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 In order to address the complex and intermittent nature of wind, this thesis 

proposes an innovative approach to enhance the accuracy of short-term wind 

forecasting. By leveraging the strengths of different methods while mitigating 

their weaknesses, a robust hybrid model is developed. The methodology 

incorporates Empirical Mode Decomposition (EMD), a data-adaptive denoising 

technique, to break down the signals into meaningful components called 

Intrinsic Mode Functions (IMFs), along with a residue. However, EMD is known 

to suffer from the mode mixing problem, where different scales of signals are 

erroneously mixed within IMFs, causing signal intermittency. To overcome this 

challenge, Ensemble Empirical Mode Decomposition is introduced, utilizing an 

ensemble of white noise to establish a uniform reference frame in the time-

frequency space. By doing so, the added noise effectively collates signal portions 

with similar scales into a single IMF. Subsequently, the IMFs and residue 

obtained from both EMD and Ensemble Empirical Mode Decomposition are fed 

into a Convolutional Neural Network (CNN). The performance of this hybrid 

model is then compared against benchmark models such as Bi LSTM and LSTM. 

Evaluation is conducted based on two critical factors: performance metrics 

including MSE, MAE, RMSE, MAPE, and loss, as well as the time required for 

testing. Through a comprehensive analysis of these factors, the superior 

performance of the hybrid model is determined, thereby enhancing the 

prospects of reliable wind forecasting. 
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I. INTRODUCTION 

 

OBJECTIVE 

 

In order to address the challenge of finding the optimal 

model for accurate wind forecasting, we have 

developed a hybrid approach that combines the 

strengths of Convolutional Neural Networks (CNNs) 

and Ensemble Empirical Mode Decomposition. CNNs 

are neural networks that employ convolutions, 

allowing them to efficiently analyze matrices or 

tensors through a sliding window technique. By 

utilizing kernels to capture local invariant features and 

weight sharing, the number of trainable parameters in 
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CNNs is significantly reduced [3]. This research focuses 

on exploring machine learning algorithms for wind 

data forecasting. To enhance the accuracy of the 

forecasts, the study incorporates data denoising 

techniques such as Empirical Mode Decomposition and 

Ensemble Empirical Mode Decomposition, which are 

based on the Hilbert Huang Transform for nonlinear 

non-stationary data. The Hilbert Huang Transform 

combines the Hilbert Spectrum and Empirical Mode 

Decomposition, enabling analysis in the time-

frequency domain without the need for data 

conversion, while also adapting to the characteristics 

of the data. The research also evaluates the model's 

performance with and without the implementation of 

data denoising techniques to gain insights into their 

impact on forecasting accuracy. Finally, by comparing 

the performance of the proposed hybrid model with 

state-of-the-art benchmark models like LSTM and Bi-

directional LSTMs, this work provides evidence 

supporting the superiority of the hybrid approach in 

wind forecasting. 

 

VARIOUS MODELS USED IN THE RESEARCH 

A. EMD 

Empirical Mode Decomposition (EMD) serves as a 

valuable technique for unraveling intricate data into 

more manageable components. It proves particularly 

advantageous when grappling with time-varying data 

that lacks a regular pattern. Rather than assuming the 

data comprises simple waves, EMD diligently seeks 

distinct segments within the data that possess their 

own discernible patterns. By partitioning the data into 

smaller fragments known as Intrinsic Mode Functions 

(IMFs), each IMF encapsulates a specific portion of the 

data, complete with its own dynamic patterns. The 

beauty of EMD lies in its flexibility, as it imposes no 

rigid guidelines on the input data. Instead, it adapts 

adeptly to diverse data types, efficiently deciphering 

the optimal approach to simplifying the data into its 

constituent components. EMD boasts an array of 

practical applications across various domains. It aids in 

fault detection within machinery, such as bearings, 

facilitates the analysis of medical data, enables 

comprehensive examination of power signals, and 

supports the investigation of seismic signals. In these 

fields, EMD empowers researchers to comprehend and 

analyze complex data more effectively by 

disentangling it into its meaningful constituents. 

