
Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed
under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-
commercial use, distribution, and reproduction in any medium, provided the original work is properly cited

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

ISSN : 2456-3307 (www.ijsrcseit.com)

doi : https://doi.org/10.32628/CSEIT2390143

250

An Empirical Study of Classification Models Using AUC-ROC
Curve for Software Fault Predictions

Mrs. Prachi Sasankar, Dr. Gopal Sakarkar

Department of Computer Science, School of Science, G.H.Raisoni University, Saikheda, Madhya Pradesh, India

A R T I C L E I N F O

A B S T R A C T

Article History:

Accepted: 10 Feb 2023

Published: 28 Feb 2023

 Software bug prediction is the process of identifying software modules that

are likely to have bugs by using some fundamental project resources before

the real testing starts. Due to high cost in correcting the detected bugs, it is

advisable to start predicting bugs at the early stage of development instead

of at the testing phase. There are many techniques and approaches that can

be used to build the prediction models, such as machine learning. We have

studied nine different types of datasets and seven types of machine

learning techniques have been identified. As for performance measures,

both graphical and numerical measures are used to evaluate the

performance of models. A few challenges exist when constructing a

prediction model. In this study, we have narrowed down to nine different

types of datasets and seven types of machine learning techniques have

been identified. As for the performance measure, both graphical and

numerical measures are used to evaluate the performance of the models.

There are a few challenges in constructing the prediction model. Thus,

more studies need to be carried out so that a well-formed result is

obtained. We also provide a recommendation for future research based on

the results we got from this study.

Keywords: AUC, ROC, TPR, FPR, KNN

Publication Issue

Volume 10, Issue 1

January-February-2023

Page Number

250-260

I. INTRODUCTION

Reasonably bugged or defect free, delivered on time,

meet the requirements or expectations, within a

specified budget, and is maintainable are points which

are referred as software quality parameters. Finding

software fault from the system leads to improve

quality of a software. There could be many reasons

for occurrence of software fault. It is due to human

mistakes, errors made by designer, programmer,

incorrect data entry, documentation, communication

failure, wrong code of lines.

To identify fault/defect/bug we need metrics that can

measure the faults from the system. To examine

software quality, software engineers have restricted

resources and analysis tools for testing. The objective

of testing is to find errors/bugs in the system. Best and

successful test cases can be used to find even the

undiscovered and uncovered errors with high

probability[1].

http://ijsrcseit.com/
http://ijsrcseit.com/

Volume 9, Issue 1, January-February-2023 | http://ijsrcseit.com

Mrs. Prachi Sasankar et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., January-February-2023, 9 (1) : 250-260

251

Buggy modules are detected using Halstead, LoC and

McCabes’s attributes in many researches. True

Positive rate (TPR), False Positive Rate (FPR),

Precision, Confusion Matrix, Area Under Receiver

Operating Curve (AUC-ROC) are used to measure

performance of classifiers [2] [3]. According to

research, AUC-ROC, AUC-PR are used to appraise

the skewed data distribution in many cases.

II. RELATED WORK

To reduce rework and cost, the developers must find

the faults in the early stages of development. The

analysis report shows that a combination of machine

learning techniques may produce better prediction

models than the current methods. It may also reduce

cost and rework of software development at the same

time [4]. There are various machine learning

algorithms for classification (supervised learning).

These families includes adaboost, decision trees,

support vector machines (SVM), neural networks [5]

and deep learning, random forest, k-nearest neighbors

(KNN), extra trees, logistic regression and gradient

boosting [6]. Machine learning techniques are being

used in software fault prediction to assist testing and

maintainability. Fault prediction approaches are

explored by researchers in the literature [7].

Several researchers have also contributed in

distributed software systems using machine learning.

The key of software defect prediction is how to

effectively analyse and use existing historical data for

creating more precise classifiers [8]. The classification

approaches often encounter certain difficulties

including the issue of misclassification cost [9] and

the class imbalance problem [1] [10].

