la S ! International Journal of Scientific Research in Computer Science, Engineering and Information Technology
C SE IT ISSN : 2456-3307 (www.ijsrcseit.com)
doi : https://doi.org/10.32628/IJSRCSEIT

OpenCL Performance Evaluation on Multiple Operating Systems
Rushikesh Vidye!, Praveen Kulkarni?, Rutik Wagh3, Prof. Pravin Patil*
*1.23 Student, Department of Computer SCTR’s Pune Institute of Computer Technology, Pune, Maharashtra,
India
4 Assistant Professor, Department of Computer Engineering, SCTR’s Pune Institute of Computer Technology,

Pune, Maharashtra, India

ARTICLEINFO ABSTRACT

Article History: OpenCL is an open standard for parallel computing that enables

Accepted: 13 March 2023
Published: 18 March 2023

performance portability across diverse computing platforms. In this work,
we perform a systematic evaluation of OpenCL performance on several

Operating System Platforms including Windows, Linux, Android and

macOS. Our results provide insights into the impact of the Operating
Publication Issue Systems on OpenCL performance and identify any potential performance

bottlenecks. We also compare performance of OpenCL with other parallel
Volume 10, Issue 2

March-April-2023 computing frameworks like Nvidia’s CUDA (Compute Unified Device

Architecture), Apple’s Metal framework, DirectX Compute etc. on

Page Number different operating systems to better understand the trade-offs between

145-152 different OSs. Our findings can help researchers and practitioners make

informed decision about choosing the appropriate Operating System for
their OpenCL applications and guide future development of OpenCL
standard.
Keywords: OpenCL, CUDA, Metal, GPGPU, MacOS, Linux, Windows,
Android.

I. INTRODUCTION bandwidths, GPU can accelerate various science and
engineering computations. [1-6].

The rapid development of computing ability of

consumer grade hardware, especially in area of using
(GPU’s) for general
purpose computing using OpenCL, CUDA, ARM

Graphics Processing Units
Compute, Metal has rendered today’s enthusiast PC at
or near the level of the super computers of late 90s.
Nowadays, GPUs are used not only for graphics
applications, but also non-graphic applications, so-
called GPU computing or GPGPU. Thanks to their

high floating-point operation rates and memory

Owning to this tremendous performance perspective,
GPU programming models have transformed from
high-level languages such as HLSL, CG and GLSL to
which has
successively increased programmers load and thus
enhanced GPUs acceptance. The launch of CUDA by
NVIDIA in 2007 has diminished the use of graphical
APIs for computational activities, resulting in wide-
of GPU

recent programming languages,

spread use computing. Similarly, a

Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed
under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-

commercial use, distribution, and reproduction in any medium, provided the original work is properly cited

http://ijsrcseit.com/
http://ijsrcseit.com/

Rushikesh Vidye et al Int.]. Sci. Res. Comput. Sci. Eng. Inf. Technol,, January-February-2023, 9 (2) : 145-152

programming framework known as APP (Advanced
Parallel Processing) that is known to enable ATIs
GPUs in concurrence with CPUs speed up a number
of requests. These agendas in terms have enabled the
GPU

applications without much knowledge on graphics.[7]

programmers to cultivate computing
OpenCL is a new programming standard for various
compute devices. OpenCL is used to develop code not
only for GPUs, but also for multi-core CPUs, Cell
Broadband Engines, and other compute devices; Thus,
it enabled programmers to avoid writing a vendor-
specific code, resulting in improved code portability.
However, although OpenCL allows a programmer to
use various compute devices, efficient coding and
optimization methodologies for individual compute
device are not established yet. While both CUDA and
ATI Stream have intensively been optimized to
exploit the computing power of their own GPUs,
there is a semantic gap between OpenCL and compute
devices because OpenCL is vendor-independent and
hence not specialized for any compute device. The
OpenCL C compiler plays important roles to exploit
the potential of compute devices and therefore its
capabilities should be clarified. Operating System is
also an important aspect that affects performance as
different Oss prefer different way to access hardware
drivers, a lot of times these drivers abstracted from
programmer with some bridging api’s like DirectX
Compute for Windows, Metal For macOS, and Mesa
Interface for Linux.

