

International Journal of Scientific Research in Computer Science, Engineering and

Information Technology ISSN: 2456-3307

Available Online at : www.ijsrcseit.com doi : https://doi.org/10.32628/IJSRCSEIT

A Survey On Leaf Vein Morphometrics: A Deep Learning **Approach to Plant Classification**

Prof. J. N. Ekatpure, Yash P. Kamble, Pooja T. More, Sakshi S. Patankar

Department of Computer Engineering, SPVP's S.B. Patil College of Engineering, Indapur, Maharashtra, India

ARTICLEINFO	ABSTRACT
Article History:	Deep Learning techniques for plant species classification using leaf vein morphometric features. The significance of this project lies in its potential to
Accepted: 10 Oct 2023	revolutionize the field of plant species classification. By automating the
Published: 30 Oct 2023	identification process and reducing dependency on human expertise, the proposed approach accelerates research efforts, supports biodiversity conservation initiatives, and offers educational opportunities. As an interdisciplinary endeavor
Publication Issue Volume 9, Issue 10	bridging Deep Learning technology and botanical research, this project contributes to scientific advancement and technological innovation. Keywords Leaf Morphology, Convolutional Neural Networks (CNN), Species
September-October -2023	Differentiation, Transfer Learning for Plant Classification, Deep Learning,
Page Number 144-152	Machine Learning Algorithms for Classification, Plant dataset

I. **INTRODUCTION**

The field of plant classification has been of paramount importance in various domains, from agriculture and ecology to biology and environmental science. Accurate plant classification serves as the foundation for numerous applications, including species conservation, crop management, and ecological research. [1] Traditionally, plant classification heavily relied on taxonomic expertise and morphological characteristics, such as leaf shape, size, and colour. However, these methods have inherent limitations, often requiring specialized knowledge and being susceptible to human bias and errors. [2] Plant species identification is important because it gives information about plant health, productivity and biodiversity. Traditionally, identification of plant species is done manually. But with the help of modern technology, plant species can be easily identified based on plant leaf shape colour and other characteristics using machine learning technology. In recent years, the advent of computer vision and deep learning techniques has revolutionized the field of plant classification. This transformation is driven by the ability of deep learning models to automatically extract intricate features from plant images, providing a datadriven approach that can surpass the limitations of traditional methods. Among the various aspects of plants that can be leveraged for classification, leaf vein morphometric stands out as a promising avenue. [3] In this project

Copyright © 2023 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited.

Prof. J. N. Ekatpure et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., September-October -2023, 9 (10) : 144-152

we have created a plant species recognition model using machine learning techniques based on photographs of plant leaves. With the help of this project, scientists, agriculturists and citizens will be able to quickly identify plant species. Farmers and citizens will be able to quickly identify plant species. [4] Deep learning is a metalearning process that improves a machine's performance as it learns as much data as it has. Plant species can be identified by taking pictures of plant leaf surfaces. [5] The main strategy of plant taxonomy is to develop new formalisms for plant classification. [6] Learning leaf artery features using deep learning and building species recognition models. The plant classification process is done using CNN algorithm. Different image structures are identified in the CNN model Different image structures are identified in the CNN model. It characterizes the images as a matrix of thought known as liars. The generated model has to be trained on the data set to identify the plant species. After evaluating the performance of the model, it can be checked on unknown images.

Sr.	Paper title	Author Name	Year of	Problem solved in	Technique used to	What will be
No.	-		Publicatio	this paper : Existing	solve problem :	future work :
			n	Problem Statement	Existing Problem	Future Scope
					Solution	
1.	IDENTIFIC	ANEEQ	2022	The existing	The existing problem	Applications
	ATION OF	ATIQUE 1		problem statement	solution involves a	spanning
	PLANT	, SAIRA		revolves around the	multi-step process that	research,
	SPECIES	KARIM 1		need for a more	integrates image	technology,
	THROUGH	, SAMAN		accurate, efficient,	processing, feature	education, and
	LEAF VEIN	SHAHID 2*		and automated	extraction, and deep	conservation.
	MORPHO	AND		method of	learning techniques.	
	METRIC	ZAREEN		identifying plant	By combining	
	AND DEEP	ALAMGIR 1		species through leaf	morphometric	
	LEARNING			vein morphometric	information extracted	
				analysis, and the	from leaf vein patterns	
				paper aims to	with the power of deep	
				propose a solution	neural networks, the	
				that leverages deep	solution aims to	
				learning techniques	provide an automated	
				to address these	and accurate method	
				challenges.	for identifying plant	
					species based on their	
					unique leaf	
					characteristics.	
2.	Feature	Muhammad	2022	Feature extraction	The technique used to	Extensive, with
	Extraction	Umair		plays a critical role	solve the problem of	opportunities for
	of Plant Leaf	Ahmad,		in various image	feature extraction of	innovation,
				analysis tasks,	plant leaves using deep	interdisciplinary