Previous studies showed that, all the classifiers

perform different in different scenario. Parameters

like labelled, un-labelled, size, Training and test

dataset split ratio and other factor affect the result to

certain extent [11]. Investigators have previously

explored and suggested different classification

approaches. Naïve Bayes was one of the most widely-

used approaches, but there are other alternatives.

Logistic regression is another popular approach, as is

decision tree classifiers, support vector machines

(SVM) and ensemble techniques such as K-means

clustering. Supervised learning doesn't use literal data;

unlabelled data is used instead [7] [12].

Datasets are utilised from the public repositories

which are available for research which includes

source code changes, mail archives and version

control. These datasets also have information like

coupling between object classes, depth of inheritance,

McCabe’s Cyclomatic complexity, number of classes,

interfaces, methods and other data also [11].

Data sets are generated from software repositories

including defect tracking systems, source code

changes, mail archives, data extraction and version

control systems. Those data sets consist of instances,

which can be software components, files, classes,

functions and modules. Based on particular metrics

like static code attributes [13] extracted from the

software repositories, an instance is labelled as

defective or defect-free. The collected data sets are

then cleaned using preprocessing methods such as

noise detection and reduction, data normalization,

and attribute selection [14]. After that, the

preprocessed data sets are used for building a defect

prediction model that is to predict whether new

instances contain defects or not.

The researcher evaluated traditional machine learning,

deep learning based and hybrid learning based

techniques. As a result, the research on just-in-time is

valued. Deep learning and hybrid learning have

produced numbers of state-of-art methods that can

significantly improve prediction performance, aiming

to predict defects of both cross-project and within-

Volume 9, Issue 1, January-February-2023 | http://ijsrcseit.com

Mrs. Prachi Sasankar et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., January-February-2023, 9 (1) : 250-260

252

project [15]. In this study had used Cross-project

defect prediction, which often reuse data from other

projects. It works well when the data of training

models is completely sufficient to meet the project

demands. In this paper, he have modeled the

outcomes using PROMISE dataset in five different

modules and repositories: CM1, JM1, KC1, KC2, and

PC1. We implemented the dataset using four different

classifiers: Bayes network, Random forest, SVM, and

the Deep Learning based on F-measure, making it

more robust and outperform all the models available

[12] [15]. However, current studies on software

defect prediction require some degree of

heterogeneity of metric values that does not always

lead to accurate predictions.

In this paper bug prediction is done using deep

representation and ensemble learning (BPDET)

techniques [16]. Ensemble learning (Staked denoising

auto-encoders) and deep Presented BPDET performed

better for the most of used datasets compared to the

AdaBoost, Bagging, Random forest, and Logistic Boost.

There are so many prediction approaches in the field

of software engineering such as test effort, security

and cost prediction. Since most of them do not have a

stable model, software fault prediction has been

studied in this paper based on different machine

learning techniques such as decision trees, decision

tables, random forest, neural network, Naïve Bayes

and distinctive classifiers of artificial immune systems

(AISs) such as artificial immune recognition system,

CLONALG and Immunos [17].

III.RESEARCH METHODOLOGY

To check the performance of software fault prediction

model, researcher select machine learning classifier

like Random Prediction, Random Forest, Naïve Bayes,

Logistic Regression, Decision Tree, Gradient Boosting,

Support Vector Machine and K-Nearest Neighbor

which are implemented on Datasets Like Ant, Camel,

Ivy, Jedit, Log4j, Lucane, Poi, Xalan, Xerces with their

Versions.

Researcher evaluated and examined each model and

then the study of AUC-ROC has been done.

A. Experimental Datasets

To perform research Nine datasets with twenty eight

versions are used. They are Camel, Ivy, Jedit, Log4J,

Lucene, Poi, Xalan, Xereces, Prop. Table 1. Shows the

dataset name, Versions, LOC, Total number of

modules, total number of modules without defect,

total number of modules with defects and percentage

of defect modules.

