
Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed under 
the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, 
distribution, and reproduction in any medium, provided the original work is properly cited 
 

 

International Journal of Scientific Research in Computer Science, Engineering and Information Technology 

ISSN : 2456-3307 (www.ijsrcseit.com) 

doi : https://doi.org/10.32628/CSEIT2390283 

 

 

 

 

570 

Detectrozen ( Disease Detection ) 
Vedant Jadhav1, Neeraj Chettiar1,  Saheel Chavan1, Smit Mhatre1,  Bhavna Arora2 

1Student, Department of Computer Engineering, Atharva College of Engineering, Malad, Atharva Educational 

Trust, Malad, (Affiliated to Mumbai University, Mumbai) , Maharashtra, India 
2Project Guide, Department of Computer Engineering, Atharva College of Engineering,  Malad, Atharva 

Educational Trust, Malad, (Affiliated to Mumbai University, Mumbai) , Maharashtra, India 

A R T I C L E I N F O 
 

A B S T R A C T 

Article History: 

Accepted:  10 April 2023 

Published: 25 April 2023 

 

 With broad data development in biomedical and healthcare sectors, detailed 

analyzes of medical data support early detection of illness, patient care and 

community services. However, the quality of the study is lowered when the 

content of the medical data is incomplete. Also, various regions exhibit unique 

features of certain regional diseases. This can hinder disease outbreak 

forecasting. In this project, we streamline deep learning algorithms to 

effectively predict chronic disease outbreaks in populations with recurrent 

diseases. The diagnosis of diseases is a critical and central aspect of medicinal 

science. Doctors breakdown side effects in the human body more often than 

not to foresee diseases. In recent times, numerous research strategies have 

been used with a specific goal to make it more accurate. This system will help 

to predict the medical results efficiently. In this system, we will provide a 

user-friendly interface that can be used by the users to detect whether their 

medical test results are positive or normal, i.e. it will detect the disease. 

There is a great growing interest in the domain of deep learning techniques 

for identifying and classifying images with various dataset. This deep learning 

project is based on a user interface and its application of the Detrozen real life. 

It will also describe how the system will perform and under what it must 

operate. In this document, the user interface will also be shown. Both the 

stakeholders(users) and the developers of the interface can benefit from this 

approach. 

Keywords : Disease Detection, Feature Selection, Convolutional Neural 

Network, Deep Learning, Tensorflow. 
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I. INTRODUCTION 

 

The days are long gone when data on health-care used 

to be small. The advancement level in devices for the 

acquisition of images is quite large and that is what 

makes image processing difficult and fascinating. This 

significant growth of medical images and techniques 

requires comprehensive and exhaustive efforts from a 

medical professional who is susceptible to human error 

and the result can also vary widely among various 
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experts. The alternative to this approach is to use 

machine learning or deep learning strategies for 

automating the detection process of various diseases. 

Machine Learning (ML) and Artificial Intelligence (AI) 

have made significant progress over the past few years. 

ML and AI techniques have influenced medical fields 

such as medical image processing, image recognition, 

computer-aided diagnosis, image segmentation, and 

image fusion to name a few. While automated disease 

detection based on conventional medical imaging 

methods demonstrated significant accuracies for 

decades, breakthroughs in machine learning 

approaches have sparked a growth in deep learning. 

Deep learningbased algorithms demonstrated 

remarkable outcomes in various fields such as 

computer-aided diagnosis, speech recognition etc. 

For our project, we have used the above stated idea 

behind disease detection, to construct a system using 

Convolutional Neural Network that detects the 

diseases quickly and also guarantees it to be free of 

error. By doing so we meant to minimize the human 

efforts that are required to detect a medical test report. 

We have tried to make the system user-friendly with 

the help of GUI, so that it can be used not only by the 

medical professionals but also by the population at 

large. 

 

II. Statement of the Problem  

 

This system will help to detect the medical results 

efficiently. In this detecting system, we will provide a 

user-friendly interface that can be used by the users to 

detect whether their medical test results are positive or 

normal, i.e. it will detect the disease. Decisions are 

often made based on the doctor’s intuition and 

experience and sometimes that may not be completely 

correct. In this interface the predictions will be free of 

unwanted biases and errors- so it will be completely 

trustworthy. The doctors can also use this system to 

predict the results better. 

