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 This comprehensive review delves into the cutting-edge applications of deep 

learning techniques for precipitation nowcasting using satellite data. As climate 

variability and extreme weather events become increasingly prominent, accurate 

and timely precipitation predictions are essential for effective disaster 

management and resource allocation. The paper surveys the recent 

advancements in deep learning models, including convolutional neural networks 

(CNNs) and recurrent neural networks (RNNs), showcasing their efficacy in 

processing and analyzing satellite-derived information. The discussion 

encompasses the challenges associated with satellite data, such as spatiotemporal 

complexities and data quality issues, and elucidates how deep learning 

architectures address these hurdles. The review also highlights noteworthy 

studies, methodologies, and benchmarks in the field, providing a comprehensive 

overview of the state-of-the-art approaches for precipitation nowcasting through 

the lens of deep learning applied to satellite data. 
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I. INTRODUCTION 

 

In the era of rapidly advancing technology, the 

utilization of deep learning methodologies has 

emerged as a pivotal force in enhancing our ability to 

predict and understand complex meteorological 

phenomena. This comprehensive review focuses on 

the application of deep learning techniques for 

precipitation nowcasting, a critical aspect of weather 

forecasting that holds profound implications for 

disaster preparedness and resource management. 

With an increasing frequency of extreme weather 

events, accurate and timely precipitation predictions 

are indispensable for mitigating the impact of floods, 
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droughts, and other climate-related challenges. The 

integration of satellite data into this predictive 

framework serves as a cornerstone, providing a wealth 

of information that deep learning models harness to 

deliver more precise and reliable precipitation 

forecasts. 

Satellite-derived data, while invaluable, presents 

unique challenges, including spatiotemporal 

complexities and data quality issues. The first part of 

this review critically examines the intricacies 

associated with satellite data and how these 

challenges have traditionally hindered accurate 

precipitation predictions. As we delve into the realm 

of deep learning, the second section explores the 

transformative potential of convolutional neural 

networks (CNNs) and recurrent neural networks 

(RNNs) in handling and interpreting satellite 

information. These advanced architectures have 

demonstrated remarkable capabilities in learning 

complex patterns and temporal dependencies, paving 

the way for improved precipitation nowcasting 

models. 

Throughout this review, we not only explore the 

theoretical underpinnings of deep learning for 

precipitation nowcasting but also provide a 

comprehensive overview of recent studies, 

methodologies, and benchmarks in the field. By 

synthesizing the current state-of-the-art approaches, 

this review aims to contribute to a deeper 

understanding of the role that deep learning plays in 

advancing our ability to forecast precipitation events 

based on satellite data, ultimately bolstering our 

resilience in the face of an increasingly unpredictable 

climate. 

 

II.  LITERATURE STUDY 

 

In [1], Reinoso-Rondinel et al. propose a novel 

radar-based precipitation nowcasting approach for 

Germany, utilizing a localization filtering approach. 

The paper explores the application of this method on 

a nationwide scale, highlighting its efficacy in 

predicting precipitation events. 

Marrocu and Massidda, in [2], conduct a 

performance comparison between deep learning and 

optical flow-based techniques for nowcasting 

precipitation from radar images. The study provides 

insights into the strengths and weaknesses of each 

approach, contributing to the ongoing discussion on 

optimal methodologies for precipitation nowcasting. 

Bouget et al., as discussed in [3], present a rain 

nowcasting model that fuses rain radar images and 

wind forecasts using deep learning. The paper sheds 

light on the integration of multiple data sources to 

improve the accuracy of precipitation predictions, 

particularly focusing on the synergy between radar 

images and wind forecasts. 

Bonnet et al., in [4], introduce a deep learning-

based precipitation nowcasting system for São Paulo, 

Brazil, leveraging weather radar images. The study 

emphasizes the application of deep learning in a real-

world scenario, demonstrating its effectiveness in 

predicting precipitation events in a specific 

geographical context. 

Yao et al., as outlined in [5], propose a deep Long 

Short-Term Memory (LSTM) model for weather radar 

image prediction in nowcasting. The paper delves into 

the use of deep LSTM networks to forecast weather 

radar images, contributing to the exploration of 

advanced neural network architectures for 

precipitation prediction. 

In [6], Samsi et al. discuss distributed deep learning 

techniques for precipitation nowcasting. The paper 

explores the use of distributed computing resources to 

enhance the efficiency and scalability of deep learning 

models in the context of precipitation prediction. 

