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 This paper proposed an enhanced Top-k query processing in a real time 

distributed database system. The system employs a Particle Swarm Optimizer 

(PSO) based Geno-Generative iSWAN Model technique that enhances and 

allows multi-task concurrent query processing in a real time co-simulation data 

acquisition platform and as part of refinement to an existing Top-k query 

processing Technique. In this paper, the proposed system is compared for 

efficiency with the Top-K Query Algorithm, which is emerging as an alternative 

to more conventional technique for real time query processing in distributed 

databases. Dynamic simulations were performed with a real time small testbed 

comprising of physical and non-physical devices to test and evaluate the 

performance and efficiency of the two systems. Considering the estimated and 

expected temperatures, the result of simulation study proves that the Intelligent 

Swarming Network (iSWAN) Geno-Generative Model is more preferred over 

Top-K Query Algorithm due to its 70% accuracy over the Top-K Model, which 

reported a lower accuracy level of 40%. 
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I. INTRODUCTION 

 

The Geno-Generative Model for improving query 

processing in information management systems is a 

recent approach that promises better query plans. A 

good query plan is needed for an improved 

performance of big data in real world environments. 

Queried data in real-time industrial environments is 

typically streaming and unstructured in nature. The 

data is typically obtained sequentially over time. In 

most parts of the world, data is conventionally 

obtained by manual entries; though some technical 

data is obtained using specialized metering, but this 

form of entry is rarely automated. The conversion of 

useful data into information is a task mostly done by 

trained experts. Information is only useful if it can be 

converted into diverse beneficial forms, and in a timely 

manner. Speech synthesis from text, audio-visual 

systemic converters, and sensor-aware acquisitioned 

systems can result in very robust information systems 

[1].  The ultimate aim of any information system is to 

obtain relevant messages or codes from noisy or 

http://ijsrcseit.com/
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contaminated data distributions. The origins of 

information theory could be traced to the works of 

Shannon [2] and has deep probabilistic roots. Geno--

Generative models is inspired by k-Nearest Neighbor 

(KNN), and two core machine learning disciplines– 

Genetic Algorithms and Generative Models [3]. While 

Genetic Algorithms is a biological motivated model 

based on human genetics and evolution, generative 

models are basically statistically driven models used to 

probabilistically define a data generating process 

which may be stochastic or not.  The study involves 

querying of large and unstructured database system in 

an organization. It is use in an ambiguous query and 

also incorporating preferences. In particular, this 

research work seeks to proffer a more optimal solution 

to the Top-k query response approach proposed in [4] 

by using the concept of intelligent swarming particle 

networking (iSWAN) in a distributed database context.  

It also compared the efficiency of Top-K Query 

Algorithm, which is emerging as an alternative to more 

conventional technique for real time query processing 

in distributed databases with an Intelligent Swarming 

Network (iSWAN) Geno-Generative Algorithm.  

 

II. REVIEW OF RELATED LITERATURES 

 

In statistical classification, including machine learning, 

two main approaches are called the generative 

approach and the discriminative approach. These 

compute classifiers by different approaches, differing 

in the degree of statistical modelling. Terminology is 

inconsistent, but three major types can be 

distinguished, following [5].  A discriminative model is 

a model of the conditional probability of the target Y, 

given an observation X. Classifiers computed without 

using a probability model are also referred to, loosely 

as "discriminative". The distinction between these last 

two classes is not consistently made; Jebara refers to 

these three classes as generative learning, conditional 

learning, and discriminative learning [6]. He 

distinguished two classes, calling them generative 

classifiers (joint distribution) and discriminative 

classifiers (conditional distribution or no distribution. 

The education sector in Nigeria has experienced a huge 

growth especially in the area of available data. 

Furthermore, the emergence of social networking has 

continued to boost the growth of data usage in Tertiary 

Institutions in Nigeria. However, this trend of growth 

comes with the problem of big data management. The 

study also views big data as the joining of data 

management concepts that Tertiary Institutions store, 

organize, manage and manipulate large amount of 

datasets and still be efficient in speed, so as to gain the 

right insights. Data Mining can also be described as the 

process of extracting vital information from 

voluminous data [7]. Big data technologies have great 

impacts on scientific discoveries and value creation. 

