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 Classification of disasters is crucial for effective disaster management and response. 

This paper proposes a methodology that combines computer vision techniques and 

federated learning to improve the classification accuracy of disasters while 

addressing the issue of data transfer and the time squandered doing so. This 

methodology employs computer vision algorithms to analyze captured visual data 

from a variety of sources. It seeks to accurately classify disasters such as wildfires, 

floods, earthquakes, and cyclones by extracting pertinent features and patterns 

from these images. Using federated learning to resolve the issues of data privacy 

and transfer latency is the proposed solution. Federated learning makes it possible 

to train models on decentralized data sources without requiring data centralization. 

Each participating device or data source trains a local model using its own data, and 

only model updates are shared and aggregated to create a global model. Extensive 

experiments utilizing videos of actual disasters are conducted to evaluate the 

proposed methodology. The evaluation focuses on precision and effectiveness. This 

strategy is anticipated to result in improved disaster classification models, making 

them appropriate for deployment in disaster management systems.  
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I. INTRODUCTION 

 

In image classification tasks, deep learning models have 

made substantial progress, offering up new 

opportunities for disaster management and response 

[1]. Making timely decisions, allocating resources, and 

implementing mitigation strategies all depend on 

effective catastrophe classification. Deploying picture 

classification models in actual crisis situations, 

however, has special problems with regard to data 

protection, confidentiality, and scalability. The rapid 

and precise identification and classification of media 

content is essential for disaster response as social 

network sites have become key sources of situational 

information during disasters. This research study 

suggests a unique method for catastrophe classification 

that blends computer vision methods with federated 

learning to overcome these difficulties. While 

maintaining security and privacy, federated learning 

enables models to be trained on dispersed data without 



Volume 9, Issue 4, July-August -2023 | http://ijsrcseit.com 

Jash Shah et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., July-August-2023, 9 (4) : 432-442 

 

 

 

 
433 

data sharing. The suggested methodology uses 

federated learning to provide effective dis- aster 

classification while protecting the privacy of sensitive 

data. ResNet50 is one deep learning architecture that is 

used to further improve the system’s accuracy and 

durability [2]. The proper categorization of disasters is 

essential for emergency response and resource 

management. The suggested method can analyze and 

categorize disaster-related photos in real time by 

fusing computer vision techniques with federated 

learning, helping decision-makers grasp the gravity of 

the situation. However, the volume and requirement 

for automated approaches make analyzing social media 

data challenging. By enabling distant nodes to build an 

extensive model without sharing local data, the newly 

developed federated learning approach offers a viable 

alternative. In this method, every node trains its model 

locally before uploading the parameters for integration 

to a centralized server. This decentralized technique 

eliminates dependency on sending massive amounts of 

data to a central server and addresses concerns about 

data privacy [3] [4]. Disaster categorization is a multi-

class classification problem, and hence the proposed 

approach has been evaluated on some benchmark 

classification metrics such as Precision, recall, and F1 

score. The paper also discusses the value of using 

Federated Machine Learning for the said task. It also 

goes over some of the challenges faced as well as 

discussing future scope and ways to improve the 

system. 

 

II. RELATED WORK 

It is possible to think of disaster categorization as a 

particular use for event classification. A number of 

papers have addressed disaster detection using artificial 

intelligence techniques. The disaster categorization 

approaches can generally be divided into two 

categories: text-based methods and image-based 

methods, depending on the modalities of social media 

data. In other experiments, the goal was to extract 

textual elements that could be utilized to identify 

disparate data. Two innovative neural models for 

disaster information retrieval were put up by Basu et al. 

[18] and successfully incorporated word-level and 

character-level embeddings. In their method for 

categorizing disasters, Madichetty and Sridevi [19] 

used convolutional neural networks (CNN) to extract 

features from text input. A deep learning-based 

method for classifying social media text has been 

presented by Bhoi et al. [20] and could be used to 

categorize tweets about emergencies. Even though 

there aren’t many ways for classifying disasters based 

on photos, numerous studies have shown that images 

published on social media during a crisis can aid 

humanitarian organizations [21]. Alam et al. [22], for 

example, proposed an image analysis system that could 

identify photographs in crisis situations and extract 

useful information using deep learning- based 

techniques. A number of CNN models for ground 

object detection from aerial pictures of the disaster’s 

aftermath were introduced and assessed by the authors 

in [23]. 

 

III. METHODOLOGY 

A. Resnet50 

ResNet-50 is a convolutional neural network (CNN) 

architecture that was introduced by researchers at 

Microsoft in 2015[1]. It is part of the ResNet (short for 

Residual Network) family of models, which are 

renowned for their exceptional performance in image 

classification tasks. Due to the issue of vanishing 

gradients, deep neural networks have difficulty 

training deeper architectures prior to ResNet-50[8]. 