Kumar et al., in [7], introduce ConvCast, an 

embedded convolutional LSTM-based architecture for 

precipitation nowcasting using satellite data. The 

study focuses on the integration of convolutional and 

LSTM layers for improved prediction accuracy, 

particularly in the context of satellite-based 

precipitation nowcasting. 



Volume 9, Issue 6, November-December-2023| http://ijsrcseit.com 

Vedanti Patel et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., September-October-2023,9 (10) : 326-331 

 

 

 

 
328 

Zhou et al., as discussed in [8], provide a 

benchmark review of deep learning in next-frame 

prediction. While not directly focused on 

precipitation nowcasting, the paper contributes to the 

broader understanding of deep learning applications 

in predicting sequential data. 

Berthomier et al., in [9], explore cloud cover 

nowcasting using deep learning. The study 

investigates the use of deep learning techniques for 

predicting cloud cover, offering insights into the 

potential applications of these methods beyond 

precipitation forecasting. 

Jianhong et al., in [10], present research on weather 

radar nowcasting extrapolation. The paper discusses 

methods for extrapolating weather radar data, 

contributing to the broader field of weather 

prediction and nowcasting. 

Hoyer and Hamman, in [11], introduce xarray, a 

Python library for N-D labeled arrays and datasets. 

While not directly related to precipitation nowcasting, 

the paper is included for its relevance to data handling 

and manipulation in atmospheric research. 

Chkeir et al., in [12], apply machine learning 

techniques to nowcast extreme rain and extreme wind 

speed. The paper explores the use of machine learning 

for predicting extreme weather events, expanding the 

scope of traditional precipitation nowcasting. 

Kong et al., in [13], present a precipitation 

nowcasting model based on deep learning over 

Guizhou, China. The study contributes to the 

understanding of region-specific applications of deep 

learning in precipitation prediction. 

Tan et al., as discussed in [14], propose a deep 

learning model based on multi-scale feature fusion for 

precipitation nowcasting. The paper emphasizes the 

importance of feature fusion in improving the 

predictive capabilities of deep learning models for 

precipitation events. 

Yao et al., in [15], present an improved deep 

learning model for high-impact weather nowcasting. 

The study focuses on enhancing the accuracy of 

weather predictions, particularly in situations with 

significant weather impacts, showcasing 

advancements in deep learning for nowcasting 

applications. 

While the aforementioned papers contribute 

significantly to the field of precipitation nowcasting 

through innovative approaches such as deep learning 

models, radar-based techniques, and data fusion 

strategies, several common limitations persist across 

the literature. Firstly, many studies primarily focus on 

specific geographical regions, potentially limiting the 

generalizability of their models to diverse climatic 

conditions. Additionally, the scarcity of long-term 

datasets and the reliance on relatively short-term data 

may hinder the robustness of these models in 

capturing evolving weather patterns over extended 

periods. Another common limitation lies in the lack 

of interpretability and explain ability of the deep 

learning models, raising concerns about their 

reliability in critical applications. Moreover, the 

papers often do not extensively address the 

computational resources required for training and 

deploying sophisticated models, potentially posing 

challenges for real-time implementation and 

scalability. As the field progresses, addressing these 

shared limitations will be essential for advancing the 

applicability and reliability of precipitation 

nowcasting models in diverse and practical settings. 

 

III.METHODOLOGY 

 

A. Dataset 

NetCDF Format: A dataset in the Network Common 

Data Form (NetCDF) was utilized for the study. 

NetCDF was chosen for its array-oriented scientific 

data handling capabilities, providing a self-describing, 

portable format. The format includes a header that 

outlines the file's structure, encompassing data arrays 

and arbitrary file information presented as 

name/value attributes. Metadata, which constitutes 

supplementary information about a file or variable, 

plays a crucial role in understanding the data. 
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Climate Model Data: The dataset sourced from the 

Copernicus Climate Change Service (C3S) is a 

reanalysis dataset based on ERA5 single levels. This 

dataset is particularly relevant for climate studies, and 

the parameters are classified as variables. Key 

coordinate variables include time (time), latitude (lat), 

longitude (lon), and level (lev). The dataset can be 

accessed via the following link: Copernicus Climate 

Data. 

B. Pre-Processing 

Date-Time Based Separation: The dataset was 

subjected to date-time based separation to organize 

and structure the temporal aspect of the data. This 

step involves parsing and extracting relevant temporal 

information to facilitate subsequent analysis. 

Null Data Removal: Null or missing data points were 

identified and systematically removed to ensure the 

integrity and quality of the dataset. This process 

involved careful consideration of potential impacts on 

downstream analysis. 