II. LITERATURE SURVEY

	Using Deep	1 Sidra	including plant	learning involves the	collaboration and
	0 1		0 1	e	
	Learning	Ashiq,2 Gran Badahah	species identification and		11
		Badshah ,			
		3 Ali Haider	classification.	networks (CNNs) or	-
		Khan ,1	Traditional	similar deep	
		and	methods of feature	architectures.	environmental
		Muzammil	extraction often		monitoring.
		Hussain 1	involve hand-		
			crafted features that		
			require domain		
			expertise and may		
			not capture the full		
			complexity of the		
			data. This can lead		
			to suboptimal		
			performance,		
			especially when		
			dealing with		
			diverse plant		
			species and		
			variations in leaf		
			appearances.		
3.		Shivali Amit 2021	-	The technique used to	-
	n of Plant	•		solve the problem of	, I I
	Leaves	, R.	Ũ	classifying plant leaves	-
	Using New		U	using new compact	-
	-	1,* , Sawal		convolutional neural	
		Hamid Md Ali	botany, agriculture,	network (CNN) models	parameters for
	al Neural			involves the	optimal
		Mohammad	Traditional	development and	performance,
	Models	Faseehuddin 1	methods often rely	-	including
			on manual	novel CNN	learning rates,
			inspection and	architectures that are	batch sizes.
			handcrafted	designed to be both	Investigate the
			features, which can	efficient and accurate	use of transfer
			be time-consuming,	-	learning by fine-
			labor-intensive,	classification.	tuning compact
			and may not		CNN models on
			capture the full		using pre-trained
			complexity of leaf		models to boost
			patterns. Moreover,		

				as the dataset of		classification
				plant species grows,		accuracy.
				the computational		accuracy.
				complexity of		
				traditional methods		
				becomes a		
				bottleneck.		
				bottleneek.		
4.	Recognizing	Sumedh Patil ,	2021	The paper addresses	The comparative study,	Investigate
	Plant	Baba Patra,		the challenge of	highlighting the most	advanced feature
	species	Neha Goyal,		automating the	effective	extraction
	using	Dr. Kapil		recognition of plant	methodologies for	methods,
	Digitized	Gupta		• -	recognizing plant	including more
	leaves- A				species using digitized	sophisticated
	comparative			• •	leaves.	texture analysis,
	study			diversity of plant	Reflect on the	•
	•			species and their		and spatial
				_	findings for practical	patterns to
				characteristics pose	applications and future	capture intricate
				-	research directions.	leaf
				challenge to manual		characteristics.
				identification,		Explore the
				which can be time-		effectiveness of
				consuming and		transfer learning
				error-prone. The		by fine-tuning
				objective is to		pre-trained
				explore and		models on a large
				compare various		botanical dataset
				methods to create		and adapting
				an accurate and		them for plant
				efficient automated		species
				system for		recognition.
				recognizing plant		
				species based on		
				their digitized		
				leaves.		
5.	Deep	Jing Wei Tan,	2020	The paper addresses	Gather a diverse	Investigate
	Learning for	Siow-Wee		the challenge of	dataset containing	advanced transfer
	Plant	Chang,		automating the	images of leaves from	learning strategies
	Species	Sameem		classification of	different plant species,	that leverage pre-
	Classificatio	Abdul-		plant species based	along with	trained models on

	n using Leaf	Kareem, Hwa		on leaf vein	corresponding vein	botanical or
	6	Jen Yap,		morphometric	annotations. Use deep	
		Kien-Thai		1	1	
	1			0 1	learning techniques to	
	ric	Yong		learning	extract relevant	1 0
				-	features from the leaf	1 7
				vein patterns are	-	1 0
				known to contain	annotations.	model's decisions.
				valuable		
				information that		
				distinguishes		
				different plant		
				species. The goal is		
				to develop an		
				accurate and		
				efficient deep		
				learning-based		
				system capable of		
				recognizing and		
				classifying plant		
				species solely based		
				on the		
				morphometric		
				characteristics of		
				their leaf veins.		
6.	Plant	Munish	2019		Use image processing	Discuss potential
0.		Vum or 1	2017	1	techniques to segment	1
	Recognition	-		recognition system	1 0	
	0	Gupta2, Xiao-		0 ,	backgrounds and	system, such as
	e	1			e	•
	1 0	Zhi Gao3 , and		morphological	0 0	0 0
		Amitoj Singh4			conditions. Divide the	or texture
	and			e	dataset into training,	information,
	Adaptive				validation, and testing	1 0
	Boosting			Adaptive Boosting	Ũ	with advanced
	Methodolog			(AdaBoost)	balanced distribution	machine learning
				e	of plant species.	techniques, or
				achieve accurate		exploring the
				and efficient		adoption of deep
				classification of		learning
				plant species.		architectures.
7.		Sivaranjani.C ,	2019	0 1	Curate a diverse dataset	•
	Identificatio	Lekshmi		a real-time	of medicinal plant	to offer real-time