The gradients propagated across the layers would 

become less strong as the network depth increased, 

making it more challenging for the network to learn 

efficiently. This issue was addressed by the ResNet 

architecture, which added” skip connections” or 

residual connections [9]. The idea of residual learning 

is the main innovation in ResNet-50. ResNet-50 

includes residual blocks in addition to the more 

conventional stacked layers. These blocks have short-

cut connections that let data from one layer of the 

network go quickly to a deeper layer. Thus, the 
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network can efficiently learn residual mappings that 

capture the discrepancy between the current and 

desired outputs, improving the training process’s 

effectiveness. The architecture of ResNet-50 consists of 

multiple layers, including convolutional, and fully 

connected layers. The network accepts a 224x224 pixel 

RGB image with three colour channels as input [7]. A 

convolutional layer with 7x7 filters and a stride of 2 is 

the first stage’s first layer, and it is followed by a max 

pooling layer with a 3x3 filter and a stride of 2. This 

increases the number of channels while reducing the 

spatial dimensions. The residual blocks are the main 

constituent parts of ResNet-50. There are four different 

kinds of residual blocks in ResNet-50, each with a 

particular number of layers. Blocks known as 3x 

Residual Blocks have two convolutional layers with 64 

filters each. Similarly, blocks known as 4x Residual 

Blocks have three convolutional layers with 128 filters 

each. Blocks with a 6x residual are made up of four 

convolutional layers and 256 filters. The final stage 

consists of three convolutional layers with 512 filters 

[7]. A layer of global average pooling is added after the 

residual blocks. It generates a fixed-size output after 

calculating the average value for each feature map. A 

fully connected layer with 1000 units, which 

corresponds to the number of classes in the ImageNet 

dataset, follows the global average pooling layer [6]. It 

acts as the categorization output layer. The network’s 

output is transformed into a probability distribution 

over the classes in the final layer using a SoftMax 

activation function, allowing classification. Labelled 

data and optimization methods like stochastic gradient 

descent (SGD) or its variants are used to train the 

ResNet-50 network [17]. Convolutional layer and fully 

connected layer weights, among other model 

parameters, are iteratively changed during training to 

reduce the discrepancy between predicted and actual 

labels. 

 

B. Federated Learning 

Federated Machine Learning (FML) is a relatively 

recent approach that addresses privacy and data 

ownership concerns in traditional machine learning 

systems [3]. As researchers investigated ways to train 

models across different servers or devices without 

sharing raw data, the idea of distributed machine 

learning developed. Researchers at Google developed 

Federated Learning, which was released in 2016. In 

their seminal publication, they introduced a 

framework for directly training models on consumer 

devices while maintaining data privacy. The 

fundamental concept was to facilitate cooperation 

while protecting data privacy by having devices 

broadcast model updates to a central server rather than 

raw data. Federated Machine Learning (FML) does not 

have a specific fixed architecture like traditional 

machine learning models. Instead, it is a framework 

that involves a distributed and collaborative approach 

to training models on decentralized data sources. In 

FML, the training procedure is often coordinated by a 

central server. The complete training process is 

managed by the central server, which also aggregates 

model updates and distributes updated models to the 

participating devices or clients [13]. In FML, the 

training takes place right on the local hardware or 

clients that house the data, as opposed to transfer- ring 

the data to a centralized server. These gadgets could be 

cell phones, edge devices, Internet of Things (IoT) 

devices, or any other decentralized data sources. Using 

its own local data, each client trains the model and 

transmits model updates to the central server. To make 

the interchange of model updates easier, a 

communication protocol is built between the central 

server and the local devices. This protocol allows for 

effective communication in a federated setting while 

guaranteeing the privacy and security of the data 

during transmission. The local devices provide model 

updates and train their models using the data they have 

on hand. The changes or gradients in the model 

parameters based on the local data are often 

represented by these updates. The central server 

receives the model updates safely. The central server 

aggregates the model updates from many devices or 

clients and combines them into a single, global model. 
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The model updates can be combined using a variety of 