B. Model Development

In this study, eight classification algorithms were

considered for model development which has been

mention inn Table-2. All these classifiers have been

used benchmarking study 2, [5]. The Classifiers are

Random Prediction, Random Forest, Naïve Bayes,

Logistic Regression, Decision Tree, Gradient Boosting,

Support Vector Machine and K-Nearest Neighbor

TABLE I

CLASSIFIER LIST USED FOR RESEARCH

S. N Classifiers

Abbreviati

on

1

Random (chance)

Prediction RP

2 Random Forest RF

3 Naïve Bayes NB

4 Logistic Regression LR

5 Decision Tree DT

6 Gradient Boosting GB

7

Support Vector

Machine SVM

8 K-Nearest Neighbor KNN

C. Parameters for Evaluation

To evaluate model performance researcher use 2

parameters i.e. TPR and FPR

Volume 9, Issue 1, January-February-2023 | http://ijsrcseit.com

Mrs. Prachi Sasankar et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., January-February-2023, 9 (1) : 250-260

253

Sensitivity / True Positive Rate / Recall (TPR) is

Correctly classified Negative classes = Specificity

False Positive Rate (FPR) is

Correctly classified positive classes = False Negative

Rate

FPR tells us what proportion of the negative class got

incorrectly classified by the classifier.

Where,

Specificity / True Negative Rate is

Correctly classified Negative classes = Specificity

IV. MATERIAL AND METHODS

Machine learning techniques are being used in

software fault prediction to assist testing and

maintainability. Fault prediction approaches are

explored by researchers in the literature [18]. Several

researchers have also contributed in distributed

software systems using machine learning [19].

Previous studies showed that, all the classifiers

perform different in different scenario. Parameters

like labelled, un-labelled, size, Training and test

dataset split ratio [20] and other factor affect the

result to certain extent.

Investigators have explored and suggested different

classification methods, including Naïve Bayes,

Logistic Regression, Decision Tree, Support Vector

Machine, Ensemble Approaches, K-Means Clustering

& Fuzzy Clustering [21]. Investigators use supervised

learning to label the data; they do not use literal data.

To check the performance of software fault prediction

model, researcher had selected Random Prediction,

Random Forest, Naïve Bayes, Logistic Regression,

Decision Tree, Gradient Boosting, Support Vector

Machine and K-Nearest Neighbor which are

implemented on Datasets viz Ant, Camel, Ivy, Jedit,

Log4j, Lucane, Poi, Xalan, Xerces with their Versions.

Researcher evaluated and examined each model and

then the study of AUC-ROC has been done according

to the below proposed algorithm.

Figure 1. Proposed Experimental method

Algorithm-1

Step 1: Read Dataset

Step 2: For each dataset - Repeat

Step 3: Apply Data Preprocessing

Step 4: Split Dataset into Training set and Testing Set

Step 5: Build Model, Apply Classification Model on

Test Data.

[Classification model used : K Nearest Neighbor, SVM,

Gradient Boosting, Decision Tree, Random Forest,

Naïve Bayes, Logistic Regression]

Step 6: Finding Confusion Matrix

Step 7: Finding Values of TP,TN,FP,FN from

Confusion Matrix

Step 8: Record TPR and FPR

Step 9: Find AUC-ROC values for dataset with respect

to ML Classifier

Step 10: Repeat the steps 5 to 9

Step 11: Perform Comparative Analysis of dataset with

respect to ML Classifier.

Step 12: Stop

V. RESULTS AND DISCUSSION

Results assessments are based on experiments done by

researchers. AUC-ROC experimental results has been

mention in Table II (A)(B)(C)(D)(E)(F)(G)(H)(I) with

Volume 9, Issue 1, January-February-2023 | http://ijsrcseit.com

Mrs. Prachi Sasankar et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., January-February-2023, 9 (1) : 250-260

254

classifiers and datasets. In which, researchers

calculated AUC-ROC for each model for all 28

datasets. Table 3 shows AUC-ROC with the best score

for applied models.

Table II(A),(B),(C),(D),(E) and (F) shows that Support

Vector Machine (SVM) is more effective, which gives

score 1 or approximately 1 followed by Gradient

Boosting as second highest score.