Conversion to Heatmap Images: The pre-processed 

data was transformed into heatmap images. This 

conversion enhances the visual representation of the 

data, making it more suitable for analysis using neural 

network models. 

 
Figure 1. Heatmap Image 

C. Learning Models 

Recurrent Neural Network (RNN): An RNN was 

employed to capture temporal dependencies and 

patterns within the data. RNNs are well-suited for 

sequential data, making them effective for time-series 

analysis. 

Convolutional Neural Network (CNN): CNNs were 

applied to learn spatial patterns and relationships 

within the data. This model excels at detecting spatial 

features, making it particularly useful for climate data 

with geographical dimensions. 

Long Short-Term Memory (LSTM): LSTM, a type of 

recurrent neural network with memory cells, was 

utilized to capture long-term dependencies in the 

temporal aspects of the data. This helps in retaining 

information over extended periods, addressing 

challenges posed by short-term memory limitations. 

CNN-LSTM Hybrid Model: A hybrid model 

combining CNN and LSTM architectures was 

implemented to leverage both spatial and temporal 

features simultaneously. This integrated approach 

aims to enhance the overall performance of the model 

in capturing complex relationships within the climate 

dataset. 

D. Model Evaluation and Analysis 

The performance of each model was assessed using 

appropriate metrics, considering factors such as 

accuracy, precision, recall, and F1 score. Comparative 

analyses were conducted to identify the strengths and 

limitations of each model in the context of climate 

data analysis. Results were interpreted to draw 

insights into the dataset's characteristics and to inform 

potential applications in climate modeling and 

prediction. 

TABLE I 

COMPARATIVE STUDY 

Mode

l Pros Cons 

RNN - Captures 

sequential 

dependencies in 

data. 

- May struggle with 

long-term 

dependencies. 

- Suitable for time-

series and 

- Training can be 

computationally 
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sequential data. expensive. 

- Can handle input 

sequences of 

varying lengths. 

- Prone to difficulties 

in learning long-

range dependencies. 

CNN - Effective in 

capturing spatial 

hierarchies and 

patterns. 

- Limited ability to 

handle sequential or 

time-series data. 

- Parameter sharing 

reduces the number 

of trainable 

parameters. 

- Fixed input size; 

struggles with 

variable-length 

sequences. 

LSTM - Captures long-

term dependencies 

in sequential data. 

- Complexity and 

resource-intensive 

compared to simpler 

models. 

- Mitigates 

vanishing/explodin

g gradient 

problems. 

- More challenging to 

interpret compared to 

simpler models. 

- Effective in 

retaining and 

utilizing historical 

context. 

- Computational 

overhead can be 

significant. 

CNN-

LSTM 

- Combines spatial 

and temporal 

feature extraction. 

- Increased model 

complexity compared 

to individual models. 

- Effective in 

capturing both 

spatial and 

sequential patterns. 

- May require 

substantial 

computational 

resources. 

- Well-suited for 

spatiotemporal 

data, e.g., video 

sequences. 

- Potential for 

overfitting, especially 

with smaller datasets. 

 

IV. CONCLUSION 

 

In conclusion, this comprehensive review 

underscores the significant strides made in utilizing 

deep learning for precipitation nowcasting through 

the lens of satellite data. The amalgamation of 

advanced neural network architectures with the rich 

information derived from satellites has demonstrated 

substantial improvements in the accuracy and lead 

time of precipitation predictions. However, as we 

navigate the ever-evolving landscape of 

meteorological research, there remain several avenues 

for future exploration. One promising direction 

involves the incorporation of multi-sensor satellite 

data and the fusion of information from different 

sources to enhance the robustness and reliability of 

precipitation forecasts. Additionally, the development 

of explainable AI models and techniques to interpret 

the decision-making process of deep learning 

algorithms can foster greater trust and acceptance in 

the wider scientific and operational communities. 

Looking ahead, the integration of real-time 

observational data, including ground-based 

measurements and novel satellite technologies, 

presents an exciting opportunity to refine the 

spatiotemporal precision of precipitation nowcasting 

models. As climate patterns continue to evolve, the 

adaptation and optimization of deep learning 

architectures to accommodate emerging data 

challenges will be essential. Collaborative efforts 

between meteorologists, data scientists, and 

policymakers will play a pivotal role in harnessing the 

full potential of deep learning for precipitation 

nowcasting, ensuring its seamless integration into 

operational forecasting systems and bolstering our 

resilience against the impacts of extreme weather 

events in the future. 
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