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 Traffic Prediction has become very essential now a days. It is helpful to manage 

the traffic in some major cities. In reality, the traffic data generated contains 

some missing values, due to communication errors, sensor faults, etc. Since the 

traffic data is Spatial-Temporal, which is very complex, it becomes difficult to 

handle these situations. So, the authors propose a Graph Convolution Network-

based model to predict future traffic with missing values. The missing value 

processing and traffic prediction are processed in one step. The model considers 

both Spatial-Temporal data and the history of the particular junction traffic. The 

computational time complexity of the network is optimized for predicting the 

traffic. 
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I. INTRODUCTION 

 

Traffic prediction plays a crucial role in transportation 

planning, traffic management, and urban development. 

With the increasing availability of transportation data 

and the advancement of machine learning techniques, 

Graph Convolutional Networks (GCNs) have emerged 

as a powerful tool for traffic prediction tasks. GCNs are 

a type of neural network that can effectively model 

data with graph structures, making them well-suited 

for traffic prediction tasks that involve complex spatial 

relationships and interactions. Several deep learning 

models commonly used in traffic prediction projects 

incorporate Graph Convolutional Networks (GCNs). 

Here are a few notable examples:  Graph Convolutional 

Recurrent Neural Network (GCRNN): GCRNN 

combines the power of GCNs and recurrent neural 

networks (RNNs) to capture both spatial and temporal 

dependencies in traffic data. It incorporates GCNs to 

model spatial relationships and RNNs to capture 

temporal patterns, enabling accurate traffic prediction. 

 

Graph WaveNet: Graph WaveNet is inspired by the 

WaveNet architecture and extends it to graph-

structured data. It utilizes dilated convolutions to 

capture both local and global dependencies within the 
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traffic network. Graph WaveNet effectively captures 

long-range dependencies and produces accurate 

predictions by stacking multiple dilated convolutions. 

Graph WaveNet effectively captures long-range 

dependencies and produces accurate predictions.Graph 

Attention Networks (GAT): GAT is a graph neural 

network that utilizes attention mechanisms to assign 

weights to different traffic graph nodes. This allows the 

model to focus on relevant nodes and capture 

important spatial relationships. GAT has been applied 

to traffic prediction tasks and achieved competitive 

results. Spatial-Temporal Graph Convolutional 

Networks (STGCN): STGCN is designed specifically for 

traffic prediction. It incorporates GCNs to model 

spatial dependencies and temporal convolutional 

layers to capture temporal patterns. By combining both 

spatial and temporal information, STGCN effectively 

predicts traffic flow at different locations and time 

intervals. 

 

Graph LSTM: Graph LSTM is a variant of the 

traditional LSTM architecture that is modified to work 

with graph-structured data. It employs message passing 

between nodes in the graph to capture spatial 

dependencies and uses LSTM cells to model temporal 

dynamics. Graph LSTM has been successfully applied 

to traffic prediction tasks.These models are just a few 

examples of the deep learning architectures used in 

traffic prediction projects that leverage GCNs. 

Researchers and practitioners continue to explore and 

develop new models that can better capture the 

complexities of traffic data and improve prediction 

accuracy. GCNs are used in traffic prediction projects 

for several reasons: Capturing Spatial Dependencies: 

Traffic networks exhibit complex spatial relationships, 

where the flow of traffic at one location is influenced 

by neighboring locations. GCNs are well-suited for 

modeling such spatial dependencies by leveraging the 

graph structure of the traffic network. They can 

propagate information between connected nodes and 

capture the influence of neighboring locations on the 

traffic conditions at a given location.  