	ſ	17 11		• 1 .• 0• .•	· ·	
		Kalinathan,		identification	images, ensuring	e
		Amutha.R ,		system capable of	-	plant growth and
	e	Ruba Soundar		recognizing	different species and	changes. Develop
	Machine	Kathavarayan,		1	variations. Extract	
		Jegadish		species from images		more advanced
	e	Kumar.K.J		using \setminus	meaningful features	techniques for
	Techniques				from images, including	visualizing and
				machine learning	color histograms,	explaining the
				techniques. The	texture descriptors	model's decisions.
				system should	(e.g., Haralick	
				provide fast and	features), and shape	
				accurate species	attributes (e.g.,	
				identification to aid	contour-based	
				researchers,	features).	
				healthcare		
				professionals, and		
				the general public.		
8.	The	JIANG	2020	Conduct a	Curate a diverse dataset	Investigate
	Analysis of	HUIXIAN		comprehensive	of plant images	methods that
	Plants			analysis of plant	covering various	recognize plant
	Image			image recognition	species, growth stages,	species from
	Recognition			using deep learning	and environmental	different angles or
	Based on			and artificial neural	conditions. Implement	viewpoints.
	Deep			networks. Explore	different deep learning	Conduct studies
	Learning			the performance,	architectures suitable	that analyze how
	and			limitations, and	for plant image	plants' visual
	Artificial			optimization	recognition, such as	features change
	Neural			strategies for	Convolutional Neural	over time due to
	Network			accurate and	Networks (CNNs) and	growth, climate,
				efficient plant	Recurrent Neural	or disease.
				species	Networks (RNNs).	
				identification.		
9.	AI Based	Anu Paulson,	2020	Develop an AI-	Collaborate with local	Allow users to
	Indigenous	Ravishankar S		based system that	communities,	contribute
	Medicinal			can accurately	ethnobotanists, and	images,
	Plant			identify indigenous	herbalists to gather a	descriptions, and
	Identificatio				diverse and culturally	uses of indigenous
	n			-	relevant dataset of	e
				U	indigenous medicinal	Implement
				0 0 01	plant images. Develop	blockchain
				knowledge and		

						- 1
				modern	indigenous plant	ensure the
				technology. The	names and their	authenticity and
				system should	meanings in various	integrity of the
				respect cultural	languages and dialects.	information
				sensitivities and		provided by
				support sustainable		indigenous
				practices.		communities and
						users.
10.	Estimation	J. Parashar1 S.	2021	Develop a deep	Curate a diverse dataset	Explore the
	of	М.		learning-based	of high-resolution	possibility of
	Abundance	Bhandarkar1,2		system to estimate	images capturing	using drones or
	and	J. Simon3 B.		the abundance and	different salt marsh	remote sensing
	Distribution	М.		distribution of salt	areas, plant species,	technologies to
	of Salt	Hopkinson3,		marsh plant species	and environmental	capture real-time
	Marsh	S. C.		from images. The	conditions. Develop a	images of salt
	Plants	Pennings		system should	deep learning model	marshes, enabling
	from Images			accurately identify	based on convolutional	continuous
	Using Deep			plant species,	neural networks	monitoring and
	Learning			quantify their	(CNNs) for species	timely data
				abundance, and	identification and	updates.
				provide spatial	semantic	
				distribution	segmentation.	
				information.		

III. LIMITATIONS OF EXISTING WORK

Data Dependency-

Deep learning models require large datasets for training. A limited dataset can hamper their performance. Not having enough leaf vein images for each species might hinder the model's accuracy. The model's effectiveness is tied to the size and diversity of the training data.

Generalization Concerns-

The model might not perform well on unseen data or leaf types not present in the training set. There could be issues with overfitting if not regulated properly, causing poor performance on new leaf samples. Generalizing across diverse plant species might prove challenging.