In this

we systematically compare the

paper,
sustained performances of OpenCL programs with
those of CUDA programs. To make a fair comparison,
CUDA and DirectX Compute codes are ported to
OpenCL codes as faithfully as possible. Based on the
performance comparison, this paper analyses and
discusses the main factors of causing the performance
between different OSs. Since OpenCL is supported by
all OSs a fair comparison of their performance can be

performed.

II. Similarities Between OpenCL CUDA and DirectX
Compute

This section described the different frameworks that
are a subject of comparison in this comparative study.
Each sections contains sample code for vector
addition kernel for respective framework. The
popularity of frameworks is based upon the chart in

figure 2.1 from google trends.

O o=

] mwv

MR A

Fig 2.1 Popularity over time of CUDA, OpenCL,
Direct Compute. The numbers represent search
interest relative to the highest point on the chart for

given region and time.

A. CUDA

Released in 2—7, CUDA developed by Nvidia was the
first major GPGPU framework to be released. It aims
to make the parallelization of a problem more

manageable by providing an easy to work with API.[8]

E
|| ConslanbTexiure Mermory

l| Globsal Memory
Dhervicaz IMesmory

Fig 2.1 GPU architecture in CUDA.

Volume 9, Issue 2, March-April-2023 | http://ijsrcseit.com

Rushikesh Vidye et al Int.]. Sci. Res. Comput. Sci. Eng. Inf. Technol,, January-February-2023, 9 (2) : 145-152

B. OpenCL

In 2009, OpenCL was announced as an open
programming standard to access GPU and other
The
specifications and programming languages of OpenCL
and CUDA have

Therefore, CUDA programmers can harness their

compute device in a unified manner.

similarities

in many aspects.

experiences and skills to write an efficient OpenCL
Program.[9-10]

= Compule Device ",

ClotsaliConsdant Memory Dot Cache

Constanl Memory |

l| Ghobial Mermory
Compule Device hermsony

Fig 2.2 GPU architecture in OpenCL.

C. Direct Compute

Since Direct Compute is not a framework, but a API
of the DirectX suite and uses the concept of CS to
perform GPGPU calculations, it is quite different
from CUDA or OpenCL. All the computing in Direct
Compute is done in CS (Compute Shader) which is
equivalent to a kernel in CUDA or OpenCL. The
setup process is quite similar to programable pipeline
in OpenGL or Vulkun but uses traditional graphics
way of copying data from host and device using
buffers, which are copied to CS before CS is run. The
CS is written in HLSL (High Level Shading Language)
also developed by Microsoft.[11]

Memory | CUDA | Oepn | Direct | Readable/Writ
Accessibil CL Comp | eable
ity ute
Thread/ Local | Privat | Private | R/ W
work- memo | e memor
item Iy memo |y
1y
CTA /| Shared | Local |Local |[R/W
Work- Memo | Memo | Memo
Group ry ry ry
Grid /| Constant | Constant | Constant | Readable
NDRange | Memory | Memory | Buffer
Texture | - Texture | Readable
Memory Memory
Fig 2.3 Memory Hierarchy.

III. Implementation

A common problem where GPGPU is used is when
computing calculations heavy like vector algebra or
Matrix Multiplications. Other common visualizations
where GPGPU can be applied is to visualize fractals
such a Julia or Mandelbrot set, named after the
French mathematician Gaston Julia and Benoit
Mandelbrot. GPGPU has also used in medicine for

accelerated medical image reconstruction.

This section described the implementation of the
vector addition and matrix multiplication algorithms
in all discussed frameworks, as well as how the
measurements were performed and what OS specific

used. All

implementation was implemented in C.

features were implementation was

A. Vector Addition Algorithm

. Allocate memory to host buffers.
J Copy memory from host to gpu.

J Compile & Build Kernel Program.
J Set kernel arguments.

. Execute Kernel.

J Verify the results.

