
Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed under
the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use,
distribution, and reproduction in any medium, provided the original work is properly cited

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

ISSN : 2456-3307 (www.ijsrcseit.com)

doi : https://doi.org/10.32628/IJSRCSEIT

661

Secured Erasure Code For Distributed Storage System
*1G Geetha Devi, 2A. Harika, 3M. Kalyani Rao

1Assistant Professor, Department of Information Technology, Bhoj Reddy Engineering College for Women,

Hyderabad, India
2,3Students, Department of Information Technology, Bhoj Reddy Engineering College for Women, Hyderabad,

India

A R T I C L E I N F O

A B S T R A C T

Article History:

Accepted: 10 April 2023

Published: 30 April 2023

 A cloud storage system, consisting of a collection of storage servers,

provides long-term storage services over the Internet. Storing data in a

third party’s cloud system causes serious concern over data confidentiality.

General encryption schemes protect data confidentiality, but also limit the

functionality of the storage system because a few operations are supported

over encrypted data. Constructing a secure storage system that supports

multiple functions is challenging when the storage system is distributed

and has no central authority. We propose a threshold proxy re-encryption

scheme and integrate it with a decentralized erasure code such that a

secure distributed storage system is formulated. The distributed storage

system not only supports secure and robust data storage and retrieval, but

also lets a user forward his data in the storage servers to another user

without retrieving the data back. The main technical contribution is that

the proxy re-encryption scheme supports encoding operations over

encrypted messages as well as forwarding operations over encoded and

encrypted messages. Our method fully integrates encrypting, encoding,

and forwarding. We analyze and suggest suitable parameters for the

number of copies of a message dispatched to storage servers and the

number of storage servers queried by a key server. These parameters allow

more flexible adjustment between the number of storage servers and

robustness.

Keywords: Encryption, Threshold Proxy Re-encryption, Severs, Cloud

storage, Storage sever, Decentralized

Publication Issue

Volume 9, Issue 2

March-April-2023

Page Number

661-665

I. INTRODUCTION

This paper describes Farsite, a serverless distributed file

system that logically functions as a centralized file

server but whose physical realization is dispersed

among a network of untrusted desktop workstations.

Farsite is intended to provide both the benefits of a

central file s access, and reliable data storage) and the

benefits of local desktop file systems (low cost, privacy

from nosy sysadmins, and resistance to geographically

localized faults). Farsite replaces the physical security

of a server in a locked room with the virtual security of

http://ijsrcseit.com/
http://ijsrcseit.com/

Volume 9, Issue 2, March-April-2023 | http://ijsrcseit.com

G Geetha Devi et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., March-April -2023, 9 (2) : 661-665

662

cryptography, randomized replication, and Byzantine

fault-tolerance Farsite is designed to support typical

desktop file-I/O workloads in academic and corporate

environment. Data robustness is a major requirement

for storage systems. There have been many proposals

of storing data over storage servers [1], [2], [3], [4], [5].

One way to provide data robustness is to replicate a

message such that each storage server stores a copy of

the message. It is very robust because the message can

be retrieved as long as one storage server survives.

Another way is to encode a message of k symbols into

a codeword of n symbols by erasure coding. To store a

message, each of its codeword symbols is stored in a

different storage server. A storage server failure

corresponds to an erasure error of the codeword

symbol. As long as the number of failure servers is

under the tolerance threshold of the erasure code, the

message can be recovered from the codeword symbols

stored in the available storage servers by the decoding

process. This provides a tradeoff between the storage

size and the tolerance threshold of failure servers. A

decentralized erasure code is an erasure code that

independently computes each codeword symbol for a

message. Thus, the encoding process for a message can

be split into n parallel tasks of generating codeword

symbols. A decentralized erasure code is suitable for

use in a distributed storage system. After the message

symbols are sent to storage servers, each storage server

independently computes a codeword symbol for the

received message symbols and stores it.