Structured (numerical) and unstructured (textual) are 

two main types of data forms in big data[8].  Intelligent 

Swarming Networks (iSWANs) present an alternative 

generative model solution that mimics the functions of 

group behavior found in many natural life systems e.g. 

social insects and animals. The idea behind the iSWAN 

approach is to use the principle of evolution basing on 

exploitation and exploration to model the solution. In 

this thesis, the iSWAN approach based on Particle 

Swarm Optimizer (PSO) is described and applied in 

finding an optimal Geno-Generative Query processing 

solution. PSO is a very useful alternative strategy for 

solving optimization problems. Idea of swarm particles 

was first introduced by Kennedy and Eberhart[9]. The 

randomization step is typically influenced by 

generative updates of a weighted velocity vector in 

conjunction with randomized position states – the 

states being a sum of the difference between random 

previous best position states with previous (initial) 

states at both local and global levels[10].  

 

Typically, the operations that follow are Newtonian 

and may be described by a velocity update calculation 

as in (1): 

 



Volume 9, Issue 3, May-June-2023 | http://ijsrcseit.com 

Nlerum Promise Anebo  et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., May-June-2023, 9 (3) : 581-594 

 

 

 

 
583 

( ) ( ) ( )( )
( ) ( )( ) ( ) )1(22

11

oldposoldpbestrandcoldpos

oldpbestrandcoldvelwnewvel

ijijij

ijijij

−+−

+=

      

New positions are updated by adding the velocity 

updates obtained in (1) to its 

old position as in (2): 

( ) ( ) ( )newveloldposnewpos ijijij +=         (2)

  

where, 

1rand , 
2rand = random number between 0 and 1 

w = inertia weight 

1c = coefficient of self-recognition 

2c = social coefficient 

1c , 
2c = 2. 

Kangseok in 2010[11], adopted the architecture for 

scalable, distributed database system built on multicore 

servers. The author presented performance results for 

shape similarity queries, which is extremely, time 

intensive with traditional architectures. According to 

the work; many scientific fields routinely generate 

huge datasets. In many cases, these datasets are not 

static but rapidly grow in size. Patrick in [12] proposed 

a query processing based on compressed intermediates. 

The author presented a balanced query processing 

based on compressed intermediates to improve query 

performance. Furthermore, he provided an overview 

of the important research challenges on the way to the 

objectives of the research. The author did a good job; 

however, he could not implement the discussed issue 

to a model for proper clarification and understanding. 

 

III.  MATERIALS AND METHODS 

 

In the quest to developing an effective query system 

application, the authors employed an iterative object 

oriented design software engineering methodology 

known as Rational Unified Process (RUP). Rational 

Unified Process is a software Engineering process that 

provides a disciplined approach to assigning tasks and 

responsibilities within a development organization. It 

is an iterative software development process 

framework created by the Rational Software 

Corporation. The RUP aims at ensuring the production 

of high-quality software that meets the needs of its end 

users. A RUP activity creates and maintains models and 

emphasizes the development and maintenance of 

models-semantically [13]. RUP is a guide on to 

effectively use the Unified Modelling Language 

(UML)[14].  

 

3.1 TOP-K QUERY PROCESSING ALGORITHM 

 

Top-k query processing algorithms are applied in 

various fields, such as pervasive systems, contet-aware 

systems, e-commerce, and web search engine [4]. The 

existing system as proposed in Hyeong-Jin et al 

(2022)[4] is based on a centralized Collaborative Top-k 

query filtering for wireless sensor networks (see Figure 

1). 

 
Figure 1: Top-K Query Processing Architecture  

 

The model comprises child nodes and a parent node 

and may occur in two-topologies; The Top-k query 

with median-filtering is evaluated by the authors.  In 

particular, a key objective of the Top-k query 

technique used in industrial real time big databases 

such as in WSNs is finding the k-sensor nodes with 

highest sensing values. Thus, from the point of view of 

the QO Encoding problem described earlier, the query 

based data system is recast as a Top-k query distributed 

data [15] search system that seeks to optimally find the 
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sensor nodes transmitting at critically peak reference 

values. 

