
Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed
under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-
commercial use, distribution, and reproduction in any medium, provided the original work is properly cited

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

ISSN : 2456-3307 (www.ijsrcseit.com)

doi : https://doi.org/10.32628/IJSRCSEIT

145

OpenCL Performance Evaluation on Multiple Operating Systems
Rushikesh Vidye1, Praveen Kulkarni2, Rutik Wagh3, Prof. Pravin Patil4

*1,2,3 Student, Department of Computer SCTR’s Pune Institute of Computer Technology, Pune, Maharashtra,

India
4 Assistant Professor, Department of Computer Engineering, SCTR’s Pune Institute of Computer Technology,

Pune, Maharashtra, India

A R T I C L E I N F O

A B S T R A C T

Article History:

Accepted: 13 March 2023

Published: 18 March 2023

 OpenCL is an open standard for parallel computing that enables

performance portability across diverse computing platforms. In this work,

we perform a systematic evaluation of OpenCL performance on several

Operating System Platforms including Windows, Linux, Android and

macOS. Our results provide insights into the impact of the Operating

Systems on OpenCL performance and identify any potential performance

bottlenecks. We also compare performance of OpenCL with other parallel

computing frameworks like Nvidia’s CUDA (Compute Unified Device

Architecture), Apple’s Metal framework, DirectX Compute etc. on

different operating systems to better understand the trade-offs between

different OSs. Our findings can help researchers and practitioners make

informed decision about choosing the appropriate Operating System for

their OpenCL applications and guide future development of OpenCL

standard.

Keywords: OpenCL, CUDA, Metal, GPGPU, MacOS, Linux, Windows,

Android.

Publication Issue

Volume 10, Issue 2

March-April-2023

Page Number

145-152

I. INTRODUCTION

The rapid development of computing ability of

consumer grade hardware, especially in area of using

Graphics Processing Units (GPU’s) for general

purpose computing using OpenCL, CUDA, ARM

Compute, Metal has rendered today’s enthusiast PC at

or near the level of the super computers of late 90s.

Nowadays, GPUs are used not only for graphics

applications, but also non-graphic applications, so-

called GPU computing or GPGPU. Thanks to their

high floating-point operation rates and memory

bandwidths, GPU can accelerate various science and

engineering computations. [1-6].

Owning to this tremendous performance perspective,

GPU programming models have transformed from

high-level languages such as HLSL, CG and GLSL to

recent programming languages, which has

successively increased programmers load and thus

enhanced GPUs acceptance. The launch of CUDA by

NVIDIA in 2007 has diminished the use of graphical

APIs for computational activities, resulting in wide-

spread use of GPU computing. Similarly, a

http://ijsrcseit.com/
http://ijsrcseit.com/

Volume 9, Issue 2, March-April-2023 | http://ijsrcseit.com

Rushikesh Vidye et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., January-February-2023, 9 (2) : 145-152

146

programming framework known as APP (Advanced

Parallel Processing) that is known to enable ATIs

GPUs in concurrence with CPUs speed up a number

of requests. These agendas in terms have enabled the

programmers to cultivate GPU computing

applications without much knowledge on graphics.[7]

OpenCL is a new programming standard for various

compute devices. OpenCL is used to develop code not

only for GPUs, but also for multi-core CPUs, Cell

Broadband Engines, and other compute devices; Thus,

it enabled programmers to avoid writing a vendor-

specific code, resulting in improved code portability.

However, although OpenCL allows a programmer to

use various compute devices, efficient coding and

optimization methodologies for individual compute

device are not established yet. While both CUDA and

ATI Stream have intensively been optimized to

exploit the computing power of their own GPUs,

there is a semantic gap between OpenCL and compute

devices because OpenCL is vendor-independent and

hence not specialized for any compute device. The

OpenCL C compiler plays important roles to exploit

the potential of compute devices and therefore its

capabilities should be clarified. Operating System is

also an important aspect that affects performance as

different Oss prefer different way to access hardware

drivers, a lot of times these drivers abstracted from

programmer with some bridging api’s like DirectX

Compute for Windows, Metal For macOS, and Mesa

Interface for Linux.