 

 
Flow chart of EMD 

 

B. EEMD 

Ensemble Empirical Mode Decomposition (EEMD) 

emerges as a refined iteration of Empirical Mode 

Decomposition (EMD), designed to elevate the 

precision of the decomposition process by leveraging 

the power of noise. Consider a scenario where you aim 

to dissect a signal into distinct components. EEMD 

comes to the rescue by injecting random noise into the 

signal, effectively establishing a reference frame that 

facilitates the separation of its various constituents. In 

the EEMD procedure, the noisy signal undergoes 

multiple analyses. With each iteration, the introduced 

noise gradually dissipates through averaging, leaving 

behind the true signal component that remains 

consistent throughout the process. The brilliance of 

incorporating noise lies in its ability to combat the 

conundrum of "mode mixing." Mode mixing arises 
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when different signal parts overlap, impeding their 

distinction. By introducing noise, EEMD ensures a 

more effective separation of each signal component. 

Picture the challenge of isolating distinct musical 

instruments playing simultaneously. The noise 

integrated into EEMD creates a transparent reference 

frame, simplifying the identification and isolation of 

each instrument's unique sound. In essence, EEMD 

serves as an enhanced rendition of EMD, employing 

noise to refine the accuracy of signal decomposition. 

The noise acts as a reliable reference frame, bolstering 

the efficiency of separating different signal parts and 

effectively circumventing mode mixing. 

  

 
Flow chart of EEMD 

 

C. CNN 

A groundbreaking form of artificial intelligence, the 

Convolutional Neural Network (CNN) draws 

inspiration from the extraordinary visual processing 

capabilities of the human brain. Its remarkable 

aptitude lies in the profound analysis and 

comprehension of images or data exhibiting a grid-like 

structure, such as time series data. Picture this: you 

possess an image depicting a dog, and your objective is 

for the computer to accurately identify it as a dog. The 

CNN accomplishes this by systematically dissecting the 

image into smaller constituents known as "filters" or 

"feature detectors." These remarkable filters adeptly 

recognize specific patterns crucial for object 

identification, encompassing edges, textures, and 

shapes. The CNN proceeds to scan the entire image, 

applying these filters in a systematic manner while 

diligently focusing on diverse regions in search of the 

acquired patterns. Each filter provides a "feature map" 

that illuminates the precise locations where these 

patterns manifest within the image. As the CNN delves 

deeper through multiple layers, it assimilates more 

intricate patterns by synthesizing the simpler patterns 

acquired from previous layers. Gradually, it constructs 

a hierarchical framework of features, progressing from 

rudimentary aspects such as edges towards increasingly 

sophisticated attributes like eyes, ears, or the overall 

shape of a dog. Ultimately, the CNN incorporates these 

well-learned features into fully connected layers, 

where it effectively formulates predictions based on 

the knowledge acquired. In scenarios involving image 

classification, the CNN can discern the likelihood of 

the image encompassing a dog or any other object 

under consideration. The CNN's distinct advantage 

resides in its innate ability to autonomously learn and 

extract vital features from the data, bypassing the 

necessity for explicit feature engineering. This 

remarkable capability allows the CNN to capture 

intricate patterns and establish relationships, making it 

an ideal solution for diverse tasks encompassing image 

recognition, object detection, and even time series 

analysis. 
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CNN internal structure 

 

D. LSTM 

 

Long Short-Term Memory (LSTM) is an artificial 

neural network that excels in processing and 

comprehending sequential data, including text and 

time series. To illustrate its functionality, imagine 

immersing yourself in a captivating storybook where 

understanding the current chapter necessitates 

recalling the events from previous chapters. LSTM 

operates similarly by incorporating a memory 

component that adeptly stores and retrieves 

information from prior steps or time points within the 

sequence. Its architecture comprises interconnected 

nodes known as "cells," which facilitate seamless 

information exchange. These cells consist of three 

fundamental components: an input gate, a forget gate, 

and an output gate. The input gate controls the 

assimilation of new information into the memory, 

while the forget gate determines which information is 

irrelevant and should be discarded. On the other hand, 

the output gate regulates the extent to which the stored 

memory influences the output at a given step. By 

harnessing the power of memory, LSTM effectively 

captures long-term dependencies within the sequence, 

enabling it to grasp intricate patterns and relationships 

in the data. 