Handling Irregular and Non-Euclidean Data: Traffic 

networks are typically irregular and non-Euclidean, as 

they consist of nodes (e.g., intersections) connected by 

edges (e.g., roads). Traditional neural networks assume 

grid-like or regular structures, which may not capture 

the inherent characteristics of traffic networks. GCNs, 

on the other hand, can handle graph-structured data 

and effectively model the irregular topology of traffic 

networks.Learning Node Representations: GCNs learn 

meaningful representations for each node in the traffic 

network. By propagating information through the 

graph, GCNs can capture each node's local and global 

characteristics, such as traffic flow patterns, road 

characteristics, or nearby amenities. These learned 

representations can then be used to predict traffic 

conditions at different locations in the 

network.Integration with Temporal Modeling: Traffic 

prediction requires capturing temporal dynamics and 

trends. GCNs can be combined with recurrent or 

temporal modeling techniques, such as LSTM or 

convolutional layers, to model the temporal aspects of 

traffic data. This integration allows the model to 

capture both spatial and temporal dependencies, 

leading to accurate traffic predictions. 

 

Scalability and Efficiency: GCNs can handle large-scale 

traffic networks efficiently. They leverage localized 

information through message passing and shared 

weights, which reduces the computational complexity 

compared to fully connected neural networks. This 

makes GCNs suitable for processing large-scale traffic 

data, enabling real-time or near-real-time traffic 

prediction.By utilizing GCNs in traffic prediction 

projects, researchers and practitioners can effectively 

model spatial dependencies, handle irregular data 

structures, capture temporal dynamics, and achieve 

accurate predictions in transportation systems. GCNs 

offer a powerful framework for analyzing and 

predicting traffic patterns, which can inform traffic 

management strategies, optimize transportation 

infrastructure, and improve overall urban mobility. 

II. LITERATURE REVIEW 
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In recent years, the use of graph convolutional 

networks (GCNs) for traffic prediction has gained 

significant attention and has shown great potential. 

Several novel models have been proposed, leveraging 

the strengths of GCNs to capture spatial dependencies 

between traffic nodes in a graph. These models have 

demonstrated their superiority over traditional 

methods such as SVR, and LSTM in terms of prediction 

accuracy and performance.The advantage of GCNs lies 

in their ability to effectively model the spatial 

relationships between traffic nodes. Unlike traditional 

methods that treat traffic nodes as independent entities, 

GCNs take into account the connectivity and 

interactions between nodes. By considering the graph 

structure of the traffic network, GCNs can capture the 

influence and dependencies among nodes, which are 

crucial for accurate traffic prediction. 

 

One approach that has been widely explored is the 

combination of GCNs with recurrent neural networks 

(RNNs), such as LSTM. This integration allows the 

models to capture both spatial and temporal 

dependencies in traffic data. The GCN component 

learns the spatial relationships between nodes, while 

the LSTM component captures the temporal patterns 

and dynamics. This combination proves to be effective 

in capturing the complex nature of traffic data, 

resulting in improved prediction accuracy. 

 

Additionally, the introduction of attention 

mechanisms in GCNs, such as graph attention 

networks (GATs), has further enhanced the 

performance of traffic prediction models. Attention 

mechanisms allow the models to dynamically assign 

importance to different nodes in the traffic graph, 

enabling them to focus on relevant and influential 

nodes for prediction. This attention-based approach 

has shown promising results in capturing the varying 

degrees of impact that different nodes have on the 

overall traffic patterns. 

Furthermore, recent models have explored the use of 

advanced architectures like Graph WaveNet, which 

combines the strengths of GCNs and WaveNet 

architecture. WaveNet, originally proposed for speech 

generation, is a deep generative model capable of 

capturing long-term dependencies. By incorporating a 

GCN within the WaveNet framework, the Graph 

WaveNet model achieves powerful representation 

learning of both spatial and temporal dependencies, 

leading to improved traffic prediction accuracy. 

 

It is important to note that while GCNs have shown 

promising results for traffic prediction, there are still 

challenges and areas for improvement. The scalability 

of GCNs to large-scale traffic networks, the 

incorporation of external factors (such as weather 

conditions or events) into the models, and the 

robustness of noisy or incomplete data are among the 

ongoing research directions.In conclusion, the 

utilization of GCNs for traffic prediction has 

demonstrated significant advancements in recent years. 

The ability of GCNs to model spatial dependencies in 

traffic networks, combined with recurrent or 

generative architectures, has led to improved 

prediction accuracy compared to traditional methods. 

Continued research in this area holds great potential 

for further enhancing our understanding and 

capabilities in predicting and managing traffic 

congestion effectively. 