 

 

III. Objectives of the study  

 

Our team has created a Detectrozen which will detect 

if a patient is suffering from Malaria, Pneumonia, 

Breast cancer or Skin cancer by taking an essential 

input image. The Application of this product is created 

using Flutter module and for backend, four different 

custom CNN models are developed for detecting the 

diseases. 

 

IV.  REVIEW OF LITERATURE  

 

BREAST CANCER 

There are various ways of detecting breast cancer 

including mammography, MRI scans, computed 

tomography (CT) scans, ultrasound, and nuclear 

imaging. Although, none of these approaches provides 

a perfectly accurate cancer prediction. Tissue-based 

diagnosis is done primarily using a method of staining. 

Some staining elements, usually hematoxylin and eosin 

(H&E), is being used to colour elements of tissues in 

this method. Accordingly, cell structures, types and 

other foreign elements are stained and easily 

identifiable in high resolution. Pathologists then 

analyze the stained tissue slides under a microscope or 

use images taken from the camera in high resolution. 

A histopathology test is important for the 

identification of tumours. It is an old method for 

predicting invasive cancer cells from stained H&E 

tissues. There are different weaknesses in this 

procedure because it includes intra-observer variation, 

cancer cells and tissues can also have multiple 

appearances, and many other cell figures have the same 

hyperchromatic characteristics that make 

identification difficult. The selection of area is also a 

consideration as the procedure is conducted only on a 

specific tissue region, so the area chosen should be in 

the periphery of the tumour. Using deep learning 

techniques one can solve the aforementioned problems. 

Deep learning is a popular subcategory of machine 

learning technology that is inspired by the functioning 

of the human brain to examine unstructured patterns. 
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Deep learning models have a high chance of success as 

they train on representations in the hierarchy. They 

can also extract and organize unique attributes, and 

therefore do not require any prior knowledge of the 

domain. On the other side, trivial methods require 

rigorous feature engineering to acquire features which 

involve expertise in the domain. Many methods of 

deep learning have been proposed for predicting the 

tumour class. These are mostly binary classification 

[1,2] but some have used multi-variable classification 

[3]. Deep learning algorithms just need the data in the 

correct format and some suitable network parameters 

for the problem. Pre-designed networks such as 

AlexNet, MobileNet, Inception and many more can 

also be used [4]. Different scholars have proposed 

different methods and manual networks for classifying 

breast cancer besides the pre-designed networks 

mentioned above. Artificial neural networks rely, for 

example, on MLE (Maximum Likelihood Estimation) 

[5]. RBF Neural Networks on paper [6], the GRU-SVM 

model which is an ML algorithm coupled with a type 

of recurrent neural network ( RNN) and gated 

recurrent unit (GRU) with support vector machine 

( SVM) [7]. Other scholars have developed 

methodologies including these techniques to achieve 

better results with less computational complexity. To 

reduce the size of the input feature, Karabatak et al. 

have proposed the AR + NN method which reduces the 

number of features by implementing association rules 

[8]. A combination of NN and multivariate adaptive 

regression splines (MARS) is also used for cancer 

detection [9]. Another method is the Fuzzy-artificial 

immune system and the KNN algorithm listed in Ref. 

[10]. Descriptors like CLBP, GLCM, LBP, LPQ, ORB, 

PFTAS are defined in paper [11] with breast cancer 

classification up to 85.1% accuracy. As with the 

BreakHis data set released in 2015, this has only been 

used by some scholars. For example, Fabio A. Spanhol 

[12] describes parameters and network configuration 

that has been accurate between 80 and 85%. The 

proposed method mentioned herein further reinforces 

this. Also, we present summaries of other methods 

along with their accuracies in the Discussion section. A 

series of tasks are implemented in deep learning 

algorithms. The first step is the preprocessing of images 

which is necessary to translate data into the format in 

which it can be input directly into the network. This 

step involves multiple image channeling, and then 

segmentation [13] is done (only if required, e.g. where 

regions of interest need to be separated from the 

background or parts which are not needed for training 

are omitted). At this point, data is ready for use in 

training, either in a supervised way or in an 

unsupervised way. The next step is feature extraction. 