Some key instances are finding the highest 

temperature values to detect a fire outbreak in a 

production plant; finding the highest-pressure points 

in a gas pipeline that may lead to explosion. 

 

Topology 1: - Top-k query with median-filtering 

In this case, the nodes are conducted using the 

following modules as follows: 

i. Sensor Child (Base) Node module  

ii. Sink Query Parent (Server) Node Module 

iii. Top-k values. 

 

The Sensor Child (Base) Node Module, Sink Query 

Parent (Server) Node Module and the Top-k values 

Module are the key component of the Architectural 

concept. 

 

Sensor Child (Base) Nodes module: 

 

In this node, the following query functions are 

accomplished: 

 

1. Child node(s) compute the median value of the 

top-k query response readings. 

2. Child node(s) send the computed median value 

readings to their respective parent node and wait 

for a filter value from parent. 

3. Parent node receives median values of the top-k 

query readings from all child nodes 

i. Parent computes the median of the received 

median values. 

ii. Parent sends its computed median to child 

nodes as filter value. 

4. Child node(s) receive filter value from their 

associated parent and returns all the values greater 

than or equal to the filter value back to parent node.  

 

 

 

Sink Query Parent (Server) Node Module 

 

1. Parent(s) sorts the median sequence (received 

median values from child node) in decreasing 

order. 

2. Parent(s) calculate a median value from the 

median sequence. 

3. Parent(s) broadcast (transmit) the computed 

median value to each child nodes – to be used as 

filter value. 

4. Parent(s) identify the top-k readings based on the 

child node readings received and their own 

readings. 

In general, the Parent does some sort of screening to 

obtain a useful statistic of the queried sensor readings. 

 

Top-k Values Module  

This module stores the screened out (filtered) max-

values and the corresponding matching sensor with the 

aforementioned max-value(s).  

 

3.2 INTELLIGENT SWARMING NETWORK (iSWAN) 

GENO-GENERATIVE  ALGORITHM 

 

The proposed Intelligent Swarming Network (iSWAN) 

Geno-Generative Model provides a justification for 

overcoming the drawbacks of the existing Top-k Query 

Technique while accounting for recent developments 

in the state-of-the-art.  With respect to optimization of 

Top-k queries, the proposed model uses a generative 

approach to evolve candidates’ solutions to the Top-k 

query problem.  Figure 2 describes the new systems’ 

modules and the objective function formulation. 
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Figure 2 :  iSWAN Geno-Generative Architecture 

 

iSWAN Geno-Generative algorithm performs 

optimization of the Top-k query values by carrying out 

swarming particle optimization which leads to a more 

precise and optimal value. It uses the following 

primary modules as described in the existing Top-K 

query system, with the exception of Sensor child nodes’ 

modules, which use an optimization sub-module to 

perform optimal query filtering in a real time 

distributed data processing system. 

 

i.  Sink Query Module 

This module requires the development of the Query-

Order formulation (QOF) program which accounts for 

the Query-Order (QO), the QO Representation (QOR) 

and the QO Encoding (QOE). The emphasis of the 

QOF is to allow for structured distributed query 

processing in real time databases. Thus, with the QOF, 

the aspect of data aggregation, representation and 

encoding is fully captured in a dynamic context, which 

is pervasive in nature 

 

Query-Order (QO):  

In real time big data transmission systems, the query 

order (QO) is typically a function of the sensor 

transmission rates in a distributed network of 

acquisition sensors (SAN). It defines the number of 

sensors (or sensor points) that must be activated in 

addition to some specified transmission rates. Thus 

sensors transmit data packets to the base station based 

on the QO (see Figure 3).  The labels S1 to SN as shown 

in Figure 3, are sensor nodes, the dotted arrows are base 

station queries and the boldened arrows the responses 

generated from the sensors at uncertain orders. 