 

 

III.  PROBLEM FORMULATION 

 

Traffic data can be represented as multivariate time 

series on a traffic network, like a set of roads and 

junctions. Let the traffic network G = {V, E}, where V 

= {V1, V2, V3, … Vn} is a set of N traffic nodes, which 

can be known as the junctions, and E = {E1, E2, E3, … 

En} denotes set of E edges connecting the nodes, which 

denotes the roads connecting the junctions. Each node 

or a value of an observation contains some F features of 

the traffic like vehicle flow, the average speed of the 
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vehicle, occupancy of the roads, etc. A mask sequence 

M is defined to denote the missing value using a 

Boolean value 0 or 1. Mt = (mt1, mt2, … mtn). Value of 

mti = 0 if a value is missing else, it will be 1. The model 

takes the set of traffic features as input and predicts the 

traffic for the future. 

 

IV.  METHODOLOGY 

4.1. Model Architecture 

This model contains a Multi-scale Memory module, an 

Output Forecasting module, and l – Spatial-Temporal 

(ST) blocks. Each Spatial-Temporal block contains 

Temporal Convolution, Dynamic Graph Construction, 

and Dynamic Graph Convolution. The output 

forecasting module uses the skip connections on the 

output of the final Spatial-Temporal block and the 

hidden states after each temporal convolution layer 

and the final output is predicted. 

 

Figure 1: Model Architecture [1] 

4.2. Multi-Scale Memory Network 

The multi-scale memory network module uses 

historical data, like hourly, daily, and weekly data, and 

combines them to form an input and uses this input and 

local features like Empirical temporal mean, empirical 

spatial mean, nearest spatial observation, nearest 

temporal observations to form Enriched traffic 

embeddings 

 

Figure 2: Multiscale Memory Module [1] 

4.2.1 Local Features 

4.2.1.1 Empirical Temporal Mean 

The mean of previous L samples can be useful for 

predicting the current value since the mean denotes 

the average of all the samples, hence if it is missing, a 

better idea would be to take a mean of the last L 

samples. Hence, for every missing sample, we take the 

empirical temporal mean using the last L Samples. 

�̅�𝑡
𝑖 = ∑ 𝑚𝑙

𝑖𝑥𝑙
𝑖𝑡−1

𝑙=𝑡−𝐿
/ ∑ 𝑚𝑙

𝑖𝑡−1
𝑙=𝑡−1   

4.2.1.2 Last Temporal Observation 

Since the value is missing, it will be somewhat 

dependent on the last occurring value, hence we 

consider the last temporal observation. 

4.2.1.3 Empirical Spatial Mean 

The nearby nodes can affect the traffic in a great way. 

For example, if 2 junctions are adjacent to each other, 

the traffic at both junctions could be similar (even after 

some time). Hence we take the empirical spatial mean. 

It is calculated using S nearby samples. 

�̅̅�𝑖𝑡 = ∑ 𝑚𝑡
𝑠𝑥𝑡

𝑠 / ∑ 𝑚𝑖
𝑠

𝑆

𝑠=1

𝑆

𝑠=1
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4.2.1.4 Nearest Spatial Observation 

Particularly in a traffic graph where the surrounding 

nodes share comparable traffic conditions, a graph 

node's state generally stays similar to that of its 

neighbors. Using all 4 features, we calculate local 

features as 

𝑧𝑡
𝑖 = 𝑚𝑡

𝑖 𝑥𝑡
𝑖 + (1 − 𝑚𝑡

𝑖 )(𝛾𝑡�̇�𝑡
𝑖 + 𝛾𝑠�̈�𝑡

𝑖 + (1 − 𝛾𝑡)�̅�𝑡
𝑖 + (1

− 𝛾𝑠)�̅̅�𝑖𝑡) 

Where zti denotes the local features, and mi denotes the 

mask sequence, and since the missing values have mask 

value 0, it would be dependent on the local features, 

else it would be dependent on the value itself. 