TABLE III

(A) DATASET CAMEL V/S CLASSIFIERS

Datasets Camel-

1.0

Camel-

1.2

Camel-

1.4

Camel-

1.6

Classifiers

Random

(chance)

Prediction

0.50

0

0.50

0

0.50

0

0.50

0

Random Forest 0.78

7

0.71

1

0.75

0

0.71

0

Naïve Bayes 0.96

4

0.48

0

0.69

9

0.68

8

Logistic

Regression

0.49

7

0.58

4

0.72

2

0.65

2

Decision Tree 0.51

5

0.58

5

0.59

1

0.72

4

Gradient

Boosting

0.31

5

0.68

8

0.75

3

0.67

4

Support Vector

Machine

1.00

0

0.72

1

0.23

7

0.71

1

K-Nearest

Neighbor

0.63

6

0.61

7

0.68

8

0.65

5

Figure 2. AUC-ROC graph for Camel Dataset

TABLE IIII

(B) DATASET IVY V/S CLASSIFIERS

Dataset- Ivy-

2.0

Classifiers

Random (chance)

Prediction

0.500

Random Forest 0.861

Naïve Bayes 0.769

Logistic Regression 0.930

Decision Tree 0.723

Grediant Boosting 0.826

Support Vector

Machine

0.954

K-Nearest Neighbor 0.684

Figure 3. AUC-ROC graph for Ivy Dataset

TABLE IVI

(C) DATASET JEDIT V/S CLASSIFIERS

Datasets Jedi

t-

4.0

Jedit

-4.1

Jedit

-4.2

Jedit

-4.3

Classifiers

Random

(chance)

Prediction

0.50

0

0.500 0.500 0.50

0

Random Forest 0.61

5

0.809 0.968 0.70

3

Naïve Bayes 0.53 0.820 0.945 0.56

Volume 9, Issue 1, January-February-2023 | http://ijsrcseit.com

Mrs. Prachi Sasankar et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., January-February-2023, 9 (1) : 250-260

255

1 2

Logistic

Regression

0.57

0

0.831 0.975 0.61

1

Decision Tree 0.57

5

0.675 0.959 0.49

5

Grediant

Boosting

0.59

0

0.812 0.972 0.78

3

Support Vector

Machine

0.21

4

0.868 0.994 0.06

2

K-Nearest

Neighbor

0.67

5

0.815 0.752 0.47

9

Figure 4. AUC-ROC graph for Jedit Datasets

TABLE VI

(D) DATASET LOG4J V/S CLASSIFIERS

Datasets

Log4j-

1.0

Log4

j-1.1

Log4

j-1.2

Classifiers

Random (chance)

Prediction

0.500 0.500 0.50

0

Random Forest 0.821 0.804 1.00

0

Naïve Bayes 0.825 0.741 1.00

0

Logistic Regression 0.833 0.857 1.00

0

Decision Tree 0.667 0.750 1.00

0

Grediant Boosting 0.746 0.812 1.00

0

Support Vector

Machine

1.000 0.920 1.00

0

K-Nearest Neighbor 0.774 0.741 0.94

9

Figure 5. AUC-ROC graph for Log4J Datasets

TABLE VII

(E) DATASET LUCENE V/S CLASSIFIERS

Datasets

Lucene-

2.4

Classifiers

Random (chance)

Prediction

0.500

Random Forest 0.837

Naïve Bayes 0.752

Logistic Regression 0.785

Decision Tree 0.687

Grediant Boosting 0.781

Support Vector Machine 0.907

K-Nearest Neighbor 0.735

Volume 9, Issue 1, January-February-2023 | http://ijsrcseit.com

Mrs. Prachi Sasankar et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., January-February-2023, 9 (1) : 250-260

256

Figure 6. AUC-ROC graph for Lucene Datasets

TABLE VIII

(F) DATASET POI V/S CLASSIFIERS

Datasets

Poi-2.0 Poi-2.5 Poi-3.0

Classifiers

Random (chance)

Prediction

0.500 0.500 0.500

Random Forest 0.663 0.868 1.000

Naïve Bayes 0.720 0.705 0.983

Logistic Regression 0.711 0.787 1.000

Decision Tree 0.543 0.789 1.000

Grediant Boosting 0.616 0.857 1.000

Support Vector

Machine

0.230 0.903 1.000

K-Nearest Neighbor 0.626 0.849 0.856

Figure 7. AUC-ROC graph for Poi Datasets

TABLE VIIII

(G) DATASET XERCES V/S CLASSIFIERS

Datasets

Xerces-

1.2_1

Xerces

-1.3

Xerces

-1.4

Classifiers

Random (chance)