Features represent the image's visual content for 

histopathology. In the case of supervised extraction of 

features, the features are known and various methods 

are used to discover them [14, 15, 16], but in the case 

of unsupervised feature extraction methods, features 

are not known and implicitly acquired through the 

Convolutional Neural Network ( CNN) in the proposed 

solutions. The last phase is classification, which places 

an image in the respective category (benign or 

malignant) and can be done utilizing SVM (support 

vector machine) or using an activation function such as 

Softmax with a fully connected layer. 

 

PNEUMONIA 

Recent advances in deep learning models and the 

access to large datasets have enabled algorithms to 

outshine medical workers in various diagnostic 

imaging tasks, 

such as detection of skin cancer [17], haemorrhage 

identification [18], arrhythmia detection [19], and 

diabetic retinopathy detection [20]. Automated 

diagnosis enabled by chest X-rays has taken on huge 

interest. These algorithms are progressively used to 

detect pulmonary lung nodule [21] and pulmonary 

tuberculosis classification [22]. The performance of 

many convolutional models on various abnormalities 

relying on the OpenI database available to the public 

[23] discovered that the same deep convolutional 

network architecture doesn’t well work across all 

abnormalities [24], ensemble models dramatically 
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improved classification accuracy compared to a single 

model, and finally, the deep learning method improved 

accuracy compared to rule-based approaches. 

Statistical dependence amongst labels [25] was studied 

to arrive at more accurate predictions, thereby 

outshining other approaches on given 13 images that 

were selected from 14 classes [26]. Algorithms for 

mining and predicting labels originating from 

radiology images were reviewed, as were studies [27–

29], however, the image labels were usually limited to 

disease tags, and therefore lacked contextual 

information. Disease detection from X-ray images was 

investigated [30– 32], classifications on chest X-ray 

image views were performed [33], and segmentation of 

body parts from chest X-ray images and computed 

tomography was done [29, 34]. Conversely, the 

learning of image features using text and the creation 

of image descriptions are yet to be explored concerning 

what a person would say. 

 

MALARIA 

Malaria is commonly diagnosed by microscopic blood 

cell analysis using blood films[6]. Nearly 167 million 

blood films had been tested for malaria using 

microscopy during 2010 which was less expensive and 

less complex than the diagnosis based on polymerase 

chain reaction [36]. Though widely used, a microscopic 

diagnosis has many drawbacks like- malaria is 

generally linked to poverty and mostly arises in low-

economic countries [37], where most laboratories or 

diagnostic facilities do not have standard testing 

facilities. Also, the diagnosis depends on the 

individual's ability to examine the blood film and the 

level of the parasites present thereon. Also, the 

monotonicity of the examination greatly influences the 

quality of the examination, especially towards the later 

part of a batch, when the lot has many specimens. 

Global pathology shortage [38] in general, seriously 

impacts the health care system in developing nations 

and malaria is no exception. Several Bangladeshi 

citizens opt for treatment abroad because of the lack of 

dependable diagnostic facilities [39] that is sadly not 

financially viable for the majority of people. Today's 

modern computer-aided systems utilise deep learning 

algorithms to analyze medical images [40]. There is a 

development around the world to simplify the 

diagnostic method with the assistance of various 

machine learning techniques to help human specialists 

make the right diagnosis. Liang et al . have proposed an 

approach based on deep learning for classifying cells 

infected with malaria from red blood smears. Their 

proposed method is based on a 16-layer convolutional 

neural network that uses the AlexNet architecture[41] 

pre-trained on the CIFAR-100 [42] dataset to outshine 

their transfer learning-based model. Dong et al. [43] 

used a dataset consisting of only about 1000 samples of 

training and testing and has used transfer learning and 

reported the outcomes on LeNet[44], AlexNet[45] and 

GoogleNet[46] architectures. 

 

SKIN CANCER 

Deep learning algorithms have recently gained huge 

success in various computer vision issues. Krizhevsky 

et al. in 2012 [63]inbuilt a novel technique (AlexNet) 

using convolutional neural networks for classifying a 

large data (1,2 million images) containing 1000 

categories of objects in the 2010 ImageNet Large Scale 

Visual Recognition Challenge (ILSVRC2010) and 

delivers the highest result and, therefore, tremendous 

interest among academics in the field of computer 

vision. [68] Esteva et al. made significant progress on 

the classification of skin cancer through a pretrained 

model of GoogleNet Inception v3 CNN to categorize 

129,450 clinical images of skin cancer including 3,374 

dermatoscopic images. Yu et al. [64] developed a 

convolutional neural network for the classification of 

malignant melanoma with over 50 layers on ISBI 2016 

challenge dataset. Haenssle et al., in 2018 [65] used a 

deep, convolutional neural network to identify the 

binary diagnostic group of melanocytic images 

dermoscopy. 