 

Query-Order Representation (QOR): 

The QO representation defines the following key 

structures (Sarode & Nandhini, 2018): 

1. The number of sensors using a particular 

transmission channel 

2. The data transmission capacity or rate 

The overall representation is based on the eqns (3 - 4): 

  )3(,10, SSNlzS iLli −=  

     

)4(ilij Szt −=  

      

Where, 

 lz = queried sensor label 

LN =number of possible sensor states 

L = integer index label, at state N 

i = integer index label, at state S 

 

Query-Order Encoding 

In order to aggregate sensor queried data from two or 

more channels, an encoding scheme is needed. In this 

paper, the encoding scheme is attained by forming 

sensor solution variables using the scheme in (Figure 3). 

This scheme assumes a representative variable Sitj, and 

constrained by tj ≥ tij,  

 

where: 

Sitj = a solution variable representing ith sensor 

transmitting j amounts of data packets 

tj = the amount of data packets transmitted by Sensor i 

at time j for a given channel 

tij = the amount of data packets transmitted by Sensor i 

from time i to j for a given channel 

In (Sarode & Nandhini, 2018), the channel is typically 

defined as 1/4th of its capacity but need not be strictly 

so in practice – as in reality, the capacities will vary 

sparsely due to environmental constraints, threshold 

etc.  
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Thus, the Authors proposed to describe the channel 

capacity by a sparsity criterion rule as follows in 

Algorithm 1. 

 

Algorithm 1: Query-Order Encoding 

Step 1: Initialize Sensor S, Sparse Sensor S*, instance i, 

threshold, th, Vj 

Step 2: Normalize S: S  {0, 1} 

Step 3: For each Sensor, at instance i  

Step 4: If S(i) > th 

    S*(i) = Si 

 End 

Step 5: Obtain the cardinality in S: n(S) Scount 

Step 6: Set Capacity as Ci: Scount  Ci 

s.t.: 

( )


==


ij SC

ij

i

i

j TV

,

1,1

 //Channel capacity data availability 

constraint 

where, 

Ti = the data to be transmitted to the base station by 

ith sensor 

Vj = the data to be transmitted by the ith sensor 

through jth channel 

 

 

ii.   Sensor Nodes module 

This is the child modules that represent real world 

physical parameter black boxes that can support query 

retrieval, response value generation and data parsing. 

In this node, the following query functions are 

specifically\accomplished: 

1. Child node(s) compute the median value of the 

top-k query response readings. 

2. The computed median value readings of Child 

node(s) are captured by iSWAN agents. 

3. Agent node(s) receives median values of the top-

k query readings from all child nodes by 

swarming particles 

a. Agent node(s) perform adaptive filtering by 

computing the optimized median index of the 

received median values using group behavior and 

an objective (cost) function. 

b. The iSWAN system reports the generated 

optimal (fitted) median of each child node. 

iii.   iSWAN module 

This represents the intelligent swarming network used 

in the solution of the Top-k response filter values. The 

sub-modules sp1, sp2 … spn represent swarming 

agents in the solution search space that scans the sensor 

nodes via the Top-k with filter module interface. The 

main optimal solutions are carried basing on the model 

equations (2) and (3). The solution points are obtained 

using the swarming particle optimizer algorithm as 

shown in Algorithm 2 (Sumathi & Surekha, 2010).  

Algorithm 2: iSWAN Main solution Process 

Step 1: Initialize the size of the swarm particles, n 

Step 2: Randomly initialize swarm particle position, x 

and velocities, v 

While stopping criterion is false do 

Step 3:  t = t+1  //Increment iteration counter 

Step 4:  Compute initial fitness value of each particle 

( )( ) ( )( )

( )( ) ( )( ) ( )( )
;

,,

,,1
minarg

2

1

1 






 −
= −

txftxftxf

txftxf
x

nt

n

t


 

  for i=1 to n 

Step 5:  

 ( ) ( )( ) ( )( )( )txftxftx tt

n

tt ,1minarg
#

1

#
−= −  

  for j = 1 to Dimension 

Step 6:     Update the jth 

dimension of xt and vt//xt = pos, vt = vel 

     Execute (2) 

     Execute(3)

  

   End for 

 End for  

End While 

 

iv.   Top-k Query Filter Module 

This represents the topmost structure of the system and 

serves as the container module that accommodates the 

rest processing functions or modules. Thus, it 
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represents the main functional class or module in the 