Volume 9, Issue 2, March-April-2023 | http://ijsrcseit.com

Rushikesh Vidye et al Int.]. Sci. Res. Comput. Sci. Eng. Inf. Technol,, January-February-2023, 9 (2) : 145-152

A.A.1 Sample Kernel for Vector Addition

__kernel void vec_add(__global const float* a,

__global const float™ b, __global float* result)

{
int gid = get_global id(0);
result[gid] = a[gid] + b[gid];

B. Matrix Multiplication Algorithm

o Init Matrix A and B.

o Copy matrices to GPU.

o Compile & Build Kernel Program.
J Set kernel arguments.

J Execute Kernel.

o Verify the results.

B.A.1 Sample Kernel for Matrix Multiplication

__kernel void matMulGPU(_ global int “A,
__global int* B, __ global int* C,int numARows, int
numAColumns, int numBColumns, int
numCColumns)
{
int row = get_global_id(0);
int column = get_global id(1);
if((row < numARows) && (column <
numBColumns))
{
int value = 0;
for(int k = 0; k < numAColumns; k++)
{
int a = A[row * numAColumns + kJ;
int b = B[k * numBColumns + column];
value +=a * b;
}

C[row * numCColumns + column] = value;

}

C. Steps For Building OpenCL Program Windows

1) Install latest version of MSVC and OpenCL
libraries.

2) Use following command:

cl.exe *.cpp /c /EHSc
*obj user32.lib gdi32.lib kernel32.lib
OpenCL32.1ib

link.exe

You can execute the executable now.

D. Steps For Building OpenCL Program Linux

1) Install latest version of g++ and OpenCL libraries.

2) Use following command:

g++ *.cpp -10penCL

You can execute the executable now.

E. Steps For Building OpenCL Program MacOS

1) Install latest version of XCode.

2) Use following command:

Clang++ *.mm -framework OpenCL

You can execute the executable now.

F. Steps For Building OpenCL Program Android

1) Install latest version of Android Studio.
2) Create Native App with C++ class.

3) Create Java JNI code to interact with C++ Lib.

4) Add all required libraries to gradle.

5) Build and deploy app on android device.

Volume 9, Issue 2, March-April-2023 | http://ijsrcseit.com

Rushikesh Vidye et al Int.]. Sci. Res. Comput. Sci. Eng. Inf. Technol,, January-February-2023, 9 (2) : 145-152

IV. Results

This section shows the evaluation results to clarify the
difference in sustained performance between OpenCL

programs on different OSs.

In this evaluation two programs were selected Vector
Addition and Matrix Multiplication. PC / Mobile
specification is given in below table 5.1 with Oss

build versions.

1) Hardware Configuration

CPU AMD Ryzen 7 3700X

GPU NVIDIA RTX 2070 Super

Chipset | x64

RAM 32 GB

VRAM | 8GB

oS Windows 10, Manjaro Linux, MacOS 11

Platform | Nvidia CUDA Toolkit 11.2

Driver Nvidia Driver Version: 418.25
Nvidia Mesa Driver: For Linux
Nvidia Apple INC Driver

Table 4.1: PC Specification

Model Xiaomi M2101K7BI

CPU ARM64-v8a

GPU Mali G-76

Chipset | ARM

RAM 8 GB

OpenCL | OpenCL FULL_PROFILE 1.2
Version

(O} Android 12

Platform | ARM

Table 4.2: Mobile Specification

2) Output of DevProp on All OSs.
2.1) Windows

Fig 4.1: DevProp On Windows

2.2) Linux

rushi@rushi-manjaro:~/OpenCL/DevProp

-0 DevProp DevProp.cpp -lOpencL

1

Hkkkkkkkkxk*k* GPU DEVICE GENERAL INFORMAT

orce RTX 2070 SUPER

GPU Device Global Memory : 8353153024 Byt
GPU Devic
GPU Devic E e 65536 Bytes

% ~/0OpenCL/DevProp

Fig 4.2: DevProp on Linux

Volume 9, Issue 2, March-April-2023 | http://ijsrcseit.com

Rushikesh Vidye et al Int.]. Sci. Res. Comput. Sci. Eng. Inf. Technol,, January-February-2023, 9 (2) : 145-152

2.3) MacOs

B2 rushi — OCL — 80x36

rushis—MacBook—Pro ~ % /Volumes/macData/OpenCLTest/OCL

exit;

