
Copyright © 2023 The Author(s): This is an open-access article distributed under the terms of the Creative

Commons Attribution 4.0 International License (CC BY-NC 4.0) which permits unrestricted use, distribution, and

reproduction in any medium for non-commercial use provided the original author and source are credited.

International Journal of Scientific Research in Computer Science, Engineering and

Information Technology

ISSN : 2456-3307

Available Online at : www.ijsrcseit.com

doi : https://doi.org/10.32628/IJSRCSEIT

77

Enhancing Capability of Gang scheduling by integration of Multi

Core Processors and Cache
Dr. Sangeeta1, Kavita2

1Assistant Professor, Department of CSE, Chaudhary Devilal University, Sirsa, Haryana, India
2M.Tech. Scholar, Department of CSE, Chaudhary Devilal University, Sirsa, Haryana, India

A R T I C L E I N F O

A B S T R A C T

Article History:

Accepted: 01 July 2023

Published: 10 July 2023

 In computer architecture, multithreading is ability of a central processing unit

(CPU) or a single core within a multi-core processor to execute multiple

processes or threads concurrently, appropriately supported by operating system.

This approach differs from multiprocessing, as with multithreading processes &

threads have to share resources of a single or multiple cores: computing units,

CPU caches, & translation lookaside buffer (TLB). Multiprocessing systems

include multiple complete processing units, multithreading aims to increase

utilization of a single core by using thread-level as well as instruction-level

parallelism. Objective of research is increase efficiency of scheduling dependent

task using enhanced multithreading. gang scheduling of parallel implicit-

deadline periodic task systems upon identical multiprocessor platforms is

considered. In this scheduling problem, parallel tasks use several processors

simultaneously. first algorithm is based on linear programming & is first one to

be proved optimal for considered gang scheduling problem. Furthermore, it runs

in polynomial time for a fixed number m of processors & an efficient

implementation is fully detailed. Second algorithm is an approximation

algorithm based on a fixed-priority rule that is competitive under resource

augmentation analysis in order to compute an optimal schedule pattern.

Precisely, its speedup factor is bounded by (2−1/m). Both algorithms are also

evaluated through intensive numerical experiments. In our research we have

enhanced capability of Gang Scheduling by integration of multi core processor

& Cache & make simulation of performance in MATLAB.

Keywords : TLP, Response Time, Latency, throughput, multithreading,

Scheduling

Publication Issue

Volume 9, Issue 4

July-August-2023

Page Number

77-83

Volume 9, Issue 4, July-August -2023 | http://ijsrcseit.com

Dr. Sangeeta et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., July-August-2023, 9 (4) : 77-83

78

I. INTRODUCTION

The multithreading paradigm has become more

popular as efforts to further exploit instruction-level

parallelism have stalled since late 1990s. This allowed

concept of throughput computing to re-emerge from

more specialized field of transaction processing; even

though it is very difficult to further speed up a single

thread or single program, most computer systems are

actually multitasking among multiple threads or

programs. Thus, techniques that improve throughput

of all tasks result within overall performance gains.

Types of multithreading

Block multithreading

The simplest type of multithreading occurs when one

thread runs until it is blocked by an event that

normally would create a long-latency stall. Such a stall

might be a cache miss that has to access off-chip

memory, that might take hundreds of CPU cycles for

data to return. Instead of waiting for stall to resolve, a

threaded processor would switch execution to another

thread that was ready to run. Only when data for

previous thread had arrived, would previous thread be

placed back on list of ready-to-run threads.

For example:

1. Cycle i: instruction j from thread A is issued.

2. Cycle i + 1: instruction j + 1 from thread A is

issued.

3. Cycle i + 2: instruction j + 2 from thread A is

issued, that is a load instruction that misses

within all caches.

4. Cycle i + 3: thread scheduler invoked, switches

to thread B.

5. Cycle i + 4: instruction k from thread B is issued.

6. Cycle i + 5: instruction k + 1 from thread B is

issued.

Conceptually, it is similar to cooperative multi-tasking

used within real-time operating systems, within which

tasks voluntarily give up execution time when they

need to wait upon some type of event. This type of

multithreading is known as block, cooperative or

coarse-grained multithreading. The goal of

multithreading hardware support is to allow quick

switching between a blocked thread & another thread

ready to run. To achieve this goal, hardware cost is to

replicate program visible registers, as well as some

processor control registers. Switching from one thread

to another thread means hardware switches from using

one register set to another; to switch efficiently

between active threads, each active thread needs to

have its own register set. For example, to quickly

switch between two threads, register hardware needs

to be instantiated twice. Additional hardware support

for multithreading allows thread switching to be done

within one CPU cycle, bringing performance

improvements. Also, additional hardware allows each

thread to behave as if it were executing alone & not

sharing any hardware resources with other threads,

minimizing amount of software changes needed within

application & operating system to support

multithreading.