Now, the query will be constructed, using the Local 

features, as 

𝑞𝑡 = 𝑍𝑡𝑊𝑞 + 𝑏𝑞 ∈ 𝑅𝑁×𝑑 

Input Xi, is generated by taking hourly, daily, and 

monthly data, and concatenating them to form Xi. 

{𝑋𝑖} = [𝑋ℎ‖𝑋𝑑‖𝑋𝑤] 

These inputs are embedded into input memory vectors, 

and output memory vectors. 

𝑚𝑖 = 𝑋𝑖𝑊𝑚 + 𝑏𝑚 ∈ 𝑅𝑁×𝑑 

𝑐𝑖 = 𝑋𝑖𝑊𝑐 + 𝑏𝑐 ∈ 𝑅𝑁×𝑑 

 

Building an enriched traffic embedding requires 

careful consideration of global historical patterns. 

Hourly, daily, and weekly recurring portions of input. 

The probsparse attention method, which uses the top u 

queries instead of all the queries for efficient 

calculation of the attention score [2], is used to 

determine the attention score between the query (q) 

and memory (mi). The resemblance of each historical 

observation to the inquiry is indicated by the attention 

score. The response vector from memory is then 

calculated by adding the output memory vectors and 

weighting them according to the input's attention 

score. 

 

𝑜𝑡 = ∑ 𝑐𝑖𝑝𝑡 , 𝑖 ∈ 𝑅𝑁×𝑑
(𝑛𝑑+𝑛𝑤+𝑛ℎ)𝑇

𝑖=1
 

 

After computation of this output, we may combine 

local spatiotemporal data with global 

multiscale information to produce enriched traffic 

embeddings: 

 

ℎ𝑡 = (𝑞𝑡‖𝑜𝑡)𝑊ℎ + 𝑏ℎ ∈ 𝑅𝑁×𝑑 

4.3 Dynamic Graph Construction 

By utilising the parameters, such as the distance 

between the cities, etc., a pre-defined graph is formed. 

However, the preconfigured graph won't have much of 

an impact. Dynamic graphs are created with rich traffic 

embeddings at each spatiotemporal block, which 

allows effective capture of spatial interactions between 

nodes while taking into account missing values and the 

type of data in traffic data. 

 
Figure 3: Dynamic Graph Construction [1] 

Given ht, the traffic embeddings at time t, the dynamic 

filters will be generated as 

𝐹𝑡 = ∑ 𝑃𝑘ℎ𝑡𝑊𝑘

𝐾

𝑘=0
∈ 𝑅𝑁×𝑑 

 

Where,  𝑃𝑘 = 𝐴𝐺/𝑟𝑜𝑤𝑠𝑢𝑚(𝐴𝐺) 

AG is the Adjacency Matrix. 

Static node embeddings refer to fixed representations 

of nodes in a graph, where each node is assigned a 

numerical vector or embedding. These embeddings 

capture the structural and/or semantic information 

about the nodes in the graph.  

 

There are various methods to generate static node 

embeddings, some of which include Node2Vec [8], etc. 
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Now, two random static node embeddings, 

corresponding to source and target vectors is taken, and 

the dynamic filters are applied on the embeddings. 

 

�̂�𝑡
1 = tanh(∝ (𝐹𝑡

1 ⊙ 𝐸1)) ∈ 𝑅𝑁×𝑑 

�̂�𝑡
2 = tanh(∝ (𝐹𝑡

1 ⊙ 𝐸2)) ∈ 𝑅𝑁×𝑑 

Where  ⊙ denotes hadamard product, which ensures 

combining of both static and dynamic features of the 

traffic data. 

Finally, the dynamic graph is constructed using these 

embeddings, as 

𝐴𝑡 = 𝑅𝑒𝐿𝑈(tanh(∝ (�̂�𝑡
1�̂�𝑡

2𝑇
− �̂�𝑡

2�̂�𝑡
1𝑇

))) ∈ 𝑅𝑁×𝑁 

4.4 Temporal Convolution Module 

 

High level temporal information can be extracted using 

the Temporal Convolution Module's numerous dilated 

convolution layers. We adopt the temporal 

convolution module over the enhanced traffic 

embeddings while taking into account the temporal 

dynamic data in the traffic. Hi. To output the temporal 

information, one dilated convolution block is followed 

by a tangent hyperbolic activation function. A sigmoid 

activation function serves as a gate to the other block, 

determining the percentage of information that can 

travel to the following module. Non-linearity is 

incorporated into the architecture through sigmoid 

gates as well. 