 
LSTM unit structure 

 

E. Bi-directional LSTM 

 

The Bi-LSTM, an impressive advancement of the 

LSTM model, introduces a paradigm shift in the realm 

of sequential data analysis and prediction. Let's 

immerse ourselves in a captivating book, where we 

yearn to unravel the full context of a specific sentence. 

Naturally, we scan the sentences preceding and 

succeeding it to gain profound comprehension. 

Similarly, the Bi-LSTM operates with the same 

insightful approach, seamlessly assimilating both past 

and future information. While a conventional LSTM 

progresses forward, meticulously scrutinizing past data 

to forecast future patterns, the Bi-LSTM takes a 

remarkable leap forward. By seamlessly incorporating 

an additional layer that delves into the sequence in 

reverse, it unveils vital insights from the future. 

Merging the outputs from both the forward and 

backward LSTM layers, the Bi-LSTM expertly captures 

intricate dependencies and patterns, seamlessly 

intertwining the past and future contexts of the input 

sequence. This unparalleled capability makes it an 

optimal choice for tasks that demand a holistic 

understanding of the entire sequence, spanning 

sentiment analysis, speech recognition, and machine 

translation. Picture the Bi-LSTM as a dynamic duo of 

LSTM models, working in perfect synergy—one 

embarking on an insightful journey from the 

sequence's beginning to its end, while the other 

astutely explores the path in reverse. By harnessing the 

power of information from both directions, the Bi-

LSTM unlocks a deeper level of comprehension and 
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analysis, empowering us to unravel the enigmatic 

intricacies of sequential data. 

 
Bi-LSTM process structure 

 

II. METHODOLOGY 

 

DATA PREPROCESSING AND DENOISING 

A. Fetching dataset: The dataset is taken from the 

NREL site. The parameters, which have to be taken in 

the dataset, are fed in the URL. The specific parameter 

is fed in the URL. The GET URL brings up the data and 

loads up the CSV file into Pandas dataframe. 

 
API request parameters from NREL 

 

B. Data Cleaning and Preprocessing: The data obtained 

from API fetching in the form of a CSV file is then 

inspected, visualized, and cleaned to remove 

inconsistent and NaN values and is normalized using 

the Pandas library framework. The columns are also 

modified and the date is string formatted to obtain the 

values in the appropriate date-time format required for 

13 our model. After removing the redundant data and 

setting the look back function, the cleaned data is ready 

for training and prediction. 

 

C. Data Denoising (EMD / EEMD) : Utilizing the 

powerful PyEmd Library, the preprocessed data 

undergoes a transformative decomposition process, 

splitting it into two distinct components: the 

mesmerizing Intrinsic Mode Functions (IMFs) and the 

intriguing residue. To ensure seamless integration with 

the machine learning model, a carefully crafted while 

loop efficiently feeds the IMFs into the network. 

Simultaneously, employing the ingenious Ensemble 

Empirical Mode Decomposition (EEMD) technique, 

the same preprocessed data embarks on an alternative 

decomposition journey. Within this transformative 

process, the data gracefully unfolds into its constituent 

IMFs and a captivating residue. EEMD employs an 

ensemble of signals, expertly enhanced with white 

noise, sifting through each iteration to converge on the 

ultimate truth: the majestic mean. By harnessing the 

statistical characteristics of white noise, EEMD brings 

forth a remarkable evolution beyond its predecessor, 

the original EMD. This revolutionary approach 

eliminates the need for subjective criterion selection, 

granting the freedom to naturally separate scales 

without any a priori intermittence test. The fusion of 

PyEmd's EMD and the enchanting EEMD elevates the 

study's methodology to new heights, unraveling the 

intricate tapestry of the data's hidden secrets. 
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IMFs of the wind speed data obtained using EMD 

 

D. Feeding the Data into the Network: The dynamic 

nature of time series data lends itself to a fascinating 

transformation, akin to the art of supervised learning. 