OpenCL Supperting GPU Platform Name : Apple
OpenCL Supporting GPU Platform Version : OpenCL 1.2 (Sep & 2021 22:
Total Number Of OpenCL Supporting GPU Device/Devices On This System

Device Number : @
Device Name : Intel(R) ITis(TM) Graphics 558
Device Vendor : Intel Inc.
Device Driver Version : 1.2(Oct 12 2021 19:32:13)
Device OpenCL Version : OpenCL 1.2

Device Clock Rate : 1108

ce Local Memory Bytes
GPU Device Constant Buffer Size : 65536 Bytes
Acktotokotottkotoktok GPU DEVICE COMPUTE INFORMATION stobhobokobototohotototok

GPU Device Number Of Parallel Processors Cores : 24
GPU Device Work Group Size : 56
GPU Device Work Item Dimensions : 3
GPU Device Work Item Size : 256/256/256
Saving session...
-..copying shared history...
aving history...truncating history files...
...completed.
Deleting expired sessions... 35 completed.

[Process completed]ll

Fig 4.3 DevProp On MacOS
2.4) Android

DEVICE 1: Mali-G76 rOp0

DEVICE INFO PERFORMANCE
TYRE GPU
NAME Mali-G76 rOp0
VENDOR ARM
VENDORL_ID 0x72110000
DRIVER_VERSION 2.1
PROFILE FULL_PROFILE
VERSION OpenCL 2.1 v1.r26p0-01eac0.e08605
1d656b225ed0668b49f6ea2e59
MAX_CLOCK_FREQUENCY 5 MHz
MAX_COMPUTE_UNITS 4
AVAILABLE true
COMPILER_AVAILABLE true

Fig 4.4 : DevProp On Android using OpenCL-Z

3) Output of VecAdd on All OSs.
3.1)Windows

Fig 4.5: VecAdd On Windows

3.2) Linux

DevProp

Fig 4.6: VecAdd on Linux

3.3) MacOs

rushi@rushis-MacBook-Pro VecAdd % ./VecAdd

Array 1 Begins from 9th index 9.800008 to 11444776th index 8.213991
Array 2 Begins from 8th index ©.543105 to 11444776th index 0.536388
OpenCL Kernel Global Work Size = 11444992 and Local Work Size = 256
Output Array Begins from Oth index ©.543113 to 11444776th index
Time Taken For Vector Addition on CPU 8.167999

Time Taken For Vector Addition On GPU = 40.661999
rushi@rushis-MacBook-Pro VecAdd % ||

M VecAdd — -zsh — 80x8

0.750379

Fig 4.7: VecAdd on MacOS 11
3.4) Android

ARM Platform

Number OF Array Elements : 33554432

multiplyJni result

Time On CPU 249419 ms

OCL result

multiplyOcl

Time On GPU 55636 ms

Fig 4.8 : VecAdd On Android

Volume 9, Issue 2, March-April-2023 | http://ijsrcseit.com

Rushikesh Vidye et al Int.]. Sci. Res. Comput. Sci. Eng. Inf. Technol,, January-February-2023, 9 (2) : 145-152

Above the
difference of same OpenCL kernel on different OSs.

outputs demonstrate performance

‘With Same hardware.

V. Summary

Following chart shows the performance difference for
same OpenCL kernel. Difference between Windows
and MacOS is quite noticeable when we consider that
Windows uses proprietary Nvidia Drivers and MacOS
uses Apples own driver for same graphic card. This
proves even though vendor-independent OpenCL still
relies on optimization at driver level.