Prediction

0.500 0.500 0.500

Random Forest 1.000 1.000 0.904

Naïve Bayes 0.986 1.000 0.819

Logistic Regression 1.000 1.000 0.840

Decision Tree 1.000 1.000 0.830

Gradient Boosting 1.000 1.000 0.908

Support Vector

Machine

1.000 1.000 0.881

K-Nearest Neighbor 0.956 0.800 0.812

Figure 8. AUC-ROC graph for Xerces Datasets

Volume 9, Issue 1, January-February-2023 | http://ijsrcseit.com

Mrs. Prachi Sasankar et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., January-February-2023, 9 (1) : 250-260

257

TABLE IXI

(H) DATASET XALAN V/S CLASSIFIERS

Datasets Xalan-2.4-

1

Xalan-

2.5_1

Xalan-

2.6_1

Classifiers

Random

(chance)

Prediction

0.500 0.500 0.500

Random Forest 0.850 0.796 0.856

Naïve Bayes 0.777 0.641 0.798

Logistic

Regression

0.769 0.632 0.806

Decision Tree 0.814 0.699 0.787

Grediant

Boosting

0.836 0.740 0.842

Support Vector

Machine

0.839 0.301 0.873

K-Nearest

Neighbor

0.652 0.687 0.761

Figure 9. AUC-ROC graph for Xalan Datasets

TABLE XI

(I) DATASET PROP V/S CLASSIFIERS

Datasets Prop

-1

Prop

-2

Prop

-3

Prop

-4

Prop

-5

Prop

-6

Classifier

s

Random

(chance)

Predictio

0.50

0

0.50

0

0.50

0

0.50

0

0.50

0

0.50

0

n

Random

Forest

0.81

1

0.84

7

0.69

6

0.78

9

0.73

3

0.70

5

Naïve

Bayes

0.69

8

0.68

6

0.69

8

0.69

2

0.71

7

0.68

5

Logistic

Regressi

on

0.74

9

0.71

9

0.70

0

0.74

5

0.71

2

0.67

5

Decision

Tree

0.76

8

0.76

0

0.69

8

0.73

5

0.73

0

0.53

0

Gradient

Boosting

0.79

0

0.78

9

0.76

2

0.78

3

0.76

7

0.69

6

Support

Vector

Machine

0.67

1

0.65

2

0.65

0

0.59

8

0.66

7

0.80

4

K-

Nearest

Neighbo

r

0.72

8

0.72

1

0.61

2

0.67

0

0.65

6

0.71

6

Figure 10. AUC-ROC graph for Prop Datasets

To evaluate model performance researcher used

following parameters for model evaluations.

1. Sensitivity / True Positive Rate / Recall (TPR)

are termed as correctly classified Negative

classes.

2. False Positive Rate (FPR) values are correctly

classified positive classes = False Negative

Rate.

Volume 9, Issue 1, January-February-2023 | http://ijsrcseit.com

Mrs. Prachi Sasankar et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., January-February-2023, 9 (1) : 250-260

258

FPR tells us what proportion of the negative class got

incorrectly classified by the classifier.

Plotting AUC ROC Curve

After calculating all the parameters, AUC-ROC curve

were plotted for all models applied, and comparative

study is done.