OOP paradigm. The following key sub-functions are 

performed in this module: Query Processing (QP), 

Query Filtering (QF) and Query Result Aggregation 

(QRA). In QP, the queries (sensor data calls) are first 

initiated by generating a subset of QF and QRA 

commands. The QF commands follows from the 

iSWAN and works in tandem with the QRA for each 

sensor data call. Specifically, the QF sub-module does 

the job of extracting the queries with the top or 

maximum reading considering the various sensor 

nodes. On the other hand, the QRA sub-module 

performs the specific function of sensor data 

aggregation of all queries in a streaming data matrix or 

store-of-value. This is achieved by using relevant 

function data calls in near real time. All query results 

are stored in the Top-k database; retrievals are also 

performed on this database. 

 

 
 

Figure 3 : Architectural view of a typical data 

aggrgation model formed from the QO (Source: 

Sarode & Nandhini, 2018). 

 

Objective Function Formulation 

The objective function plays a critical role in the design 

of any optimization system. It defines the fitness or cost 

criterion that needs to be minimized in order to attain 

the required solution value (points or positions). In this 

research study, the Median Error Difference (MED) of 

the pre-computed medians between the child nodes 

and their combined iSWAN agent median state is 

considered as objective function. This difference is 

computed as follows in Algorithm 3: 

Algorithm 3: iSWAN Filter Query Objective Function 

Step 1: Initialize Query Optimization Parameters – 

setting the lower and upper bounds, population size 

and number of generations 

Step 2: Compute Median Error Difference (MED) 

Calculation: 

( ) )5()(

i

childrefagentsum  −=  

      

where,  

)(refagent  = agent-based median used as reference 

child  = set of child median values at time step i 

We determine if a data transmission is successfully and 

correctly (maximally) terminated in a sensor node 

using eqn(3.4) as: 

 

( ) )6(min1 =T   

       

1T = a fitness criterion (parameter) for top-k query data 

transmission validation i.e. if the absolute difference 

between received child nodes data transmission and a 

reference parent node standard meets the expected 

least minimum levels, it is selected; otherwise it is not 

selected. This is done in an evolutionary manner based 

on swarming particles. 

 

System Parameters, Input and Output Specifications 

The motivating system parameters for actualizing the 

geno-generative solution are as described in Table 1. 

These parameters are used to evolve the solution space 

by varying all possible indices of sensor values while 

searching for the best possible top-k query candidate 

sensor. Several of the parameters are fixed while two 

(the number of generations and the population size) 

change as the simulation progresses. These parameters 

were defined based on related studies and found 

suitable in this context. The simulation process in 

conjunction with these parameters is done dynamically 

using the Matlab-SIMULINK which gives an insight 

into the real time capabilities of the proposed system. 
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Matlab-SIMULINK simulation interface showing 

sensor signal captures and query aggregation is as 

shown in figure 4 and MongoDB Compass GUI Server 

Interface after first launching in figure 5.  The input 

and output specification are illustrated in tables 2 and 

3 respectively. Under the attribute field we have some 

of the input and output data while under the attribute 

type float is used as data type. Table 2 shows the 

database design for the proposed model, which 

contains four attributes - field name, data type, data 

range and the corresponding unit. 

 

TABLE 1 : Geno-Generative System Parameters 

 

TABLE 2 :  Input Specification 

 

Field  Type Range Unit 

Temperature  Float 20 – 40 oC 

Noise Level 

(Pressure) 

Float 10 – 400 dB  

Light Intensity Float 1000– 

2500 

Lumens 

 

Table 3 : Output Specification 

 

 
 

Figure 4:  Matlab-SIMULINK MATLAB running 

simulation program showing sensor signal captures 

and query aggregation 

 

 
Figure 5 :  After first launching 

 

IV. RESULTS AND DISCUSSION 

 

In this paper work, the authors used a two-stage 

approach in conducting a co-simulation of experiments 

with a laboratory-type testbed. In the first stage, the 

query response of the testbed is evaluated on the basis 

of the existing Top-K Query system model described 

earlier in previous section (see Tables 1 to 3). The 

second stage employs the proposed iSWAN technique 

for evaluating the testbed. In particular, the second 

stage describes a dual-tier boundary constraint for each 

considered sensor; a Dynamic Lower Bound (DLB) 

constraint and a Static Lower Bound (SLB) constraint 

(see Table 4 to 6). 