Many families of microcontrollers & embedded

processors have multiple register banks to allow quick

context switching for interrupts. Such schemes could

be considered a type of block multithreading among

user program thread & interrupt threads.

Interleaved multithreading

The purpose of interleaved multithreading is to remove

all data dependency stalls from execution pipeline.

Since one thread is relatively independent from other

threads, there is less chance of one instruction within

one pipelining stage needing an output from an older

instruction within pipeline. Conceptually, it is similar

to preemptive multitasking used within operating

systems; an analogy would be that time slice given to

each active thread is one CPU cycle.

For example:

1. Cycle i + 1: an instruction from thread B is

issued.

2. Cycle i + 2: an instruction from thread C is

issued.

This type of multithreading was first called barrel

processing, within which staves of a barrel represent

Volume 9, Issue 4, July-August -2023 | http://ijsrcseit.com

Dr. Sangeeta et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., July-August-2023, 9 (4) : 77-83

79

pipeline stages & their executing threads. Interleaved,

preemptive, fine-grained or time-sliced multithreading

are more modern terminology.

In addition to hardware costs discussed within block

type of multithreading, interleaved multithreading has

an additional cost of each pipeline stage tracking thread

ID of instruction it is processing. Also, since there are

more threads being executed concurrently within

pipeline, shared resources such as caches & TLBs need

to be larger to avoid thrashing between different

threads.

Simultaneous multithreading

The most advanced type of multithreading applies to

superscalar processors. Whereas a normal superscalar

processor issues multiple instructions from a single

thread every CPU cycle, within simultaneous

multithreading (SMT) a superscalar processor could

issue instructions from multiple threads every CPU

cycle. Recognizing that any single thread has a limited

amount of instruction-level parallelism, this type of

multithreading tries to exploit parallelism available

across multiple threads to decrease waste associated

with unused issue slots.

For example:

1. Cycle i: instructions j & j + 1 from thread A &

instruction k from thread B are simultaneously

issued.

2. Cycle i + 1: instruction j + 2 from thread A,

instruction k + 1 from thread B, & instruction

m from thread C are all simultaneously issued.

3. Cycle i + 2: instruction j + 3 from thread A &

instructions m + 1 & m + 2 from thread C are

all simultaneously issued.

To distinguish other types of multithreading from SMT,

term "temporal multithreading" is used to denote when

instructions from only one thread could be issued at a

time.

In addition to hardware costs discussed for interleaved

multithreading, SMT has additional cost of each

pipeline stage tracking thread ID of each instruction

being processed. Again, shared resources such as caches

& TLBs have to be sized for large number of active

threads being processed.

Implementations include DEC (later Compaq) EV8

(not completed), Intel Hyper-Threading, IBM

POWER5, Sun Microsystems UltraSPARC T2, MIPS

MT, & CRAY XMT.

II. LITERATURE REVIEW

Yeh-Ching Chung wrote on “Applications &

Performance Analysis of A Compile-Time

Optimization Approach for List Scheduling

Algorithms on Distributed Memory Multiprocessors”

They have proposedacompile-time optimization

approach, bottom-up top-down duplication heuristic

(BTDH), for static scheduling of directed+cyclic graphs

(DAGS) on distributed memory multiprocessors

(DMMs). In this paper, they discuss applications of

BTDH for list scheddhg algorithms (LSAs). There are

two ways to use BTDH for LSAs.BTDHcan be used

with aLSAto form a new scheduling algorithm

(LSA/BTDH). It could be usedas apure optimization

algorithm for a LSA (LSA-BTDH)..

Ishfaq Ahmad1 & Yu-Kwong Kwok2 wrote on “On

Parallelizing Multiprocessor Scheduling Problem”

Existing heuristics for scheduling a node & edge

weighted directed task graph to multiple processors

could produce satisfactory solutions but incur high

time complexities that tend to exacerbate within more

realistic environments with relaxed assumptions.

Consequently, these heuristics do not scale well &

cannot handle problems of moderate sizes. The

algorithm also exhibits an interesting trade-off

between solution quality & speedup while scaling well

with problem size.