In this paper, we systematically compare the

sustained performances of OpenCL programs with

those of CUDA programs. To make a fair comparison,

CUDA and DirectX Compute codes are ported to

OpenCL codes as faithfully as possible. Based on the

performance comparison, this paper analyses and

discusses the main factors of causing the performance

between different OSs. Since OpenCL is supported by

all OSs a fair comparison of their performance can be

performed.

II. Similarities Between OpenCL CUDA and DirectX

Compute

This section described the different frameworks that

are a subject of comparison in this comparative study.

Each sections contains sample code for vector

addition kernel for respective framework. The

popularity of frameworks is based upon the chart in

figure 2.1 from google trends.

Fig 2.1 Popularity over time of CUDA, OpenCL,

Direct Compute. The numbers represent search

interest relative to the highest point on the chart for

given region and time.

A. CUDA

Released in 2—7, CUDA developed by Nvidia was the

first major GPGPU framework to be released. It aims

to make the parallelization of a problem more

manageable by providing an easy to work with API.[8]

 Fig 2.1 GPU architecture in CUDA.

Volume 9, Issue 2, March-April-2023 | http://ijsrcseit.com

Rushikesh Vidye et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., January-February-2023, 9 (2) : 145-152

147

B. OpenCL

In 2009, OpenCL was announced as an open

programming standard to access GPU and other

compute device in a unified manner. The

specifications and programming languages of OpenCL

and CUDA have similarities in many aspects.

Therefore, CUDA programmers can harness their

experiences and skills to write an efficient OpenCL

Program.[9-10]

Fig 2.2 GPU architecture in OpenCL.

C. Direct Compute

Since Direct Compute is not a framework, but a API

of the DirectX suite and uses the concept of CS to

perform GPGPU calculations, it is quite different

from CUDA or OpenCL. All the computing in Direct

Compute is done in CS (Compute Shader) which is

equivalent to a kernel in CUDA or OpenCL. The

setup process is quite similar to programable pipeline

in OpenGL or Vulkun but uses traditional graphics

way of copying data from host and device using

buffers, which are copied to CS before CS is run. The

CS is written in HLSL (High Level Shading Language)

also developed by Microsoft.[11]

Fig 2.3 Memory Hierarchy.

III. Implementation

A common problem where GPGPU is used is when

computing calculations heavy like vector algebra or

Matrix Multiplications. Other common visualizations

where GPGPU can be applied is to visualize fractals

such a Julia or Mandelbrot set, named after the

French mathematician Gaston Julia and Benoit

Mandelbrot. GPGPU has also used in medicine for

accelerated medical image reconstruction.

This section described the implementation of the

vector addition and matrix multiplication algorithms

in all discussed frameworks, as well as how the

measurements were performed and what OS specific

features were used. All implementation was

implementation was implemented in C.

A. Vector Addition Algorithm

• Allocate memory to host buffers.

• Copy memory from host to gpu.

• Compile & Build Kernel Program.

• Set kernel arguments.

• Execute Kernel.

• Verify the results.

Volume 9, Issue 2, March-April-2023 | http://ijsrcseit.com

Rushikesh Vidye et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., January-February-2023, 9 (2) : 145-152

148

A.A.1 Sample Kernel for Vector Addition

__kernel void vec_add(__global const float* a,

__global const float* b, __global float* result)

{

 int gid = get_global_id(0);

 result[gid] = a[gid] + b[gid];

}

B. Matrix Multiplication Algorithm

• Init Matrix A and B.

• Copy matrices to GPU.

• Compile & Build Kernel Program.

• Set kernel arguments.

• Execute Kernel.

• Verify the results.

B.A.1 Sample Kernel for Matrix Multiplication

__kernel void matMulGPU(__global int *A,

__global int* B, __global int* C,int numARows, int

numAColumns, int numBColumns, int

numCColumns)

{

 int row = get_global_id(0);

 int column = get_global_id(1);

 if((row < numARows) && (column <

numBColumns))

 {

int value = 0;

for(int k = 0; k < numAColumns; k++)

{

int a = A[row * numAColumns + k];

int b = B[k * numBColumns + column];

 value += a * b;

 }

 C[row * numCColumns + column] = value;

 }

}

C. Steps For Building OpenCL Program Windows

1) Install latest version of MSVC and OpenCL

libraries.