 

 

Parameter Default Used Value 

Population size 5 

Maximum number of 

iterations (Generations) 

50 

Constriction coefficient 2.05 

Inertia weight damping 

ratio 

1 

Field  Type 

Median Temperature  Float 

Median Noise Float 

Light Intensity Float 
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TABLE 4 :  Top-k Query Response for child sensor 

node 1 

 

 

 

 

 

 

 

 

TABLE 5:  

Top-k Query Response for child sensor node 2 

 

 

 

 

 

 

 

 

 

 

TABLE 6: 

 Top-k Query Response for child sensor node 3 

 

 

 

 

 

 

 

 

 

 

This experiment applies the Top-k query approach 

based on median filtering. The simulation results (Top-

k query temperature values) using testbed as shown in 

Tables 1 to 3 for the child sensor nodes 1, 2 and 3 

respectively, shows the filtered response locator id 

(loc_id) and the corresponding Top-k query values 

(Tkv). The loc_id represents the positions of the Tkv in 

the child node query list. 

 

TABLE 7 : Top-k Query Response for iswan Geno-

Generative System with SLB 

 

Trial 

No. 

Cost Sensor 1 

(oC) 

Sensor 2 

(oC) 

Sensor 3 

(oC) 

1 25.0000 25.0000 0.0000 25.0000 

2 20.9995 0.0000 21.0005 21.0000 

3 18.9995 0.0000 19.0005 19.0000 

4 15.4890 15.5072 0.0038 15.5000 

5 23.0000 23.0000 23.0000 0.0000 

6 19.0000 19.0000 0.0000 19.0000 

7 19.9990 20.0000 20.0006 0.0005 

8 19.9958 0.0000 20.0042 20.0000 

9 19.9994 0.0000 19.9997 20.0000 

10 23.0000 23.0000 23.0000 0.0000 

11 32.9985 0.0000 33.0000 32.9992 

12 38.9771 0.0000 39.0229 39.0000 

13 21.0000 21.0000 0.0000 21.0000 

14 27.9998 0.0000 27.9999 28.0000 

15 16.0000 16.0000 0.0000 16.0000 

16 16.9986 17.0014 17.0000 0.0000 

17 22.4986 22.5014 22.5000 0.0000 

18 41.9784 41.9892 0.0000 42.0000 

19 25.9998 0.0000 25.9999 26.0000 

20 23.9993 0.0000 24.0007 24.0000 

 

 
Figure 6 : Response of the iSWAN System under 

Dynamic Lower Bound 

 

This experiment builds on the principles of 

optimization following evolutionary computing. It 

presents the results considering the iSWAN 

optimization decision variables (DV) constraints at 

Static Lower Bound (SLB). After the run of 20 trials 

using the testbed as shown in Table 8, simulation 
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Node 1

Node 2

Node 3

loc_id Tkv (oC) 

1 27 

7 32 

19 23 

25 26 

28 38 

34 20 

49 36 

loc_id Tkv (oC) 

2 28 

8 32 

17 20 

20 23 

26 26 

29 37 

32 20 

35 21 

50 36 

loc_id Tkv (oC) 

3 24 

9 35 

18 21 

21 23 

24 20 

27 29 

30 36 
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results shows the fitted Top-k query temperature 

values for the child sensor nodes 1, 2 and 3 respectively; 

it also shows the fitness function value computed by 

the PSO search agents at the attained temperature 

states. Figure 6 shows the comparative graphical query 

response of each sensor node as obtained by the 

simulation program. 

 

Table 8: Top-k Query Response for proposed system 

with DLB 

 
 

 
 

Fig. 7 : Response of the iSWAN System under 

Dynamic Lower Bound 

In this experiment, simulations were performed in 

order to investigate the nature of using a Dynamic 

Lower Bound in the iSWAN optimization process. 