Maruf Ahmed, Sharif M. H. Chowdhury wrote on List

Heuristic Scheduling Algorithms for Distributed

Memory Systems with Improved Time Complexity

They present a compile time list heuristic scheduling

algorithm called Low Cost Critical Path algorithm

(LCCP) for distributed memory systems. LCCP has low

Volume 9, Issue 4, July-August -2023 | http://ijsrcseit.com

Dr. Sangeeta et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., July-August-2023, 9 (4) : 77-83

80

scheduling cost for both homogeneous &

heterogeneous systems. In some recent papers list

heuristic scheduling algorithms keep their scheduling

cost low by using a fixed size heap & a FIFO, where

heap always keeps fixed number of tasks & excess tasks

are inserted within FIFO. When heap has empty spaces,

tasks are inserted within it from FIFO. Best known list

scheduling algorithm based on this strategy requires

two heap restoration operations, one after extraction &

another after insertion. Our LCCP algorithm improves

on this by using only one such operation for both

extraction & insertion, that within theory reduces

scheduling cost without compromising scheduling

performance. In our experiment they compare LCCP

with other well known list scheduling algorithms & it

shows that LCCP is fastest among all.

Wayne F. Boyer wrote on “Non-evolutionary

algorithm for scheduling dependent tasks within

distributed heterogeneous computing environments”

The Problem of obtaining an optimal matching &

scheduling of interdependent tasks within distributed

heterogeneous computing (DHC) environments is well

known to be an NP-hard problem. In a DHC system,

task execution time is dependent on machine to which

it is assigned & task precedence constraints are

represented by a directed acyclic graph. Recent

research within evolutionary techniques has shown

that genetic algorithms usually obtain more efficient

schedules that other known algorithms.

We propose a non-evolutionary random scheduling

(RS) algorithm for efficient matching & scheduling of

inter-dependent tasks within a DHC system. RS is a

succession of randomized task orderings & a heuristic

mapping from task order to schedule. Randomized task

ordering is effectively a topological sort where

outcome may be any possible task order for which task

precedent constraints are maintained. A detailed

comparison to existing evolutionary techniques (GA &

PSGA) shows proposed algorithm is less complex than

evolutionary techniques, computes schedules within

less time, requires less memory & fewer tuning

parameters. Simulation results show that average

schedules produced by RS are approximately as

efficient as PSGA schedules for all cases studied &

clearly more efficient than PSGA for certain cases.

III. RESEARCH METHODOLOGY

In computing, scheduling is method by which work

specified by some means is assigned to resources that

complete work. The work may be virtual computation

elements such as threads, processes or data flows, that

are within turn scheduled onto hardware resources

such as processors, network links or expansion cards.

A scheduler is what carries out scheduling activity.

Schedulers are often implemented so they keep all

computer resources busy (as within load balancing),

allow multiple users to share system resources

effectively, or to achieve a target quality of service.

Scheduling is fundamental to computation itself, & an

intrinsic part of execution model of a computer system;

concept of scheduling makes it possible to have

computer multitasking with a single central processing

unit (CPU).

A scheduler may aim at one of several goals, for

example, maximizing throughput (total amount of

work completed per time unit), minimizing response

time (time from work becoming enabled until first

point it begins execution on resources), or minimizing

latency (the time between work becoming enabled &

its subsequent completion), maximizing fairness (equal

CPU time to each process, or more generally

appropriate times according to priority & workload of

each process). In practice, these goals often conflict

(e.g. throughput versus latency), thus a scheduler

would implement a suitable compromise. Preference is

given to any one of concerns mentioned above,

depending upon user's needs & objectives.

Operating

System

Preemption Algorithm

Volume 9, Issue 4, July-August -2023 | http://ijsrcseit.com

Dr. Sangeeta et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., July-August-2023, 9 (4) : 77-83

81

Amiga OS Yes Prioritized round-

robin scheduling

FreeBSD Yes Multilevel feedback

queue

Linux kernel

before 2.6.0

Yes Multilevel feedback

queue

Linux kernel

2.6.0–2.6.23

Yes O(1) scheduler

Linux kernel

after 2.6.23

Yes Completely Fair

Scheduler

Mac OS pre-9 None Cooperative

scheduler

Mac OS 9 Some Preemptive

scheduler for MP

tasks, & cooperative

for processes &

threads

Mac OS X Yes Multilevel feedback

queue

NetBSD Yes Multilevel feedback

queue

Solaris Yes Multilevel feedback

queue

Windows 3.1x None Cooperative

scheduler

Windows 95,

98, Me

Half Preemptive

scheduler for 32-bit

processes, &

cooperative for 16-

bit processes

Windows NT

(including

2000, XP,

Vista, 7, &

Server)

Yes Multilevel feedback

queue

Table 1 List of algorithms

IV. CHALLENGES WITHIN RESEARCH

Multiple threads could interfere with each other when

sharing hardware resources such as caches or

translation lookaside buffers (TLBs). As a result,

execution times of a single thread are not improved but

could be degraded, even when only one thread is

executing, due to lower frequencies or additional

pipeline stages that are necessary to accommodate

thread-switching hardware.