This finishes the encoding and storing process. The

recovery process is the same. Storing data in a third

party’s cloud system causes serious concern on data

confidentiality. In order to provide strong

confidentiality for messages in storage servers, a user

can encrypt messages by a cryptographic method

before applying an erasure code method to encode and

store messages. When he wants to use a message, he

needs to retrieve the codeword symbols from storage

servers, decode them, and then decrypt them by using

cryptographic keys. There are three problems in the

above straightforward integration of encryption and

encoding.

First, the user has to do most computation and the

communication traffic between the user and storage

servers is high. Second, the user has to manage his

cryptographic keys. If the user’s device of storing the

keys is lost or compromised, the security is broken.

Finally, besides data storing and retrieving, it is hard

for storage servers to directly support other functions.

For example, storage servers cannot directly forward a

user’s messages to another one. The owner of messages

has to retrieve, decode, decrypt and then forward them

to another user. In designing Farsite, our goal has been

to harness the collective resources of loosely coupled,

insecure, and unreliable machines to provide logically

centralized, secure, and reliable file-storage service.

Our system protects and preserves file data and

directory metadata primarily through the techniques

of cryptography and replication. Since file data is large

and opaque to the system, the techniques of encryption,

one-way hashing, and raw replication provide means

to ensure its privacy, integrity, and durability,

respectively. By contrast, directory metadata is

relatively small, but it must be comprehensible and

revisable directly by the system; therefore, it is

maintained by Byzantine replicated state-machines [8]

and specialized cryptographic techniques that permit

metadata syntax enforcement without compromising

privacy. One of Farsite’s key design objectives is to

provide the benefits of Byzantine agreement in the

common case, by using signed and dated certificates to

cache the authorization granted through Byzantine

operations. Both Farsite’s intended workload and its

expected machine characteristics are those typically

observed on desktop machines in academic and

corporate settings. These workloads exhibit high access

locality, a low persistent update rate, and a pattern of

read/write sharing that is usually sequential and rarely

concurrent. The expected machine characteristics

include a high fail-stop rate (often just a user turning a

machine off for a while) [6] and a low but significant

rate of malicious or opportunistic subversion. In our

Volume 9, Issue 2, March-April-2023 | http://ijsrcseit.com

G Geetha Devi et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., March-April -2023, 9 (2) : 661-665

663

design, analysis, evaluation, and discussion, we focus

on this environment, but we note that corporate

administrators might choose to supplement Farsite’s

reliability and security by adding user less machines to

the system or even running entirely on machines in

locked rooms. Farsite requires no central

administration beyond that needed to initially

configure a minimal system and to authenticate new

users and machines as they join the system.

Administration is mainly an issue of signing certificates:

Machine certificates bind machines to their public keys;

user certificates bind users to their public keys; and

namespace certificates bind namespace roots to their

managing machines. Beyond initially signing the

namespace certificate and subsequently signing

certificates for new machines and users, no effort is

required from a central administrator.

II. RELATED WORK

Designing a cloud storage system for robustness,

confidentiality and functionality. The proxy re-

encryption scheme supports encoding operations over

encrypted messages as well as forwarding operations

over encoded and encrypted messages. To provide data

robustness is to replicate a message such that each

Storage server stores a copy of the message. It is very

robust because the message can be retrieved as long as

one storage server survives. The number of failure

servers is under the tolerance threshold of the erasure

code, the message can be recovered from the codeword

symbols stored in the available storage servers by the

decoding process. This provides a tradeoff between the

storage size and the tolerance threshold of failure

servers.

A decentralized erasure code is an erasure code that

independently computes each codeword symbol for a

message. A decentralized erasure code is suitable for

use in a distributed storage system. A storage server

failure is modeled as an erasure error of the stored

codeword symbol. We construct a secure cloud storage

system that supports the function of secure data

forwarding by using a threshold proxy re-encryption

scheme. The encryption scheme supports

decentralized erasure codes over encrypted messages

and forwarding operations over encrypted and

encoded messages. Our system is highly distributed

where storage servers independently encode and

forward messages and key servers independently

perform partial decryption.

III. PROPOSED SYSTEM

Our system model consists of users, n storage servers

S1;S2;.....;Sn and m key servers K1;K2;.....;Km. Storage

servers offers storage services and key servers provide

key management services. They work independently.