 

V. Research Methodology 
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Fig: Researched Approach 

 

CNN Model:  

 Convolutional  Neural  Networks  (CNNs)  are  widely  

used  for  image  recognition  and  classification  tasks  

due  to  their  ability  to  effectively  learn  features  

from  images.  In  this  specific  approach,  a  series  of  

convolution  and  max-pooling  layers  were  employed  

in  order  to  learn  and  extract  relevant  features  from  

the  input  images.  Convolutional  layers  are  designed  

to  perform  feature  extraction  by  applying  a  set  of  

filters  or  kernels  to  the  input  image.  Max-pooling  

layers  are  used  to  downsample  the  feature  maps 

generated by the convolutional layers, thereby 

reducing the spatial dimensionality of the data.  

 

Building a CNN (Convolutional Neural Network) 

model for disease detection involves the following 

steps: 

 

1. Collect and preprocess the data: The first step is to 

collect the data for the disease you want to detect. This 

could include medical images, such as X-rays or MRI 

scans, or other relevant data. The data should be 

preprocessed, which may involve resizing, 

normalization, and augmentation. 

 

2. Split the data into training, validation, and testing 

sets: Once you have preprocessed the data, you should 

split it into three sets: a training set, a validation set, 

and a testing set. The training set is used to train the 

model, the validation set is used to evaluate the model 

during training, and the testing set is used to evaluate 

the model after training. 

 

3. Build the CNN model: The next step is to build the 

CNN model. This involves defining the architecture of 

the model, which typically includes several 

convolutional layers, pooling layers, and fully 

connected layers. You may also include dropout layers 

to prevent overfitting. 

 

4. Train the model: Once the model is built, you can 

train it using the training set. This involves optimizing 

the model's parameters using an optimization 

algorithm, such as stochastic gradient descent (SGD). 

During training, you should monitor the model's 

performance on the validation set and adjust the 

model's hyperparameters, such as the learning rate, as 

necessary. 

 

5. Evaluate the model: After training the model, you 

should evaluate its performance on the testing set. This 

will give you an estimate of how well the model will 

perform on new, unseen data. You can also use various 

metrics, such as accuracy, precision, and recall, to 

evaluate the model's performance. 

 

6. Deploy the model: Once you are satisfied with the 

model's performance, you can deploy it for disease 

detection. This may involve integrating the model into 

a web or mobile application, or using it to analyze 

medical images in a clinical setting. 

 

Overall, building a CNN model for disease detection 

can be a complex and challenging task, but it has the 
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potential to improve the accuracy and efficiency of 

medical diagnosis and treatment. 

 

The  CNN  Architecture  is  show  as follow:  

 
 

Fig: CNN Architecture 

 

TensorFlow: 

TensorFlow is a powerful open-source platform for 

machine learning that can be used for a wide range of 

tasks, including disease prediction. TensorFlow can be 

used to train models using large datasets of medical 

records and other patient data to predict the likelihood 

of a patient developing a particular disease. To build a 

disease prediction model with TensorFlow, you would 

need to collect a dataset of patient records that includes 

relevant medical information such as demographics, 

medical history, test results, and lifestyle factors. This 

dataset would need to be carefully curated and pre-

processed to ensure that it is accurate and complete. 

Once you have a dataset, you can use TensorFlow to 

build a predictive model using techniques such as deep 

learning and neural networks. These models can be 

trained on the dataset to learn patterns and 

relationships in the data, and then used to make 

predictions about new patients based on their data. 

There are many potential applications for disease 

prediction using TensorFlow, including early detection 

of diseases such as cancer and heart disease, as well as 

personalized medicine and treatment planning. 

However, it is important to note that building accurate 

disease prediction models requires careful attention to 

data quality and model design, and should always be 

done in collaboration with medical experts to ensure 

that the models are safe and effective. 

 

 

 

 

 

In this project Teachable Machine is used based on 

tensorflow . 

