

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

ISSN : 2456-3307 OPEN CACCESS

Available Online at : www.ijsrcseit.com doi : https://doi.org/10.32628/IJSRCSEIT

AeroGesture : Aerial Webcam Gestures for Ultimate Control Using gesture prediction

Prof. K. N. Agalave¹, Vishnu B. Bhakare², Abhishek S. Kasar², Rohit T. Kate²

¹Assistant Professor, ²UG Student

Department of B.E. Computer, SBPCOE, Indapur, Maharashtra, India

ARTICLEINFO

ABSTRACT

Now a days computer vision has reached its pinnacle, where a computer can Article History: identify its owner using a simple program of image processing. In this stage of Accepted: 10 Oct 2023 development, people are using this vision in many aspects of day-to-day life, like Published: 30 Oct 2023 Face Recognition, Color detection, Automatic car, etc. In this project, computer vision is used in creating an Optical mouse and keyboard using hand gestures. The camera of the computer will read the image of different gestures performed Publication Issue by a person's hand and according to the movement of the gestures the Mouse or Volume 9, Issue 10 the cursor of the computer will move, even perform right and left clicks using September-October -2023 different gestures. Similarly, the keyboard functions may be used with some Page Number different gestures, like using one finger gesture for alphabet select and four-51-56 figure gesture to swipe left and right. It will act as a virtual mouse and keyboard with no wire or external devices. The only hardware aspect of the project is a web-cam and the coding is done on python using Anaconda platform. Here the Convex hull defects are first generated and then using the defect calculations an algorithm is generated and mapping the mouse and keyboard functions with the defects. Mapping a couple of them with the mouse and keyboard, the computer will understand the gesture shown by the user and act accordingly. Keywords:-Gesture Recognition, Keyboard, Mouse , Virtual Control, Image Processing

I. INTRODUCTION

to In the ever-evolving landscape of human-computer interaction, one innovation stands out as both intriguing and transformative – gesture-based virtual mouse and keyboard systems. These systems, which enable users to control digital interfaces and devices through natural hand movements, represent a paradigm shift in how we interact with technology.

Copyright © 2023 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution **4.0 International License (CC BY-NC 4.0)** which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited.

Traditional input methods, such as physical mice and keyboards, have long been the primary means of communicating with computers. However, as our reliance on digital devices grows, the demand for more intuitive, touchless, and immersive interfaces has intensified. Gesture-based systems have emerged as a compelling solution to meet this demand.

In this discussion, we delve into the world of gesture-based virtual mouse and keyboard systems, exploring their applications, underlying technology, and the opportunities they present in various domains. We will also consider the limitations and challenges associated with these systems, as well as their potential to shape the future of human-computer interaction. Join us on this journey as we uncover the fascinating realm of gesture-based interfaces and their impact on how we connect with the digital world.

Sr.	Topic Name	Author	Year of	Problem solved in this	Technique used to solve	What will be
No.	-	Name	Public	paper: Existing	problem: Existing	future work:
			ation		Problem Solution	Future Scope
1.	A Novel	Hongjun Ma	2023	Obtaining motion	Image segmentation,	Using machine
	Segmentation-	Sports		features from the RGB	Image edge detection,	LearningTechn
	Registration	Institute of		video streams for	Computational modeling,	ique solve
	(SR) based	Wuhan		extraction and	Motion segmentation,	problem
	Gesture	Business		prediction is a recent	Gesture recognition,	
	Recognition	University,		research hotspot	Streaming media, Feature	
	Algorithm for				extraction	
	Equestrian					
	Images					
2.	A new 3D	Muhammad	2020	the visualization of	3D	By using Pose
	Viewer system	JehanzebDe		the3D models is a	interaction, multipleviews,	estimation
	based on hand	partme of		scorching topic in	handgesture,	Algorithm we
	gesturerecogni	Computer		computer vision	MicrosoftKinect	are improvethe
	tion forsmart	Science		andhumancomputer		AccuracyofOur
	interaction			interaction. The		system
				demands for 3D models		
				have been increased		
				due to high		
				involvement in		
				animated characters,		
				virtual reality and		
				augmented reality.		
3.	Gesture	SugnikRoyC	2020	Generally for personal	Convex Hull, Defects,	The system
	Recognition	howdhury		use in computers and	Image Processing, Frame	works well for
	Based Virtual			laptops we use a	Extraction	the simple
	Mouse and			physical mouse or		pointing and