Our distributed storage system comprises of four

phases: system setup, data storage, data forwarding and

data retrieval. These four phases are described as

follows.

In the system setup phase, the system manager selects

the system parameters and publishes them. Every user

A is assigned a public-secret key pair PUKA; SEKA.

User A distributes his secret key SEKA to key servers

such that each key server Ki holds a key share SEKA.

The key is shared with a threshold t. In data storage

phase, user A encrypts his message M and dispatches it

to storage servers. A message M is decomposed into k

blocks m1;m2;.....;mk and has an identifier ID. User A

encrypts each block mi into cipher text Ci and sends it

to v randomly chosen storage servers. Upon receiving

cipher texts from a user, each storage server linearly

incorporates them with randomly chosen coefficients

into a code word symbol and stores it.

A storage server may receive less than k message blocks

and we assume that all storage servers know the value

k in advance. In the data forwarding phase, A forwards

his encrypted message with identifier ID stored in

storage servers to user B so that B can decrypt the

forwarded message by his secret key, To achieve this,

A uses his secret key (SEKA) and B’s public key (PUKB)

to compute a re-encryption key RKID A!B and then

sends this key to all storage servers.

Upon receiving the key, each storage server uses the

re-encryption key to re-encrypt its code word symbol.

The re-encrypted code word symbol is the

combination of cipher texts under B’s public key PUKB.

Volume 9, Issue 2, March-April-2023 | http://ijsrcseit.com

G Geetha Devi et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., March-April -2023, 9 (2) : 661-665

664

To distinguish re-encrypted code word symbols from

untouched ones, we call them original code word

symbols and re-encrypted code word symbols,

respectively.

In the data retrieval phase, user A requests to fetch a

message from storage servers. The message of user is

either stored by him or forwarded to him. User A sends

a retrieval request to key servers. Upon receiving the

request and executing a appropriate authentication

process with user A, each key server Ki requests

randomly chosen storage servers to get codeword

symbols and performs partial decryption on the

received codeword symbols by using the key share

SEKA;i. Finally, user A combines the partially

decrypted codeword symbols to obtain the original

message M. When a storage server fails, a new one is

added. The new storage server queries k available

storage servers, linearly combines the received code

word symbols as a new one and stores it. The system is

then recovered.

Fig 1: Data Forwarding

Fig 2: Data Retrieval

IV. RESULTS AND DISCUSSION

Many features like De-duplication, Compression, Thin

Provisioning, Snapshots, Clones and RAID were

implemented to make storage more efficient. In case of

RAID, disk drives have become larger but their

reliability has stayed the same. Recovering a failed disc

takes more time; it is reconstructed using RAID parity

information. There is also increasing probability of a

second disk failure or other errors before

reconstruction can complete. It’s not uncommon for a

4TB disk to take days to rebuild. Implementation of

Erasure Coding overcomes works by creating a

mathematical function around a data set such that if a

member of the data set is lost, the lost data can be

recovered easily from the rest of the members of the

set. Common industry uses Erasure coding for storage

efficiency.

Fig 3: Graph

V. CONCLUSION AND FUTURE WORK

In this paper, we consider a cloud storage system

consists of storage servers and key servers. We

integrate a newly proposed threshold proxy re-

encryption scheme and decentralized erasure codes.

The threshold proxy reencryption scheme enhances

encoding, forwarding, and partial decryption

operations in a distributed way. To decrypt a message

that are encrypted and encoded to codeword symbols,

each key server only has to partially decrypt two

codeword symbols in our system. By using the

threshold proxy re-encryption scheme, we present a

secure cloud storage system that provides secure data

storage by erasure code mechanism with secure data

forwarding functionality. Each storage server

independently performs encoding and re-encryption

Volume 9, Issue 2, March-April-2023 | http://ijsrcseit.com

G Geetha Devi et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., March-April -2023, 9 (2) : 661-665

665

and partial decryption is performed by independent

key servers. Our storage system and some newly

proposed content addressable file systems and storage

system are highly compatible. The storage servers

which are storage nodes in a content addressable

storage system are for storing content addressable

blocks. Our key servers act as access nodes for

providing a front-end layer such as traditional file

system interface. We further enhance more flexibility

in the implementation of Erasure Coding mechanism.