Through the clever application of the window shifting 

technique, the given time series dataset undergoes a 

restructuring that mirrors a supervised-learning 

framework. This intricate process entails leveraging 

the power of previous time step data as the input, while 

the subsequent single time data assumes the role of the 

output variable. Referred to as the sliding window 

method, this approach harnesses the predictive 

capabilities of prior time steps to anticipate the future 

with precision. In the realm of time series analysis and 

statistical methods, this technique is commonly known 

as the lag method, while its succinct alias, the window 

method, is equally popular. The window width, or the 

number of previous time steps, plays a crucial role in 

shaping the predictive landscape, serving as the 

foundation for the sliding window's effectiveness. By 

adopting this fundamental methodology, any time 

series dataset can seamlessly transition into a 

supervised learning problem, unlocking new 

possibilities for analysis and insights. In the case of the 

wind speed dataset, a window length of five has been 

selected, signifying the input dimension of the neural 

network. As the window length shapes the input 

dimension, the neural network becomes equipped to 

unravel the intricacies and patterns inherent in the 

time series data. 

 
Input and Output data for Supervised learning 

 

The window length is the input dimension of the 

Neural network which is 5. 

 
Structure of the Neural Network used for all models 

 

III.  ML MODELS - TRAINING AND TESTING 

 

The wind speed dataset having the number of rows 

equal to 43798 is split into Train/validate/test as 

70/10/20. For all the basic models the original data is 

directly given to the Neural Networks (here LSTM, 

Bi_LSTM, CNN).  

The structure of all the NN blocks is the same as 

mentioned in the previous session. For EMD models: 

1. Start from the original wind speed data and do the 

preprocessing  

2. Give the obtained data to EMD (Empirical Mode 

Decomposition). It will create various IMFs (Intrinsic 

Mode Functions). 

3. Push each IMFs into the Neural Network of a similar 

structure.  

4. Each model creates forecasting according to the 

IMFs. 

5. Now just merge/ aggregate all the results obtained 

separately.  

6. After merging compare the result with test data to 

obtain various error metrics.  
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For EEMD models:  

1. Start from the original wind speed data and do the 

preprocessing 

2. Give the obtained data to EEMD (Ensemble 

Empirical Mode Decomposition). It will create various 

IMFs (Intrinsic Mode Functions).  

3. Using IMFs and wind speed finds the noise created 

by EEMD  

4. Push each IMFs and noise into the Neural Network 

of a similar structure.  

5. Each model creates forecasting according to the 

IMFs, noise. 

6. Now just merge/ aggregate all the results of IMFs 

obtained separately.  

7. Remove forecasted noise from the aggregate to 

obtain the final result.  

8. Use the final result with test data to obtain various 

error metrics. The flowchart and results (for day 

12/31/2019) for all the nine models in the paper are 

given below. The input data is hourly, therefore the 

results for one day contain 24 points. 

  

A. LSTM 

Flowchart of LSTM model 

 

 

 

Wind speed Actual and Predicted using LSTM model 

 

B. EMD LSTM 

 
 

Flowchart of EMD LSTM model 
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Wind speed Actual and Predicted using EMD LSTM 

model 

C. EEMD LSTM 

 

 
 

Flowchart of EEMD LSTM model 

 
Wind speed Actual and Predicted using EEMD LSTM 

model. 

 

D. Bi – LSTM 

 

 
Flowchart of Bi-LSTM model 

Wind speed Actual and Predicted using Bi-LSTM 

model 
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E. EMD Bi- LSTM 

 
Flowchart of EMD Bi-LSTM model 

 

 
Wind speed Actual and Predicted using EMD Bi-

LSTM model 

 

 

 

 

 

 

 

 

F. EEMD Bi - LSTM  

 

 
 

Flowchart of EEMD Bi-LSTM model 

 

 
Wind speed Actual and Predicted using EEMD Bi-

LSTM model 
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G. CNN  

  

Flowchart of CNN model 

 
 

Wind speed Actual and Predicted using CNN model 

 

 
 

 

 

 

 

 

 

 

 

 

H. EMD CNN 

 
Flowchart of EMD CNN model 

 
Wind speed Actual and Predicted using EMD CNN 

model 
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I. EEMD CNN 

 

 
Flowchart of EEMD CNN model 

 
Wind speed Actual and Predicted using EEMD CNN 

model 

  

IV.  RESULT 

 

To understand the efficacy of our proposed hybrid 

model, comparisons at various levels were performed 

by contrasting its performance with other models. 