TABLE XIII

DATASET USED FOR STUDY WITH ALL

SPECIFICATION

Dataset for Software with Software Fault

SN Dataset

name

Ver KLOC Total

number

of

Modules

Total

Number

Modules

without

Defect

Total No

of

Modules

with

Defect

Percentage of

Defected

Modules

(%)

1 Ant 1.7 208 746 580 166 22.25

2 Camel 1 33 340 327 13 3.82

3 Camel 1.2 66 609 393 216 35.47

4 Camel 1.4 98 873 728 145 16.61

5 Camel 1.6 113 966 778 188 19.46

6 Ivy 2 87 353 313 40 11.33

7 Jedit 4 144 307 232 75 24.43

8 4.1 153 313 234 79 25.24

9 4.2 170 368 320 48 13.04

10 4.3 202 493 482 11 2.23

11 Lucane 2.4 102 341 138 203 59.53

12 Poi 2 93 315 278 37 11.75

13 2.5 119 386 138 248 64.25

14 3 129 443 162 281 63.43

15 Prop 1 3816 18472 15734 2738 14.82

16 2 3748 23015 20584 2431 10.56

17 3 1604 10275 9095 1180 11.48

18 4 1508 8719 7879 840 9.63

19 5 1081 8517 7218 1299 15.25

20 6 97 661 595 66 9.98

21 Xalan 2.4 225 724 613 111 15.33

22 2.5 304 804 417 387 48.13

23 2.6 411 886 475 411 46.39

24 2.7 428 910 12 898 98.68

25 Xerces 1.2 159 441 370 71 16.10

26 1.3 167 454 385 69 15.20

27 1.4 141 589 152 437 74.19

TABLE XIIV

AUC-ROC SCORE APPLIED WITH CLASSIFIERS

ON DATASETS

Table IV shows that support vector machine (SVM) is

more effective, which gives score 1 or approximately

1 followed by Gradient Boosting and Logistic

Regression as second highest score. The following

table shown contains only 8 datasets which had given

us positive results.

VI. CONCLUSION

The software quality improvement is an ongoing

process. Research on cross project fault prediction is

not done much. As part of this study, a unique

approach has been taken into account, where

PROMISE depository is used. Total nine algorithms

are applied on 27 datasets. Earlier only 4-5 maximum

datasets were used to predict the software faults. Also

maximum common features were extracted from all

datasets to maintain consistency before applying the

proposed method.

It is observed that Support Vector Machine

algorithms works best on cross projects and gives

maximum results. AUC-ROC score of 0.97 to 1 is

observed using SVM. The second largest values were

observed using Logistics Regression and Naïve Bayes.

Two dimensional area under the ROC curve is

measured by AUC. It has the ability to differentiate

between faulty and non-faulty classes. Binary

classification problem uses AUC metric for model

evaluation. The classification models used for

Volume 9, Issue 1, January-February-2023 | http://ijsrcseit.com

Mrs. Prachi Sasankar et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., January-February-2023, 9 (1) : 250-260

259

experiment, performs better, if AUC curve is having

values near 1. Other models having values near to 0,

have poor separability quality of buggy or faulty

modules. The graph is plotted using AUC-ROC values

for all models and datasets for comparative analysis.

(Refer table 3).

This paper focused on experimental evaluation of

eight fault prediction models which was not done

earlier. The score of the given model is also recorded,

over the 27 datasets using AUC-ROC. Researcher can

compare the highest value and the lowest value from

the models applied to the datasets individually. Thus,

researcher can decide, the best classification model to

be used for accurate faulty predictions in order to

classify faulty modules in a software. The datasets

would also be selected depending on which type of

algorithms suits your model. As this selection will

improve the results given. Future research should

make use of this detailed analysis, and can study

further on cross-project based SFP.

VII. REFERENCES

[1]. P. Sasankar, "Analysis of Test Management,

Functional & Load Testing Tools," International

Journal of Scientific Research in Computer

Science, Engineering and Information

Technology, vol. 1, no. 1, 2016.

[2]. Z. Rana, M. Mian and S. Shamail, "An FIS for

early detection of defect prone modules," in

Intelligent computing, 2009.

[3]. S. Lessmann, B. Baesens, C. Mues and S.

Pietsch, "Benchmarking classification models

for software defect prediction: A proposed

framework and novel findings," in IEEE

Transactions on Software Engineering, 2008.

[4]. P. Patchaiammal and R.Thirumalaiselvi,

"Software Fault Prediction Exploration using

Machine Learning Techniques," International

Journal of Recent Technology and Engineering,

vol. 7, no. 6S3, 2019.