VI. REFERENCES

[1]. J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D.

Geels, R. Gumadi, S. Rhea, H. Weatherspoon, W.

Weimer, C. Wells and B. Zhao,” Oceanstore: An

Architecture for Global-Scale Persistent Storage,”

Proc. NinthInt’ l Conf. Architectural support for

programming languages and operating

systems(ASPLOS), pp.190-201,2000.

[2]. P. Druschel and A. Rowstron,”PAST: A Large-Scale,

Persistent Peer-to-Peer Storage Utility,” Proc.

Eighth Workshop Hottopics in Operating System

(HotOS VIII), pp. 75-80,2001.

[3]. Adya, W. J. Bolosky, M. Castro, G. Cermak, R.

Chaiken, J. R. Douceur, J. Howell, J. R. Lorch, M.

Theimer, and R.Wattenhofer,” Farsite:Federated,

Available, and Reliable Storage for an Incompletely

Trusted Environment,” Proc.Fifth Symp. Operating

[4]. Haeberlen, A. Mislove, and P. Druschel, “Glacier:

HighlyDurable, Decentralized Storage Despite

Massive Correlated Failures,”Proc. Second

Symp.Networked Systems Design and

implementation(NSDI),pp.143-158,2005.

[5]. Z.Wilcox-O’Hearn and B.Warner, “Tahoe: The

LeastAuthority Filesystem.”Proc. Fourth ACM Int’l

Workshop Storage Security and Survivability

(StorageSS), pp.21-26,2008.

[6]. H.-Y.Lin and W.-G.Tzeng, “A Secure Decentralized

Erasure Code for Distributed Network Storage,”

IEEE Trans. Parallel and Distributed Systems, vol.21,

no. 11, pp. 1586-1594, Nov.2010.

[7]. D. R. Brownbridge, L. F. Marshall, and B. Randell,

”The Newcastle Connection or Unixes of the World

Unite!,”Software Practice and Experience, vol. 12,

no. 12,pp. 1147-1162,1982.

[8]. R.Sandberg, D.Goldberg, S.Kleiman, D.Walsh, and

B.Lyon,”Design and Implementation of the Sun

Network Filesystem,” Proc.USENIX Assoc.

Conf.1985.

[9]. M.Kallahalla, E.Riedel, R.Swaminathan, Q.Wang,

and K.Fu, “Plutus: Scalable Secure File Sharing on

Untrusted Storage.” Proc. Second USENIX Conf. File

and Storage Technologies(FAST),pp. 29-42,2003.

[10]. S.C.Rhea, P.R.Eaton, D.Geels, H.Weatherspoon,

B.Y.Zhao, and J.Kubiatowicz, “Pond: The

Oceanstore Prototype,” Proc.Second USENIX Conf,

File and storage Technologies(FAST). Pp. 1-14,2003.

[11]. R.Bhagwan, K.Tati, Y.-C.Cheng, S.Savage, and

G.M.Voelker,”Total Recall: System Support for

Automated Availability Management,” Proc. First

Symp. Networked Systems Design and

Implementation (NSDI), pp. 337-350,2004.

[12]. A. G. Dimakis, V. Prabhakaran, and

K.Ramchandran, “Ubiquitous Access to Distributed

Data in Large-Scale Sensor Networks through

Decentralized Erasure Codes,” Proc. Fourth Int’l

Symp. Information Processing in Sensor Networks

(IPSN), pp. 111-117,2005.

[13]. A. G. Dimakis, V. Prabhakaran, and K.

Ramchandran, “Decentralized Erasure codes

Cite this article as :

G Geetha Devi, A. Harika, M. Kalyani Rao, "Secured

Erasure Code For Distributed Storage System",

International Journal of Scientific Research in

Computer Science, Engineering and Information

Technology (IJSRCSEIT), ISSN : 2456-3307, Volume 9,

Issue 2, pp.661-665, March-April-2023.