aggregation approaches, including averaging, weighted 

averaging, and other more intricate aggregation 

systems [13]. The modified global model is then 

distributed back to the participating devices or clients 

by the central server following aggregation. The new 

model considers the collective wisdom gained from the 

diverse data sources. To enhance the model’s 

performance over time, updates, aggregation, and 

distribution are often carried out iteratively. The 

model may learn from several decentralized data 

sources and gain from the network’s collective insight 

by going through several training cycles [3]. FedML, or 

Federated Machine Learning, can be an effective 

approach for disaster classification due to its unique 

characteristics and advantages. When it comes to 

disaster classification, where timely and accurate 

predictions are crucial for response and mitigation 

efforts, FedML offers several benefits. FedML permits 

collaboration and the pooling of data resources without 

the sharing of raw data. Instead, the training process 

occurs locally on local servers or devices, ensuring the 

confidentiality and security of the data. Using a wide 

variety of data sources, this decentralized method over- 

comes the difficulties associated with data silos and 

enables a more comprehensive comprehension of 

disasters. Disasters can occur in different locations and 

exhibit varying characteristics. By utilizing FedML, 

models can be trained locally on data specific to a 

particular disaster-prone area, considering local 

environmental factors, infrastructure, and 

demographics. This localized approach enhances the 

model’s ability to capture the nuances and unique 

patterns associated with each disaster type, leading to 

improved classification performance. 

 

IV. DATASET DESCRIPTION 

The training dataset consists of 4400 images from four 

distinct disaster classes: cyclones (900 images), 

earthquakes (1400 images), floods (1000 images), and 

wildfires (1100 images). It is further divided into two 

datasets: 75 percent training data and 25 percent 

testing data. To prevent overfitting, the images in the 

dataset are taken from a variety of perspectives, 

magnification levels, and illumination conditions, 

which diversifies the data and challenges the model 

during training. 

 

V. IMPLEMENTATION 

 

The configuration for the implementation includes a 

simulation of four clients and one Central Server. In a 

real- world circumstance, the number of client nodes 

can be scaled according to the needs of the user. Due to 

the hardware limitations of simulating Federated 

learning and training on a single machine, they have 

been assigned to four. The training data is distributed 

unequally among clients, as it would be in a realistic 

scenario. Each client trains their respective model 

using only the allocated data. At the conclusion of 

training, test data is evaluated on the global model, i.e., 

the model on the central server, and the model’s 

performance is evaluated based on a variety of 

benchmark performance metrics. Adopting a federated 

approach is primarily motivated by the desire to 

simulate a real-world scenario in which image data is 

shared across multiple sources and the transfer of data 

to a central server would be time-consuming, which 

should be avoided in this case, i.e. in the event of a 

natural disaster where time is of paramount 

importance. The training process begins with pre-

processing of the image data. First, the labels to the 

images are extracted and appended to a label array. 

Then the image is read, converted to RGB channel 

ordering, and resized to 224×224 pixels, as the model 

expects. The model operates on an array of samples, 

where one image has 224×224 pixels and three 

channels. Given that the task is of multi-class 

classification, one-hot encoding is performed on the 

labels. One-hot encoding transforms categorical labels 

into binary vectors, where each class is represented by 

a binary vector with a single element set to 1 and the 

remaining elements set to 0 [10]. The training data is 
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further split into train and validation sets, 90 percent 

training and 10 percent validation. 

 

As the next step of pre-processing, the training data 

undergoes data augmentation. The purpose of data 

augmentation is to enhance the diversity and 

variability of the training dataset. Data augmentation 

introduces variations in the form of rotations, 

translations, flips, zooms, and more by applying 

random transformations to the existing training data. 

This technique helps prevent over-fitting. Data 

augmentation encourages the model to generalize to 

unseen examples and improves its robustness to various 

variations, such as orientation, scale, illumination 

conditions, and perspective changes [11] [12]. In the 

proposed approach the data is augmented by 

performing rotation, zooming, width and height shift, 

shearing, and flipping by a random value within a 

range. This completes the pre-processing stage. Next 

comes the model, which performs the task of 

classifying the data as one of the disaster classes based 

on deep CNN networks. The ResNet50 model is used as 

the base of the model. The pre-trained weights trained 

on the ImageNet dataset are loaded and the top fully-

connected layers are removed to customize the model 

for the specific task. The ResNet50 model performs the 

task of feature extraction, and the extracted features 

are inputted into the custom classification layer [1]. 

This is the head of the model. This is the head of the 

model. First, the output of the base model is 

transformed into a 1D feature vector using the Flatten 

operation. A dense, fully connected layer with 512 

units and a Rectified Linear Unit (ReLU) activation 

function is subsequently added. Rectified Linear Unit 

(ReLU) is an activation function that returns 0 if the 

input is negative and returns the value if positive [14]. 