 
Figure 4: Temporal Convolution Module [1] 

Given the traffic Embeddings Hi, a filter F, the dilated 

convolution operation is 

𝐻𝑖 ⋆ 𝐹𝑖(𝑡) = ∑ 𝐹𝑖(𝑠)𝐻𝑖(𝑡 − 𝑑 × 𝑠) ∈ 𝑅𝑁×𝑑×𝑇𝑖+1

𝐾

𝑠=0
 

There are 2 Temporal Convolution Blocks – 1 followed 

by a tangent hyperbolic function, and other with 

sigmoid function, as a gate to ratio of information that 

can pass to next module. Output of the TCN Module 

will be 

ℎ𝑖 = tanh(𝑊𝐹1 ⋆ 𝐻𝑖) ⊙ 𝜎(𝑊𝐹2 ⋆ 𝐻𝑖) ∈ 𝑅𝑁×𝑑×𝑇𝑖+1 

 

4.5 Dynamic Graph Convolution 

This is applied on output of temporal convolution 

module. Temporal features aggregate spatial 

information according to dynamic graphs generated. 

Vanishing Gradient problem will be taken care of by 

using Residual Connection. At each time step, the 

graph convolution will produce the aggregated spatial 

data. 

𝐻𝑖
′(𝑡) = ∑ (𝐴𝐷𝑖

(𝑡))
𝑘𝐾

𝑘=0
ℎ𝑖(𝑡)𝑊𝑘 ∈ 𝑅𝑁×𝑑 

Residual connections are adopted to avoid the 

vanishing gradient problem.  

The input of (i+1)th ST-Block is : 

𝐻𝑖+1(𝑡) = 𝐻𝑖(𝑡) + 𝐻𝑖
′(𝑡) 

4.6 Output Forecasting Module 

The output hi from the middle of the Temporal 

Convolution Module, and the last output Hi will be 

considered for predicting the output.  

𝑂 = (ℎ0𝑊𝑠
0 + 𝑏𝑠

0)‖ … ‖(ℎ𝑖𝑊𝑠
𝑖 + 𝑏𝑠

𝑖)‖ … ‖(ℎ𝑙−1𝑊𝑠
𝑙−1

+ 𝑏𝑠
𝑙−1)‖(ℎ𝑙𝑊𝑠

𝑙 + 𝑏𝑠
𝑙) 

Using this, the final output is generated. 

�̂� = (𝑅𝑒𝐿𝑈(𝑂𝑊𝑓𝑐
1 + 𝑏𝑓𝑐

1 )) 𝑊𝑓𝑐
2 + 𝑏𝑓𝑐

2 ∈ 𝑅𝑁×𝑇𝑝 

The output will be predicted by outputs of the 

Temporal Convolution Module, and the last Spatial-

Temporal Layer Output. Skip connections are added in 

each hidden layer. All the outputs will be concatenated 

to get the final output 
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V. EXPERIMENTS 

 

5.1 Datasets 

 

We perform experiments on the public traffic dataset 

METR-LA [4]. The METR-LA dataset contains values 

from 207 sensors, in 5 minutes intervals, which 

contains the average traffic speed of the traffic at the 

moment.  

 

The METR-LA dataset is a widely recognized and 

extensively used traffic forecasting dataset that 

contains valuable traffic flow information. Collected 

from loop detectors installed throughout the Los 

Angeles County area, the dataset offers a 

comprehensive view of traffic patterns. With a 

temporal resolution of 5 minutes, it provides detailed 

historical traffic flow measurements and timestamps, 

enabling researchers to analyze and predict traffic 

conditions at various time intervals. Covering 

highways and arterial roads, the dataset encompasses 

over 200 loop detectors strategically placed across the 

road network. Each data point in the dataset includes 

attributes such as traffic flow measurements, 

occupancy, and speed, shedding light on congestion 

levels and traffic behavior. 