Consequently, the min function was used adaptively to 

extract the lower bounds prior to processing. The 

results of this experiment for 20 trial runs are as shown 

in Table 8. Figure 7 shows the comparative graphical 

query response of each sensor node as obtained by the 

simulation program. 

 

4.1 COMPARISON EVALUATION OF iSWAN 

GENO-GENERATIVE MODEL AND TOP-K  QUERY 

PROCESSING MODEL 

The comparison evaluation of the two systems were 

carried after series of runs of simulations as shown in 

Tables 9 to 11 using the Dynamic Lower Bound (DLB) 

concept based on the maximum temperature value 

(Tmax). For the Top-k model, since multiple values are 

predicted, the first filtered value is selected as the 

single best solution variable. The classification 

accuracies (CA) are reported in Table 12. 

 

Table 9 : Results Comparison of Existing Top-k Query Algorithm and iSWAN Geno-Generative 

Algorithm Sensor 1 

 

Trial No. Tmax(oC)_existing Tmax(oC)_proposed Tmax(oC)_expected 

1 29.0000 30.0000 30.0000 

2 17.0000 34.0000 34.0000 

3 29.0000 34.0000 34.0000 

4 15.0000 34.0000 34.0000 

5 36.0000 37.0000 37.0000 
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6 39.0000 0.7501 37.0000 

7 39.0000 39.0000 39.0000 

8 36.0000 33.0000 35.0000 

9 28.0000 0.0620 36.0000 

10 29.0000 40.0000 40.0000 

 

 

TABLE 10 : Results Comparison of Existing Top-k Query Algorithm and iSWAN Geno-Generative Algorithm Sensor 2 

 

Trial No. Tmax(oC)_existing Tmax (oC)_proposed Tmax (oC)_expected 

1 32.0000 34.0000 34.0000 

2 16.0000 37.0000 37.0000 

3 30.0000 37.0000 37.0000 

4 38.0000 38.0000 38.0000 

5 35.0000 35.0000 35.0000 

6 38.0000 0.9047 35.0000 

7 36.0000 36.0000 36.0000 

8 36.0000 33.0000 35.0000 

9 27.0000 0.5575 33.0000 

10 42.0000 42.0000 42.0000 

 

TABLE 11 :  Results Comparison of Existing Top-k Query Algorithm and iSWAN Geno-Generative Algorithm Sensor 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE 12 : Classification accuracies (CA) of Existing Top-k Query Algorithm and iSWAN Geno-Generative Algorithm 

at different sensor nodes 

 

Sensor Node CA(existing) % CA(proposed) % 

1 40 70 

2 40 70 

3 40 70 

Average CA 40 70 

 

The existing system results show some variability in 

top-k queried temperature values as shown in Table 4 

- 6. For Sensor Node 1 (Table 4), the Top-k value (TkV) 

is 38oC occurring at location id (loc_id) 28 while for 

Sensor Nodes 2 and 3, the TkV and corresponding 

Trial No. Tmax (oC)_existing Tmax (oC)_proposed Tmax (oC)_expected 

1 32.0000 35.0000 35.0000 

2 38.0000 38.0000 38.0000 

3 31.0000 38.0000 38.0000 

4 39.0000 39.0000 39.0000 

5 37.0000 37.0000 37.0000 

6 26.0000 0.2062 37.0000 

7 17.0000 38.0000 38.0000 

8 36.0000 33.0000 35.0000 

9 29.0000 0.6510 35.0000 

10 43.0000 43.0000 43.0000 
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loc_id are 37oC:29 and 36oC:30 respectively. Thus, it is 

immediately obvious that Sensor Node 1 is the critical 

one followed by Sensor Nodes 2 and 3. Thus, Sensor 

Node 1 must be given priority with respect to the other 

nodes. 

 

From the simulation results using Geno-Generative 

iSWAN optimizer with SLB, the Sensor Node 1 TkV is 

41.9892oC occurring at loc_id 18; also the least cost 

(cost) is obtainable at this solution point and is -41.9784. 