[5]. C.Prabha and N.Shivakumar, "Software Defect

Prediction using Machine Learning

Techniques," in International Conference on

Trends in Electronics and Informatics, 2020.

[6]. S.Mishra, "Usage of Machine Learning in

Software Testing," Automated Software

Engineering: A Deep Learning Based Approach,

pp. 39-54, 2020.

[7]. N.Anwar and S.Kar, "Review paper on various

software testing techniques & strategies.,"

Global Journal of Computer Science &

Technology: Computer Software & Data

Engineering, vol. 19, no. 2, 2019.

[8]. J. Xiao-Yuan, Y. Shi, L. Jin and W. Shan-Shan,

"Dictionary learning based software defect

prediction," in Proceedings of the 36th

International Conference on Software

Engineering, 2014.

[9]. J. Zheng, "Cost-sensitive boosting neural

networks for software defect prediction,"

Expert Systems with Applications, vol. 37, no.

6, p. 4537, 2010.

[10]. S.Kumar and P.Ranjan, "A Comprehensive

Analysis for Software Fault Detection an

Prediction using Computational Intelligence

Techniques.," International Journal of

Computational Intelligence Research, vol. 13,

no. 1, pp. 65-78, 2017.

[11]. C. H, "A Systematic Study for Learning Based

Software Defect Prediction," in IOP conference

series: Journal of Physics, 2020.

[12]. P. Sasankar, "Cross Project Defect Prediction

using Deep Learning Techniques," in

International Conference on Artificial

Intelligence & Big Data Analytics, 2022.

[13]. G. D.Bowes, N.Davey, Y.Sun and

B.Christianson, "Furthur thoughts on

precision," in 15 Annual Conference on

Evaluation & Assesment in Software

Engineering, 2011.

[14]. G. Choudhary, S. Kumar, K. Kumar and A.

Mishra, "Empirical analysis of change metrics

Volume 9, Issue 1, January-February-2023 | http://ijsrcseit.com

Mrs. Prachi Sasankar et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., January-February-2023, 9 (1) : 250-260

260

for software fault prediction," Computer and

Electrical Engineering, vol. 67, pp. 15-24, 2018.

[15]. G. Giray, K. Bennin, O. Koksal, O. Babur and B.

Tekinerdogan, "On the use of deep learning in

software defect prediction," Journal of systems

and software, vol. 195, 2023.

[16]. S. Pandey, R. Mishra and A. Tripathi, "BPDET:

An Effective software bug prediction model

using deep representation and ensemble

learning technique.," Expert System

Application, p. 144, 2020.

[17]. P. A and C. R, "A Hybrid Approach for SFP

using ANN and Simplified Swarm

Optimization," International Journal of

Advanced Research in Computer and

Communication Engineering, vol. 6, no. 3,

2017.

[18]. P. L, B. S, I. C and S. J, "Using Classifiers for

software defect detection," in International

Conference on Software Engineering and Data

Engineering, 2017.

[19]. G. B and A. C, "Software Root Cause Prediction

using Clustering Techniques," in Global

Conference on Communication Technologies,

2015.

[20]. Q. O.A and A. M, "Software Fault Prediction

using Deep Learning Algorithms," International

Journal of Open Source Software and Processes,

2019.

[21]. M. S and M. S, "Usage of Machine Learning in

Software Testing," Automated Software

Engineering: A Deep Learning Based Approach.

Learning and Analytics in Inlligent System,

2020.

[22]. R. U. Khan, S. Albahli, W. Albattah and M.

Khan, "Software Defect Prediction Via Deep

Learning," International Journal of Innovative

Technology and Exploring Engineering, 2020.

Cite this article as :

Mrs. Prachi Sasankar, Dr. Gopal Sakarkar, "An

Empirical Study of Classification Models Using AUC-

ROC Curve for Software Fault Predictions",

International Journal of Scientific Research in

Computer Science, Engineering and Information

Technology (IJSRCSEIT), ISSN : 2456-3307, Volume 9,

Issue 1, pp.250-260, January-February-2023.

Available at doi :

https://doi.org/10.32628/CSEIT2390143

Journal URL : https://ijsrcseit.com/CSEIT2390143