To support model development and evaluation, the 

METR-LA dataset is typically split into training, 

validation, and testing sets. Researchers and 

practitioners in transportation and traffic engineering 

utilize this dataset to build and assess traffic prediction 

models, ultimately aiding in traffic management and 

transportation planning endeavors. The dataset can be 

accessed from its official repository [4], providing 

preprocessed data suitable for training and evaluating 

traffic forecasting algorithms. 

5.2 Preprocessing 

The preprocessed METR-LA dataset is divided into 70% 

training, 10% validation, and 20% testing. The missing 

values are introduced into the data by using 2 methods 

random, and mixed methods, with a specified miss 

ratio, like 10%, 20%, 60%, etc. 

5.3 Evaluation Metrics 

Three metrics are mean absolute error (MAE), root 

mean square error (RMSE), and mean absolute 

percentage error (MAPE) used to assess the 

correctness of each model. 

𝑀𝐴𝐸(𝑌, �̂�) =
1

𝑁𝑇𝑝
𝛴𝑛=1

𝑁 𝛴𝑡=1

𝑇𝑝 |�̂�𝑡
𝑛 − 𝑌𝑡

𝑛| 

𝑅𝑀𝑆𝐸(𝑌, �̂�) = √
1

𝑁𝑇𝑝
𝛴𝑛=1

𝑁 𝛴𝑡=1

𝑇𝑝 |�̂�𝑡
𝑛 − 𝑌𝑡

𝑛|2 

𝑀𝐴𝑃𝐸(𝑌, �̂�) =
1

𝑁𝑇𝑝
𝛴𝑛=1

𝑁 𝛴𝑡=1

𝑇𝑝 |
�̂�𝑡

𝑛 − 𝑌𝑡
𝑛

𝑌𝑡
𝑛 | 

 

5.4 Execution and Parameter Settings 

 

A learning rate of 0.001 is used to train the Graph 

Convolution Networks with Modified Attention Score 

Calculation model. L and S are set to 12 and 5 in the 

multi-scale memory module, respectively. nh, nd, and 

nw are all set to 2. The Temporal Convolution module 

has two dilated layers with a dilation factor of d [1, 2] 

in four ST blocks. The value of d, the embedding 

dimension, is 32. 

 

VI.  RESULTS 

 

When the model is trained by given the input, the 

following output is generated. 

 

Horizon 
MAE RMSE MAPE 

1 20.91 22.89 0.4801 

2 34. 90 36.61 0.7250 

3 18.82 20.70 0.4375 

4 17.53 20.09 0.4167 

5 30.01 31.85 0.6532 

6 12.38 14.92 0.3016 
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7 17.37 19.58 0.4004 

8 25.71 27.40 0.5671 

9 16.48 19.59 0.3935 

10 19.40 21.61 0.4503 

11 28.20 30.56 0.6323 

12 9.86 13.34 0.2765 

Average 20.96 19.75 0.45 

 

Table 1: Generated Evaluation Metrics when trained 

on Dataset with Missing Ratio 60% 

 

VII. SUMMARY AND CONCLUSION 

 

When this model Graph Convolution Network with 

modified attention score calculation is trained on the 

METR-LA dataset, it has achieved better accuracy than 

existing model GCN-M. This project successfully 

addressed the challenge of traffic prediction by 

leveraging graph convolutional networks. 

 

The utilization of the graph structure of transportation 

networks through GCNs proved to be a valuable 

approach for capturing spatial and temporal 

dependencies in traffic data. This is important in 

forecasting the traffic status for the future and helps in 

efficient management and control of the traffic in any 

city. 

 

This is also useful for preparing the city for the future. 

Overall, this project contributes to the growing body of 

research on traffic prediction and underscores the 

potential of graph convolutional networks as a 

powerful tool for understanding and forecasting traffic 

patterns. The findings pave the way for further 

advancements in traffic prediction methodologies and 

offer valuable insights for the development of 

intelligent transportation systems. 
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