For the Sensor Nodes 2 and 3 Tkv, loc_id and cost are 

39.0229:12: -38.9771 and 42.0000: 18: -41.9784 

respectively. From these results, it can be clearly seen 

that Sensor Node 1 is the critical one; this is followed 

by Sensor Node 3 and then Sensor Node 2. Priority for 

conditioning should be given following the 

aforementioned order. This can also be clearly 

visualized in Figure 6, while the top-most bars are 

shared between Sensor nodes 1 and 3 only. 

 

From the simulation results using Geno-Generative 

iSWAN optimizer with DLB, the Sensor Node 1 TkV is 

45.5000oC occurring at loc_id 16; also the 

corresponding least cost (cost) obtainable at this 

solution point is -0.5000. For the Sensor Nodes 2 and 3 

Tkv, loc_id and cost are 48.0000:16: -0.5000 and 

47.0000: 15: -1.0000 respectively. From these results, it 

can be clearly seen that Sensor Node 2 is the critical 

one; this is followed by Sensor Node 3 and then Sensor 

Node 1. In particular, there are sub-optimality issues in 

the DLB as Sensor node 3 gave best cost as against that 

of Sensor nodes 1 and 2.  Thus, priority for 

conditioning should be given to Sensor Node 2 

followed by Sensor Node 3 and then Sensor Node 1. 

This can be clearly visualized in Figure 7 with the top-

most bars shared between Sensor nodes 2 and 3 in that 

order. 

 

Comparing the proposed Geno-Generative iSWAN 

optimizer system with the median based child-parent 

(client-server) approach, considering the expectation 

maximum (top-k) queried temperature values and at 

different sensor nodes. 

For the Sensor Node 1, apart from the Trials 6, 8 and 9, 

the Tmax for proposed system is equivalent to the 

expectation; however, in the case of the existing 

approach, an exact match occurred only at the 7th trial 

run. In particular, it can be observed that the proposed 

(iSWAN) system suffered a great deviation from the 

expectation at the 6th and 9th trials; this great deviation 

may be attributed to the stalling effect that may occur 

in the method of swarming particles. 

 

For the Sensor Node 2, apart from the Trials 6, 8 and 9, 

the Tmax for proposed (iSWAN) system is equivalent to 

the expectation. In the case of the existing approach, 

an exact match occurred at the 4th, 5th, 7th and 10th trial 

runs. Just as in Sensor Node 1, the proposed system 

suffered a great deviation from the expectation at the 

6th and 9th trials. Thus, the competitive nature of the 

median based child-parent (client-server) approach is 

evident.  

 

For the Sensor Node 3, apart from the Trials 6, 8 and 9, 

the Tmax for proposed system is equivalent to the 

expectation. In the case of the existing approach, an 

exact match occurred at the 2nd, 4th, 5th, and 10th trial 

runs. Just as in Sensor Node 1, the proposed system 

suffered a great deviation from the expectation at the 

6th and 9th trials. Thus, the competitive nature of the 

median based child-parent (client-server) approach is 

also evident.  Figures 8 to 10 show graphically the 

situation of great deviations at sensor nodes 1-3 

respectively query processing between Top-k Query 

processing model, iSWAN Geno-Generative Model 

and the expected query response values. As can be seen 

from the Table 12, the proposed system on the average 

outperformed the existing model with a CA of 70% 

over that of the existing system which returned a CA 

of 40% on the average. 
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Figure 8 : Comparative results showing the sensor node 1 

query responses 

 

 
Figure 9 : Comparative results showing the sensor 

node 2 query responses 

 
Figure 10 : Comparative results showing the sensor 

node 3 query responses 

 

V. CONCLUSION AND RECOMMENDATION 

 

This study presented an improved approach to query 

processing through the application of an iSWAN 

Generative model and MongoDb. The improved 

approach depicts evolutionary learning techniques for 

query processing which is also a type of machine 

learning algorithm used to draw inferences from 

datasets consisting of input data without labeled 

responses. The most common evolutionary swarming 

learning method is based on particle swarms, which is 

used for efficient global search and optimization. The 

findings of this study are recommended to database 

administrators and analysts in real industrial 

environments, software developers and researchers 

with keen interest in the study area. This is because 

data management and request via queries is becoming 

complex day by day. In other words, the need for an 

improved query processing using Geno- generative 

model is highly indispensable. 
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