Overall efficiency varies; Intel claims up to 30%

improvement with its HyperThreading technology,[1]

while a synthetic program just performing a loop of

non-optimized dependent floating-point operations

actually gains a 100% speed improvement when run

within parallel. On other hand, hand-tuned assembly

language programs using MMX or Altivec extensions &

performing data pre-fetches (as a good video encoder

might) do not suffer from cache misses or idle

computing resources. Such programs therefore do not

benefit from hardware multithreading & could indeed

see degraded performance due to contention for shared

resources.

From software standpoint, hardware support for

multithreading is more visible to software, requiring

more changes to both application programs &

operating systems than multiprocessing. Hardware

techniques used to support multithreading often

parallel software techniques used for computer

multitasking of computer programs. Thread scheduling

is also a major problem within multithreading.

V. PARALLEL COMPUTING

Parallel computing is a type of computation in which

many calculations are carried out simultaneously,

operating on principle that large problems could often

be divided into smaller ones, which are then solved at

same time. There are several different forms of parallel

computing: bit-level, instruction-level, data, & task

parallelism. Parallelism has been employed for many

years, mainly in high-performance computing, but

interest in it has grown lately due to physical

constraints preventing frequency scaling. As power

consumption (and consequently heat generation) by

computers has become a concern in recent years,

Volume 9, Issue 4, July-August -2023 | http://ijsrcseit.com

Dr. Sangeeta et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., July-August-2023, 9 (4) : 77-83

82

parallel computing has become dominant paradigm in

computer architecture, mainly in form of multi-core

processors. Parallel computing is closely related to

concurrent computing—they are frequently used

together, & often conflated, though two are distinct: it

is possible to have parallelism without concurrency &

concurrency without parallelism. In parallel

computing, a computational task is typically broken

down in several, often many, very similar subtasks that

could be processed independently & whose results are

combined afterwards, upon completion. In contrast, in

concurrent computing, various processes often do not

address related tasks; when they do, as is typical in

distributed computing, separate tasks may have a

varied nature & often require some inter-process

communication during execution.

VI. GANG TASK SCHEDULING

VII. RESULT AND DISCUSSION

Single processor output

Step 1

Fig1 Task Execution requirement

Step 2

Fig 2. Finding schedule lenght

Volume 9, Issue 4, July-August -2023 | http://ijsrcseit.com

Dr. Sangeeta et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., July-August-2023, 9 (4) : 77-83

83

VIII. SCOPE OF RESEARCH

If a thread gets a lot of cache misses, other threads

could continue taking advantage of unused computing

resources, that may lead to faster overall execution as

these resources would have been idle if only a single

thread were executed. Also, if a thread cannot use all

computing resources of CPU (because instructions

depend on each other's result), running another thread

may prevent those resources from becoming idle. If

several threads work on same set of data, they could

actually share their cache, leading to better cache usage

or synchronization on its values.

IX. REFERENCES

[1]. Remzi H. Arpaci-Dusseau; Andrea C. Arpaci-

Dusseau (January 4, 2021). "Chapter 7:

Scheduling: Introduction, Section 7.6: A New

Metric: Response Time". Operating Systems:

Three Easy Pieces (PDF). p. 6. Retrieved

February 2, 2015.

[2]. Paul Krzyzanowski "Process Scheduling: Who

gets to run next?". cs.rutgers.edu. Retrieved 2021

[3]. Abraham Silberschatz, Peter Baer Galvin & Greg

Gagne (2021). Operating System Concepts 9.

John Wiley & Sons,Inc. ISBN 978-1-118-06333-

0.

[4]. Here is C-code for FCFS

[5]. Early Windows at Wayback Machine

[6]. Sriram Krishnan. "A Tale of Two Schedulers

Windows NT & Windows CE".

[7]. Inside Windows Vista Kernel: Part 1, Microsoft

Technet

[8]. "Vista Kernel Improvements".

[9]. "Technical Note TN2028 - Threading

Architectures".

[10]. "Mach Scheduling & Thread Interfaces".

[11]. http://www.ibm.com/developerworks/aix/librar

y/au-aix5_cpu/index.html#N100F6

[12]. Molnár, Ingo (2020). "[patch] Modular Scheduler

Core & Completely Fair Scheduler [CFS]". linux-

kernel (Mailing list).

Cite this article as :

Dr. Sangeeta, Kavita, "Enhancing Capability of Gang

scheduling by integration of Multi Core Processors

and Cache", International Journal of Scientific

Research in Computer Science, Engineering and

Information Technology (IJSRCSEIT), ISSN : 2456-

3307, Volume 9, Issue 4, pp.77-83, July-August-2023.