2) Use following command:

cl.exe *.cpp /c /EHSc

link.exe *.obj user32.lib gdi32.lib kernel32.lib

OpenCL32.lib

You can execute the executable now.

D. Steps For Building OpenCL Program Linux

1) Install latest version of g++ and OpenCL libraries.

2) Use following command:

g++ *.cpp -lOpenCL

You can execute the executable now.

E. Steps For Building OpenCL Program MacOS

1) Install latest version of XCode.

2) Use following command:

Clang++ *.mm -framework OpenCL

You can execute the executable now.

F. Steps For Building OpenCL Program Android

1) Install latest version of Android Studio.

2) Create Native App with C++ class.

3) Create Java JNI code to interact with C++ Lib.

4) Add all required libraries to gradle.

5) Build and deploy app on android device.

Volume 9, Issue 2, March-April-2023 | http://ijsrcseit.com

Rushikesh Vidye et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., January-February-2023, 9 (2) : 145-152

149

IV. Results

This section shows the evaluation results to clarify the

difference in sustained performance between OpenCL

programs on different OSs.

In this evaluation two programs were selected Vector

Addition and Matrix Multiplication. PC / Mobile

specification is given in below table 5.1 with Oss

build versions.

1) Hardware Configuration

CPU AMD Ryzen 7 3700X

GPU NVIDIA RTX 2070 Super

Chipset x64

RAM 32 GB

VRAM 8 GB

OS Windows 10, Manjaro Linux, MacOS 11

Platform Nvidia CUDA Toolkit 11.2

Driver Nvidia Driver Version: 418.25

Nvidia Mesa Driver: For Linux

Nvidia Apple INC Driver

 Table 4.1: PC Specification

Model Xiaomi M2101K7BI

CPU ARM64-v8a

GPU Mali G-76

Chipset ARM

RAM 8 GB

OpenCL

Version

OpenCL FULL_PROFILE 1.2

OS Android 12

Platform ARM

Table 4.2: Mobile Specification

2) Output of DevProp on All OSs.

2.1) Windows

Fig 4.1: DevProp On Windows

2.2) Linux

Fig 4.2: DevProp on Linux

Volume 9, Issue 2, March-April-2023 | http://ijsrcseit.com

Rushikesh Vidye et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., January-February-2023, 9 (2) : 145-152

150

2.3) MacOs

 Fig 4.3 DevProp On MacOS

2.4) Android

Fig 4.4 : DevProp On Android using OpenCL-Z

3) Output of VecAdd on All OSs.

3.1)Windows

Fig 4.5: VecAdd On Windows

3.2) Linux

Fig 4.6: VecAdd on Linux

3.3) MacOs

Fig 4.7: VecAdd on MacOS 11

3.4) Android

Fig 4.8 : VecAdd On Android

Volume 9, Issue 2, March-April-2023 | http://ijsrcseit.com

Rushikesh Vidye et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., January-February-2023, 9 (2) : 145-152

151

Above outputs demonstrate the performance

difference of same OpenCL kernel on different OSs.

With Same hardware.

V. Summary

Following chart shows the performance difference for

same OpenCL kernel. Difference between Windows

and MacOS is quite noticeable when we consider that

Windows uses proprietary Nvidia Drivers and MacOS

uses Apples own driver for same graphic card. This

proves even though vendor-independent OpenCL still

relies on optimization at driver level.