Firstly, every model was run for 15 iterations and the 

corresponding values for metrics of evaluations were 

noted. These models were run under google colab 

environment in a system with vIntel® Core™ i5-

8250U CPU @ 1.60GHz × 8 processor and 7.7 GiB 

memory with a cloud-based GPU runtime 

environment. Mean Squared Error (MSE), Mean 

Absolute Error (MAE), Root Mean Squared Error 

(RMSE), Mean Absolute Percentage Error (MAPE), 

Validation Loss and Time takes for testing were chosen 

as the parameters for performance evaluation. 

The average values obtained under each metric after 15 

iterations were tabulated and is as follows:  

 
A good model is expected to have lower values in these 

metrics. It was observed that the EEMD +CNN model 

turned out to be the better performing hybrid model 

for the short-term hour ahead wind forecasting as it 

outperforms all the other models in five out of six 

metrics (all except time taken for testing). It can also be 

noted that the time taken is still optimal as it is more 

only with respect to basic CNN and EMD+CNN model 

and is far better than Bi LSTM and LSTM models. It is 

also expected the same as EEMD is a serial and 

computationally expensive process that requires more 

time than a model run without EEMD. It is observed 
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that decomposition-based forecasting models 

outperform the individual models in all metrics of 

evaluation except time. Among the two Decomposition 

based models (EMD and EEMD), the EEMD-based 

models exhibit better performance accuracy with 

lower MSE, MAE, RMSE, MAPE, and loss values 

 

V. CONCLUSION 

 

The prominence of wind energy generation and 

integration with the Grid has encouraged reliable and 

most accurate forecasting approaches. Based on the 

experiments, the following conclusions can be drawn 

on wind forecasting. Wind speed forecast was 

successfully performed with three ML algorithms 

namely LSTM, 31 Bi-LSTM, and CNN with and 

without the data denoising techniques. Performance 

evaluation of Machine Learning Algorithms was done 

for comprehensive comparison based on two important 

factors: 1. Performance metrics (MSE, MAE, RMSE, 

MAPE, Loss) 2. Time was taken during testing. 

Convolutional Nueral Network proved to be a better 

performing model than the Recurrent Nueral Network 

Models namely LSTM and Bi-LSTM. Denoising time 

took more time as expected and outperformed the basic 

technique in terms of forecasting accuracy and losses. 

In the following section, some of the other explorations 

done during the course of this project and the avenues 

identified to expand the domain of this project work 

will be discussed. This will be followed by any 

roadblocks encountered in each one of these 

explorations, overcoming which, further exploration is 

possible in the future. 

 

VI.  SCOPE OF FUTURE WORK 

 

From the research work carried out so far, EEMD 

turned out to be a computationally expensive data 

denoising technique. Other data denoising techniques 

like CEEMD and CEEMDAN need to be dwelled upon. 

EEMD also suffers from a problem, that if the no of 

trails is less, a small amount of noise does get mixed 

with the time-series signal. CEEMD generates a 

collection of independent Gaussian white noise and a 

complimentary pair for each white noise to perfectly 

cancel each other. EEMD also suffers from another 

problem, that is, when the no of trails increases, then 

the number of sifting processes also increases. In order 

to reduce the number of trails while retaining the 

ability to solve the mode mixing problem, we go with 

CEEMDAN. CEEMD is advantageous over EEMD and 

CEEMD in the following ways. First, It introduces an 

extra noise coefficient vector w to control the noise 

level at each decomposition stage. Secondly, the 

reconstruction is complete and noise-free and lastly, it 

requires fewer trails than EEMD and CEEMD. All this 

points out to go for a better data denoising method, that 

is, CEEMDAN. Some machine learning ensemble 

methods such as bagging and boosting can also be 

implemented along with this more noise-assisted data 

analysis method. Apart from these, the addition of 

wind parameters is one of the areas that can be 

explored since it is an important determinant for wind 

power production. Distributed computation for the 

process can also be carried out. 