Teachable Machine is a simple web-based tool that can 

be used to create custom machine learning models 

without any coding. While it can be used for many 

different applications, including image and sound 

recognition, it can also be used for disease prediction 

by training the model on patient data. However, it is 

important to note that Teachable Machine is a 

simplified tool and may not have the same level of 

accuracy or complexity as other machine learning 

platforms. Additionally, building accurate disease 

prediction models requires careful attention to data 

quality and model design, and should always be done 

in collaboration with medical experts to ensure that the 

models are safe and effective. 

Method: 

 
 

Dataset Description: 

Kaggle is a popular platform for hosting and sharing 

datasets related  to a wide range of topics. The datasets 

available on Kaggle are typically in a structured format, 

such as CSV, JSON, or SQL files, and are accompanied 

by a detailed description of the data, including the 

source, features, and any known limitations or issues 

with the data. The datasets on Kaggle cover a wide 

range of topics, including finance, healthcare, social 

media, transportation, and more. Some datasets are 
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public, while others may require registration or 

payment to access. 

Sure! Here are brief descriptions of human disease 

prediction datasets related to malaria, pneumonia, skin 

cancer, and breast cancer available on Kaggle: 

 

1. Malaria Cell Images Dataset: This dataset contains 

images of  cells infected with the malaria parasite and 

uninfected cells, along with corresponding labels 

indicating whether the cell is infected or not. The 

dataset includes a total of 27,558 images, with 

approximately half of them infected with the malaria 

parasite. This dataset can be used for developing 

machine learning models to classify malaria-infected 

cells from uninfected cells based on the images. 

 

2. Chest X-Ray Images (Pneumonia) Dataset: This 

dataset contains chest X-ray images of patients with 

and without pneumonia. The dataset includes a total of 

5,856 X-ray images from over 3,600 patients. The 

images were obtained from different sources and have 

varying resolutions. This dataset can be used for 

developing machine learning models to accurately 

diagnose pneumonia from chest X-ray images. 

 

3. Skin Cancer MNIST: HAM10000 Dataset: This 

dataset contains images of skin lesions, including 

benign and malignant types of skin cancer. The dataset 

includes a total of 10,000 images from over 7,000 

patients. The images were obtained from different 

sources and have varying resolutions. This dataset can 

be used for developing machine learning models to 

accurately diagnose skin cancer from images of skin 

lesions. 

 

4. Breast Cancer Wisconsin (Diagnostic) Dataset: This 

dataset contains features computed from digitized 

images of breast cancer biopsies, along with 

corresponding labels indicating whether the biopsy is 

malignant or benign. The dataset includes a total of 569 

biopsy samples, with 212 malignant and 357 benign 

cases. The features include various measures of the cell 

nuclei, such as radius, texture, and concavity. This 

dataset can be used for developing machine learning 

models to accurately diagnose breast cancer from 

biopsy images. 

 

These datasets can be used for developing and testing 

machine learning and statistical models for human 

disease prediction, which can aid in early detection and 

diagnosis of the respective diseases, ultimately 

improving patient outcomes. 

 

   

Results and Discussion  

 
Fig: Home Screen 

 
Fig: Consultation page 
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Fig: Disease Prediction page 

 

 
Fig: Detected Image Page 

  

VI.  CONCLUSION  

 

In this work, a Detectrozen (Health detection) has 

been proposed for image classification that will work 

in real-life scenarios. The proposed method is based on 

an MVC architecture and the model is responsible for 

the behavioural aspect of the application. Different 

sub-models pertaining to the four diseases (malaria, 

pneumonia, breast cancer, and skin cancer) have been 

designed using a convolutional neural network (CNN). 

Each of the sub-models has its own specific set of 

activation and loss function with a single optimization 

function across all the models. Each of the models has 

been trained separately and the performance of the 

proposed model has been validated using a completely 

separate test set. Among all the four diseases, the model 

for skin cancer recorded the lowest accuracy at 84.6%. 

While classification accuracy to detect the presence of 

parasitized cells of malaria is seen to be highest at 

95.21%. Pneumonia and breast cancer models showed 

performance accuracy of 90.47% and 86.88% 

respectively. Although the computational time of 

training each of the models is high, once the trained 

model is deployed, testing time is minimal. A GUI 

based web application has been designed with the help 

of python Tkinter such that real-life input can be given 

which will be passed on to the trained model for 

prediction. Therefore, the proposed work is suitable to 

be used in real-life situations as it is user friendly and 

cost-effective in nature. 
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