II. LITERATURE SURVEY

	Keyboard			touchpads invented a		pinching
				long time ago		gestures, there
				0 0 0		is still room for
						manyimprove
						ment.
4.	Fundamentals	Bahram	2020	Automated human	3D optical image	Advancements
	of automated	Javidi,	_0_0		acquisition techniques	in machine
	human gesture	-		receiving significant	acquisition rechniques	learning and
	recognition	José M.		research interest, with		hardware are
	using 3D	Sotoca, Xin		applications ranging		expected to
	integral	Shen		from		play a crucial
	imaging	Shen		novelacquisitiontechni		role in
	iiiiagiiig			ques to algorithms, data		expanding the
				processing, and		technology's
				classification		capabilities and
				methodologies.		adoption.
5.	Hand Gesture	Ashish	2020	e	1. Histogram of Gradients	The model can
J.	Recognition	Sharmaa,	2020	only tested against	(HOG) 2. Principal	be trained on
	using Image	Anmol		static gesture images	Component Analysis	physical hand
	Processing and			and can be further	(PCA) 3. Local Binary	models
	Feature	SavitojSingh			Patterns (LBP)	
	Extraction	, 0		U	r atterns (LDr)	containing
		a, VasudevAw		dynamic gestures in videos in real-time.		sensors
	Techniques			videos ili real-tille.		utilizing graph
		atramania				theory to
						provide extra
						data which can be studied for
						improving the
<u> </u>	D 11	C 1 1	2010			accuracy.
6.	Digital Image	Changchun	2018	improvement of	Digital Image Processing	With the
	Processing	Sci-Tech		computer hardware	Technology	continuous
	Technology	University,		performance, image		development
		Changchun		processing algorithms		of technology,
		130600, Jilin		have improved the		digital image
		China		application of digital		processing
				image processing		technology
				technology.		will continue
						to be obtained.
						Progress, these
						also need more
						people to

						study.
7.	Qualitative	MuhamdZee	2018	The aim of the system	Speech, Gesture, MMIS,	By usingPose
	Analysis of a	shan		is to analyse the	3D Modelling, CAD,	estimation
	Multimodl	Baig1andMa		designerbehavior and	Object anipulation	Algorithm we
	Interface	nola Kavakli		quality of interaction,		are improve
	System using			in a virtual reality		the Accuracy
	Speech/Gesture			environment. The		ofOur system
				system has the basic		
				functionality for 3D		
				object modelling. The		
				users have performed		
				two sets of experiments		
8.	Immersive	Yeasom	2018	Virtual reality is a	3D GeometryVarious	By usingPose
	Gesture	Lee,		technology that	studies have been	estimationAlgo
	Interfaces for	Wonjae		provides users with a	conducted to improve	rithmwe are
	3D Map	Choi		virtual	ealism through real-	improve the
	Navigation in			3Denvironmentcreated		
	HMD-Based			on acomputer and at		
				the same time		
9.	Detecting	Mrs.A.V.	2017	with the evolution of	Hand Gesture	Using machine
	Centroid for	DehankarPr		computing	Recognition, Centroid	LearningTechn
	Hand Gesture	iyadarshini		technologies the	Detection, Morphological	ique solve
	Recognition	College of		current usercomputer	Computations.	problem
	using			interaction devices like		
	Morphological			mouse,keyboard,joystic		
	Computations			ks, pen etc. are		
				gettingreplaced by		
				touch screen and hand		
				gesture .		
10.	Lossless	Franz J,	2016	Desktop-based	3D hand Gesture and 2D	Ву
	multitasking:	Menin A,		operating systems allow	hand Gesture	usingPython
	Using 3D	Nedel L		the use of many		Programming
	gestures			applications		language we
	embedded in			concurrently, but the		are develop
	Mouse devices			frequent switching		Desktop
				between two or more		application.
				applications distracts		
				the user		