For android performance manly relies on the ARM
OpenCL driver supported by vendor, for this device
OpenCL version was locked on 1.2 therefore we can
see it’s performance is quite slow compared to other
versions with OpenCL version 3.0.[12]

Since neither OpenCL or Direct Compute supports
classes or C++ like data structures inside kernel, for
applications using larger more complex kernels the
ability to be able to write objects would be an

important feature. [13]

VecAdd Performance On OSs

60
40 /
20
e — =0
0 —_— B -2
256 512 1024 2048

=@=\\indows ==@==Linux MacOS ==@==Android

VI. CONCLUSION

This paper has discussed the sustained performance of
OpenCL programs in same hardware environment on
different OSs. The quantitative evaluation results
indicate that the sustained performance of every
OpenCL program is different for each of the targeted
OSs. To clarify the

reasons the performance

differences between all OSs, this paper also analysis,
and pointed out that the performance difference
the the

optimization capabilities of each OS. GPU driver also

comes from difference in compiler
plays very important role in OpenCL performance as

we have seen the performance gap between

Proprietary Drivers, Open-Source Drivers, and
Software Drivers. A challenge for future research is to
develop automatic performance tuning methodology
based on profiling to enhance the performance and

portability of OpenCL applications.

VII. REFERENCES

[1]. Kazuhiko Komatsu, Katsuto Sato, Yusuke Arai,
Kentaro Koyama, Hiroyuki Takizawa, and
Hiroaki Kobayashi, “Evaluating Performance
and Portability of OpenCL Programs”2010
Publication ID : 228868467

[2]. John D. Owens, Mike Houston, David Luebke,
Simon Green, John E. Stone, and James C.
Phillips. GPU computing. Proceedings of the
IEEE, 96(5):879-899, May2008

[3]. N.K. Govindaraju, S. Larsen,]. Gray, and D.
Manocha. A memory model for scientific
algorithms on graphics processors. In the 2006
ACM/IEEE conference on Supercomputing
(SC06), November 2006.

[4]. Ian Buck et al. Gpu bench: Evaluating gpu

for numerical and scientic

In2004 ACM Workshop on

General Purpose

performance

applications.

Computing on Graphics
Processors, pages C-20, 2004.

[5]. S. Che, J. Meng, J. Sheaffer, and K. Skadron. A
performance purpose

applications on graphics processors. In The First

study of general
Workshop on General Purpose Processing on
Graphics Processing Units, 2007.

[6]. Wen-Mei W. Hwu, Christopher Rodrigues,
Shane Ryoo, and John Stratton. Com-pute

device architecture

unified application

Volume 9, Issue 2, March-April-2023 | http://ijsrcseit.com

©

Rushikesh Vidye et al Int.]. Sci. Res. Comput. Sci. Eng. Inf. Technol,, January-February-2023, 9 (2) : 145-152

suitability. ~Computing in Science and
Engineering, 11(3):16-26, 2009.

[7]. Hiroyuki Takizawa and Hiroaki Kobayashi.
Hierarchical parallel processing of largescale
data clustering on a pc cluster with gpu co-
processing. The Journal of Super-computing,
38(3):219-234, 2006.

[8]. NVIDIA Corporation.NVIDIA CUDA Compute
Unified Device Architecture pro-gramming

3.0,

2010.http://developer.nvidia.com/object/cuda.h

guide

tml.

[9]. The Khronos OpenCL Working Group.The

OepnCL Specification

1.0,2008.http://www.khronos.org/oepncl/.

Dave Shreiner and The Khronos OpenGL ARB

Working Group. OpenGL Programming Guide:

The Official Guide to Learning OpenGL,

Version 3.0 3.1. Addison-Wesley

Professional, 7th edition, 2009.

. Microsoft DirectX.
http://www.microsoft.com/windows/directx/.

. NVIDIA Corporation. PTX : Parallel Tread
Execution ISA Version 1.4, 2009.

. Alfred V. Aho, Monica S. Lam, Ravi Sethi, and
Jeffrey D. Ullman. Compilers: Principles,
Techniques, & Tools. Addison Wesley, 2nd
edition, 2007.View publication stats

version

[10].

and

Corporation.

Cite this article as :

Rushikesh Vidye, Praveen Kulkarni, Rutik Wagh,
Prof. Pravin Patil, "OpenCL Performance Evaluation
on Multiple Operating Systems", International Journal
Research Science,

of Scientific in Computer

Engineering and Information Technology

(IJSRCSEIT), ISSN : 2456-3307, Volume 9, Issue 2,
pp-145-152, March-April-2023.

Volume 9, Issue 2, March-April-2023 | http://ijsrcseit.com