For android performance manly relies on the ARM

OpenCL driver supported by vendor, for this device

OpenCL version was locked on 1.2 therefore we can

see it’s performance is quite slow compared to other

versions with OpenCL version 3.0.[12]

Since neither OpenCL or Direct Compute supports

classes or C++ like data structures inside kernel, for

applications using larger more complex kernels the

ability to be able to write objects would be an

important feature. [13]

VI. CONCLUSION

This paper has discussed the sustained performance of

OpenCL programs in same hardware environment on

different OSs. The quantitative evaluation results

indicate that the sustained performance of every

OpenCL program is different for each of the targeted

OSs. To clarify the reasons the performance

differences between all OSs, this paper also analysis,

and pointed out that the performance difference

comes from the difference in the compiler

optimization capabilities of each OS. GPU driver also

plays very important role in OpenCL performance as

we have seen the performance gap between

Proprietary Drivers, Open-Source Drivers, and

Software Drivers. A challenge for future research is to

develop automatic performance tuning methodology

based on profiling to enhance the performance and

portability of OpenCL applications.

VII. REFERENCES

[1]. Kazuhiko Komatsu, Katsuto Sato, Yusuke Arai,

Kentaro Koyama, Hiroyuki Takizawa, and

Hiroaki Kobayashi, “Evaluating Performance

and Portability of OpenCL Programs”2010

Publication ID : 228868467

[2]. John D. Owens, Mike Houston, David Luebke,

Simon Green, John E. Stone, and James C.

Phillips. GPU computing. Proceedings of the

IEEE, 96(5):879–899, May2008

[3]. N.K. Govindaraju, S. Larsen, J. Gray, and D.

Manocha. A memory model for scientific

algorithms on graphics processors. In the 2006

ACM/IEEE conference on Supercomputing

(SC06), November 2006.

[4]. Ian Buck et al. Gpu bench: Evaluating gpu

performance for numerical and scientic

applications. In2004 ACM Workshop on

General Purpose Computing on Graphics

Processors, pages C–20, 2004.

[5]. S. Che, J. Meng, J. Sheaffer, and K. Skadron. A

performance study of general purpose

applications on graphics processors. In The First

Workshop on General Purpose Processing on

Graphics Processing Units, 2007.

[6]. Wen-Mei W. Hwu, Christopher Rodrigues,

Shane Ryoo, and John Stratton. Com-pute

unified device architecture application

0

20

40

60

256 512 1024 2048

VecAdd Performance On OSs

Windows Linux MacOS Android

Volume 9, Issue 2, March-April-2023 | http://ijsrcseit.com

Rushikesh Vidye et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., January-February-2023, 9 (2) : 145-152

152

suitability. Computing in Science and

Engineering, 11(3):16–26, 2009.

[7]. Hiroyuki Takizawa and Hiroaki Kobayashi.

Hierarchical parallel processing of largescale

data clustering on a pc cluster with gpu co-

processing. The Journal of Super-computing,

38(3):219–234, 2006.

[8]. NVIDIA Corporation.NVIDIA CUDA Compute

Unified Device Architecture pro-gramming

guide 3.0,

2010.http://developer.nvidia.com/object/cuda.h

tml.

[9]. The Khronos OpenCL Working Group.The

OepnCL Specification version

1.0,2008.http://www.khronos.org/oepncl/.

[10]. Dave Shreiner and The Khronos OpenGL ARB

Working Group. OpenGL Programming Guide:

The Official Guide to Learning OpenGL,

Version 3.0 and 3.1. Addison-Wesley

Professional, 7th edition, 2009.

[11]. Microsoft Corporation. DirectX.

http://www.microsoft.com/windows/directx/.

[12]. NVIDIA Corporation. PTX : Parallel Tread

Execution ISA Version 1.4, 2009.

[13]. Alfred V. Aho, Monica S. Lam, Ravi Sethi, and

Jeffrey D. Ullman. Compilers: Principles,

Techniques, & Tools. Addison Wesley, 2nd

edition, 2007.View publication stats

Cite this article as :

Rushikesh Vidye, Praveen Kulkarni, Rutik Wagh,

Prof. Pravin Patil, "OpenCL Performance Evaluation

on Multiple Operating Systems", International Journal

of Scientific Research in Computer Science,

Engineering and Information Technology

(IJSRCSEIT), ISSN : 2456-3307, Volume 9, Issue 2,

pp.145-152, March-April-2023.