 

VII. REFERENCES 

 

[1]. Wu, Zhaohua & Huang, Norden. (2009). 

Ensemble Empirical Mode Decomposition: a 

Noise-Assisted Data Analysis Method. Advances 

in Adaptive Data Analysis. 1. 1-41. 

10.1142/S1793536909000047.  

[2]. Soman, S.S., Zareipour, H., Malik, O., & Mandal, 

P. (2010). A review of wind power and wind 

speed forecasting methods with different time 

horizons. North American Power Symposium 

2010, 1-8.  

[3]. Trebing, Kevin & Mehrkanoon, Siamak. (2020). 

Wind speed prediction using multidimensional 

convolutional neural networks. 713-720. 

10.1109/SSCI47803.2020.9308323.  

[4]. Wang, Tong & Zhang, Mingcai & Yu, Qihao & 

Zhang, Huyuan. (2012). Comparing the 



Volume 9, Issue 3, May-June-2023 | http://ijsrcseit.com 

Janbhi Sharma et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., May-June-2023, 9 (3) : 459-472 

 

 

 

 
471 

application of EMD and EEMD on time-

frequency analysis of seismic signal. Journal of 

Applied Geophysics. 83. 29-34. 

10.1016/j.jappgeo.2012.05.002.  

[5]. J. K.U. and B. C. Kovoor, "EEMD-based Wind 

Speed Forecasting system using Bidirectional 

LSTM networks," 2021 International Conference 

on Computer Communication and Informatics 

(ICCCI), 2021, pp. 1-9, doi: 

10.1109/ICCCI50826.2021.9402648.  

[6]. Madasthu, Santhosh & Venkaiah, Chintham & 

Kumar, D.M.. (2018). Ensemble empirical mode 

decomposition based adaptive wavelet neural 

network method for wind speed prediction. 

Energy Conversion and Management. 168. 482-

493. 10.1016/j.enconman.2018.04.099.  

[7]. Shao, Bilin & Song, Dan & Bian, Genqing & 

Zhao, Yu. (2021). Wind Speed Forecast Based on 

the LSTM Neural Network Optimized by the 

Firework Algorithm. Advances in Materials 

Science and Engineering. 2021. 1-13. 

10.1155/2021/4874757.  

[8]. Doucoure, Boubacar & Agbossou, K. & Cardenas, 

Alben. (2016). Time series prediction using 

artificial wavelet neural network and 

multiresolution analysis: Application to wind 

speed data. Renewable Energy. 92. 202-211. 

10.1016/j.renene.2016.02.003.  

[9]. M. E. Torres, M. A. Colominas, G. Schlotthauer 

and P. Flandrin, "A complete ensemble empirical 

mode decomposition with adaptive noise," 2011 

IEEE International Conference on Acoustics, 

Speech and Signal Processing (ICASSP), 2011, 

pp. 4144-4147, doi: 

10.1109/ICASSP.2011.5947265.  

[10]. Huang, Norden & Shen, Zheng & Long, Steven 

& Wu, M.L.C. & Shih, Hsing & Zheng, Quanan 

& Yen, Nai-Chyuan & Tung, Chi-Chao & Liu, 

Henry. (1998). The empirical mode 

decomposition and the Hilbert spectrum for 

nonlinear and non-stationary time series 

analysis. Proceedings of the Royal Society of 

London. Series A: Mathematical, Physical and 

Engineering Sciences. 454. 903-995. 

10.1098/rspa.1998.0193.  

[11]. Y. Su, J. Yu, M. Tan, Z. Wu, Z. Xiao and J. Hu, 

"A LSTM Based Wind Power Forecasting 

Method Considering Wind Frequency 

Components and the Wind Turbine States," 2019 

22nd International Conference on Electrical 

Machines and Systems (ICEMS), 2019, pp. 1-6, 

doi: 10.1109/ICEMS.2019.8921671.  