Processing Power and Time-

Training deep learning models requires significant computational resources. The model's training can be timeconsuming and might necessitate specialized hardware. Without powerful GPUs or TPUs, the training time could be a bottleneck.

Environmental Variability-

Prof. J. N. Ekatpure et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., September-October -2023, 9 (10) : 144-152

Leaf vein patterns can be influenced by environmental conditions, which the model might not account for. Differences in lighting, seasons, or leaf health can affect vein visibility and hence the model's predictions. External factors like pests, diseases, or mechanical damage can alter leaf vein patterns.

Image Quality and Pre-processing-

The model's performance might degrade if the image quality is inconsistent. Variabilities in image acquisition, such as camera angles, zoom, or focus, can impact the model's predictions. Extensive pre-processing might be required to make the images suitable for the model.

Inter-species Variability-

Some plant species might have very similar leaf vein patterns, making them hard to distinguish. The model could struggle with closely-related species or those with subtle vein differences. Distinguishing between species with overlapping characteristics might pose challenges.

IV. CONCLUSION

Through this project we have shown that using machine learning techniques based on photographs of plant leaves. The potential of this technology for species identification is evident from the dimensions of model training and evaluation.

We have highlighted the potential of leaf vein morphometric as a valuable source of botanical information for plant classification, offering a data-driven alternative to traditional methods. Our examination of deep learning techniques, particularly Convolutional Neural Networks (CNNs), has demonstrated their effectiveness in automating the plant classification process based on leaf vein patterns. our survey paper underscores the potential of leaf vein morphometric and deep learning as a transformative approach to plant classification. By automating and enhancing the accuracy of plant species identification, this methodology has the potential to revolutionize various fields reliant on plant classification. However, it is imperative that researchers in this domain collaborate to overcome existing challenges and ensure the responsible application of these technologies.

Our research has significant implications for the field of plant biology and classification. The integration of deep learning with leaf vein morphometric not only enhances classification accuracy but also allows for the automated analysis of large-scale plant datasets, reducing the burden of manual identification and enabling broader ecological research.

V. REFERENCES

- [1]. Willis, K.J. (ed.) 2017. State of the World's Plants 2017. Report. Royal Botanic Gardens, Kew.
- [2]. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet Classification with deep convolutional neural networks. In Advances in Neural information processing systems (pp. 1097-1105).
- [3]. Wang, Z. (2015). The applications of deep learning on traffic Identification. BlackHat USA.
- [4]. Wang, D., Khosla, A., Gargeya, R., Irshad, H., & Beck, A. H. (2016). Deep learning for identifying metastatic breast cancer. arXiv preprint arXiv:1606.05718.
- [5]. Lee, S. H., Chan, C. S., Wilkin, P., & Remagnino, P. (2015, September). Deep-plant: Plant identification with convolutional neural networks. In Image Processing (ICIP), 2015 IEEE International Conference on 2015 Sep 27 (pp. 452-456). IEEE.

Prof. J. N. Ekatpure et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., September-October -2023, 9 (10) : 144-152

- [6]. Lee, S. H., Chang, Y. L., Chan, C. S., & Remagnino, P. (2016). Plant Identification system based on a convolutional neural network for the Lifeclef 2016 plant classification task. In Working notes of CLEF 2016 Conference.
- [7]. Lee, S. H., Chan, C. S., Mayo, S. J., & Remagnino, P. (2017). How deep Learning extracts and learns leaf features for plant classification. Pattern Recognition, 71, 1-13.
- [8]. Sladojevic, S., Arsenovic, M., Anderla, A., Culibrk, D., & Stefanovic, D. (2016). Deep Neural Networks Based Recognition of Plant Diseases by Leaf Image Classification. Computational Intelligence and Neuroscience, 2016.
- [9]. Grinblat, G. L., Uzal, L. C., Larese, M. G., & Granitto, P. M. (2016). Deep Learning for plant identification using vein morphological Patterns. Computers and Electronics in Agriculture, 127, 418-424.
- [10]. Larese, M. G., Namías, R., Craviotto, R. M., Arango, M. R., Gallo, C., & Granitto, P. M. (2014). Automatic classification of legumes using leaf Vein image features. Pattern Recognition, 47(1), 158-168.
- [11]. Reyes, A. K., Caicedo, J. C., & Camargo, J. E. (2015). Fine-tuning Deep Convolutional Networks for Plant Recognition. In CLEF (Working Notes).
- [12]. Gupta, S., & Mazumdar, S. G. (2013). Sobel edge detection Algorithm. International journal of computer science and management Research, 2(2), 1578-1583.