III.LIMITATIONS OF EXISTING SYSTEM

- 1. Accuracy and Precision: Gesture recognition systems may not always accurately interpret complex or subtle hand movements, leading to errors or unintended actions.
- 2. Limited Gesture Vocabulary: Predefined gesture libraries can be restrictive, and accommodating a wide range of gestures for various applications can be challenging.
- 3. Ambiguity: Sometimes, similar hand movements can represent different gestures, leading to misinterpretation by the system.
- 4. Lighting and Environmental Conditions: Changes in lighting and background environments can affect the system's performance, potentially causing recognition issues.
- 5. Fatigue and Ergonomics: Holding one's hand in the air for extended periods to control a virtual mouse and keyboard can be physically tiring and less ergonomic than traditional input devices.
- 6. Calibration and Setup: Users may need to go through calibration processes, which can be time-consuming and require adjustments for different users.
- 7. Learning Curve: Users may require time to become proficient with gesture-based systems, which can be a barrier to adoption.
- 8. Hygiene Concerns: In public settings, concerns about hygiene and germ transmission may limit the widespread use of touchless interfaces.
- 9. Complex Gestures: Recognizing complex or multitasking gestures can be challenging, limiting the system's ability to handle intricate commands.
- 10. Cost: Implementing robust gesture recognition technology can be expensive, which may limit its adoption in certain applications.
- 11. Privacy and Security: Gesture data capture raises privacy and security concerns, especially in sensitive environments.
- 12. Software Support: The availability of software and application support for gesture-based systems may be limited compared to traditional input methods.

IV.CONCLUSION

Gesture-based virtual mouse and keyboard systems represent a promising technological advancement with a wide range of practical applications. These systems offer touchless and intuitive interaction, making them valuable in various domains, from accessibility and healthcare to gaming and education. As we continue to innovate in the field of human-computer interaction, these interfaces have the potential to transform the way we interact with technology, enhancing convenience, accessibility, and user experiences across diverse industries. The future holds exciting possibilities for the continued development and integration of gesture-based

V. REFERENCES

- [1]. Gesture Recognition Based Virtual Mouse and Keyboard (2020) The system works well for the simple pointing and pinching gestures, there is still room for many improvement. Currently the system uses a static background, the real-world.
- [2]. A new 3D Viewer system based on hand gesture recognition for smart interaction (2020) By using Pose estimation Algorithm we are improve the Accuracy of Our system

- [3]. Immersive Gesture Interfaces for 3D Map Navigation in HMD-Based (2018) By using Pose estimation Algorithm we are improve the
- [4]. Qualitative Analysis of a Multimodl Interface System using Speech/Gesture (2018) By using Pose estimation Algorithm we are improve the Accuracy of Our system
- [5]. Detecting Centroid for Hand Gesture Recognition using Morphological Computations(2017) Using machine Learning Technique solve problem
- [6]. Lossless multitasking: Using 3D gestures embedded in mouse devices (2016) By using Python Programmin g language we are develop Desktop application
- [7]. Kale, R. ., Shirkande, S. T. ., Pawar, R. ., Chitre, A. ., Deokate, S. T. ., Rajput, S. D. ., & Kumar, J. R. R. . (2023). CR System with Efficient Spectrum Sensing and Optimized Handoff Latency to Get Best Quality of Service. International Journal of Intelligent Systems and Applications in Engineering, 11(10s), 829–839.

