16]. Nagtilak, S., Rai, S., & Kale, R. (2020). Internet of things: A survey on distributed attack detection using deep learning approach. In Proceeding of International Conference on Computational Science and Applications: ICCSA 2019 (pp. 157-165). Springer Singapore.
- [17]. Mane, Deepak, and Aniket Hirve. "Study of various approaches in machine translation for Sanskrit language." International Journal of Advancements in Research & Technology 2.4 (2013): 383.
- [18]. Shivadekar, S., Kataria, B., Limkar, S. et al. Design of an efficient multimodal engine for preemption and post-treatment recommendations for skin diseases via a deep learning-based hybrid bioinspired process. Soft Comput (2023). https://doi.org/10.1007/s00500-023-08709-5
- [19]. Shivadekar, Samit, et al. "Deep Learning Based Image Classification of Lungs Radiography for Detecting COVID-19 using a Deep CNN and ResNet 50." International Journal of Intelligent Systems and Applications in Engineering 11.1s (2023): 241-250.
- [20]. Gaikwad, Yogesh J. "A Review on Self Learning based Methods for Real World Single Image Super Resolution." (2021).
- [21]. V. Khetani, Y. Gandhi and R. R. Patil, "A Study on Different Sign Language Recognition Techniques," 2021 International Conference on Computing, Communication and Green Engineering (CCGE), Pune, India, 2021, pp. 1-4, doi: 10.1109/CCGE50943.2021.9776399.
- [22]. Vaddadi, S., Arnepalli, P. R., Thatikonda, R., & Padthe, A. (2022). Effective malware detection approach based on deep learning in Cyber-Physical Systems. International Journal of Computer Science and Information Technology, 14(6), 01-12.
- [23]. Thatikonda, R., Vaddadi, S.A., Arnepalli, P.R.R. et al. Securing biomedical databases based on fuzzy method through blockchain technology. Soft Comput (2023). https://doi.org/10.1007/s00500-023-08355-x
- [24]. Rashmi, R. Patil, et al. "Rdpc: Secure cloud storage with deduplication technique." 2020 fourth international conference on I-SMAC (IoT in social, mobile, analytics and cloud)(I-SMAC). IEEE, 2020.
- [25]. Khetani, V., Gandhi, Y., Bhattacharya, S., Ajani, S. N., & Limkar, S. (2023). Cross-Domain Analysis of ML and DL: Evaluating their Impact in Diverse Domains. International Journal of Intelligent Systems and Applications in Engineering, 11(7s), 253-262.
- [26]. Khetani, V., Nicholas, J., Bongirwar, A., & Yeole, A. (2014). Securing web accounts using graphical password authentication through watermarking. International Journal of Computer Trends and Technology, 9(6), 269-274.