[12]. K. Moharm, M. Eltahan and E. Elsaadany, "Wind 

Speed Forecast using LSTM and Bi-LSTM 

Algorithms over Gabal El-Zayt Wind Farm," 

2020 International Conference on Smart Grids 

and Energy Systems (SGES), 2020, pp. 922-927, 

doi: 10.1109/SGES51519.2020.00169.  

[13]. X. -J. Liu, Z. -Q. Mi, B. Lu and W. Tao, "A Novel 

Approach for Wind Speed Forecasting Based on 

EMD and Time-Series Analysis," 2009 

AsiaPacific Power and Energy Engineering 

Conference, 2009, pp. 1-4, doi: 

10.1109/APPEEC.2009.4918088.  

[14]. S. Jia, "A new method for the short-term wind 

speed forecasting," 2011 4th International 

Conference on Electric Utility Deregulation and 

Restructuring and Power Technologies (DRPT), 

2011, pp. 1320-1324, doi: 

10.1109/DRPT.2011.5994100.  

[15]. Y. Ren, P. N. Suganthan and N. Srikanth, "A 

Comparative Study of Empirical Mode 

Decomposition-Based  

[16]. Short-Term Wind Speed Forecasting Methods," 

in IEEE Transactions on Sustainable Energy, vol. 

6, no. 1, pp. 236-244, Jan. 2015, doi: 

10.1109/TSTE.2014.2365580.  

[17]. Z. Xing, Y. Zhi, R. -h. Hao, H. -w. Yan and C. 

Qing, "Wind Speed Forecasting Model Based on 

Extreme Learning Machines and Complete 

Ensemble Empirical Mode Decomposition," 

2020 5th Asia Conference on Power and 

Electrical Engineering (ACPEE), 2020, pp. 159-

163, doi: 10.1109/ACPEE48638.2020.9136553.  



Volume 9, Issue 3, May-June-2023 | http://ijsrcseit.com 

Janbhi Sharma et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., May-June-2023, 9 (3) : 459-472 

 

 

 

 
472 

[18]. C. M. Baby, K. Verma and R. Kumar, "Short term 

wind speed forecasting and wind energy 

estimation: A case study of Rajasthan," 2017 

International Conference on Computer, 

Communications and Electronics (Comptelix), 

2017, pp. 275-280, doi: 

10.1109/COMPTELIX.2017.8003978.  

[19]. A. J. Domingo, F. Carlo Garcia, M. L. Salvaña, N. 

J. C. Libatique and G. L. Tangonan, "Short Term 

Wind Speed Forecasting : A Machine Learning 

Based Predictive Analytics," TENCON 2018 - 

2018 IEEE Region 10 Conference, 2018, pp. 

1948-1953, doi: 

10.1109/TENCON.2018.8650287.  

[20]. H. Masrur, M. Nimol, M. Faisal and S. M. G. 

Mostafa, "Short term wind speed forecasting 

using Artificial Neural Network: A case study," 

2016 International Conference on Innovations 

in Science, Engineering and Technology 

(ICISET), 2016, pp. 1-5, doi: 

10.1109/ICISET.2016.7856485.  

[21]. C. LI, X. KONG, X. WANG, F. ZHENG, Z. CHEN 

and Z. ZHOU, "Short-Term Wind Power 

Forecasting Method Based on Mode 

Decomposition and Feature Extraction," 2019 

22nd International Conference on Electrical 

Machines and Systems (ICEMS), 2019 

 

 

Cite this article as : 

 

Janbhi Sharma, Heeba Faiyaz, Advin Manhar, "Short 

Term Wind Forecasting Using Machine Learning 

Models with Noise Assisted Data Processing Method", 

International Journal of Scientific Research in 

Computer Science, Engineering and Information 

Technology (IJSRCSEIT), ISSN : 2456-3307, Volume 9, 

Issue 3, pp.459-472, May-June-2023. Available at doi : 

https://doi.org/10.32628/CSEIT2390349 

Journal URL : https://ijsrcseit.com/CSEIT2390349 