A Dropout layer with a dropout rate of 0.5 is included 

to prevent over-fitting. It randomly sets a fraction of 

the input units to zero during each training step, 

effectively disabling them. This helps the model learn 

more robust and generalized representations by 

preventing reliance on specific input units and 

encouraging the network to utilize different 

combinations of units [15]. Class probabilities are 

Figure 1. Proposed approach pictorial representation. The black arrows show updates from the clients’ local model to central server and the golden 

arrows indicate sharing of global updates. The red arrows indicate the classification performed by the global weights 
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produced by appending a Dense layer with the SoftMax 

activation function. SoftMax activation is a 

mathematical function used to convert a vector of real 

values into a probability distribution, where the output 

values sum up to 1 and represent the likelihood of each 

class in a multiclass classification problem. This final 

layer contained the same number of units as classes in 

our classification task. To ensure that the pre-trained 

weights of the base model are not updated during the 

initial training, the trainable attribute of each layer in 

the base model is set to False. Combining the base 

model with the customized head model yields the 

entire model architecture. To compile the model 

categorical cross entropy is used. It is commonly used 

for multiclass classification as is for the task at hand. 

The categorical cross-entropy loss determines the 

mean logarithmic loss across all classes. The model is 

penalized more severely when it allocates low 

probabilities to the correct classes and high 

probabilities to the incorrect classes. The objective of 

minimizing the categorical cross-entropy loss is to 

motivate the model to generate more precise and 

confident predictions for each class. The lower the 

categorical cross-entropy loss, the better the model’s 

predictions align with the true labels [16]. The 

employed optimizer is Stochastic Gradient Descent 

(SGD). It is more computationally efficient than 

traditional Gradient Descent because it adjusts the 

model’s parameters iteratively by computing the 

gradients of the loss function on a small subset of 

training samples (mini-batch) at each step. SGD seeks 

to identify the optimal parameter values that minimize 

the loss function, enabling the model to converge over 

time to a superior solution [17]. Hyperparameter 

tuning has been performed to optimize the model 

further. Now, each of the four individual models is 

executed for eight rounds. Federated Averaging has 

been adopted for the aggregation of results back to the 

central server [13]. It enables all clients to perform 

multiple batch updates on local data and facilitates the 

exchange of the updated weights. In this method, the 

global weights are updated at the outset of each round 

based on the changes made to the local weights in the 

previous round. Each client then constructs a local 

model containing the previously defined hyper-

parameters. The initial weight of the local model is set 

to the weight of the central server’s global model. The 

client then employs the data it was allotted to train a 

local model. The local weights are then scaled using a 

scaling factor for each client, and once all local weights 

have been updated, they are aggregated and averaged 

to produce a new global weight for the subsequent 

global round. At the conclusion of eight cycles, the 

central server generates the final model weights for 

classification. The implementation code has been 

written in python. The model has been evaluated based 

on metrics discussed in the next section. The model has 

been tested on various video inputs using videos 

available on the internet 

 

VI. RESULTS 

 

A. Evaluation Parameters 

Given that the problem statement is a multi-class 

classification problem, the following parameters have 

been selected as evaluation metrics in order to gain a 

more nuanced comprehension of the model’s strengths 

and weaknesses in various classification task-related 

aspects. 
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1) Accuracy: Accuracy is a commonly employed metric 

for assessing the performance of a classification model. 

It indicates the proportion of instances that were 

accurately predicted relative to the total number of 

Figure 2. Model output for Earthquake 

Figure 3. Model output for Cyclone 

Figure 4. Model output for Flood 

Figure 5. Model output for Wildfire 
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instances in the dataset. In multiclass classification, 

accuracy is determined by averaging the accuracy of 

each class. It indicates the extent to which the model 

can correctly classify instances across all classes. 

 2) Precision: The capacity of a model to recognize 

only relevant items is referred to as precision. True 

positive (TP) denotes the number of the model’s 

accurate positive predictions, whereas false positive 

(FP) denotes the number of the model’s inaccurate 

positive predictions. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

 

3) Recall: Recall measures the proportion of actual 

positive cases that the model correctly identifies as 

positive, and is, therefore, an indication of the model’s 

ability to detect positive cases. True positive (TP) 

represents the number of correct positive predictions 

made by the model, while false negative (FN) 

represents the number of incorrect negative 

predictions made by the model. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

 

4) F1 Score: The F1 score is an evaluation metric that 

gauges the correctness of a model. It blends a model’s 

precision and recall scores. The accuracy statistic 

calculates how many times a model predicted correctly 

over the full dataset. The F1 score provides a balanced 

assessment of a model’s ability to correctly identify 

both positive and negative cases. 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

B. Observed parameter scores 

With impressive metric scores, the model 

demonstrates tremendous potential. The observed 

values for individual disaster classes are presented in 

Table I, and the model’s aggregate performance is 

summarised in Table 2. 

Table I : Precision, Recall and F1 Score of individual 

disaster classes 

 

Disaster 

Class 

Precision Reca

ll 

F1-Score 

Cyclone 0.95 0.96 0.95 

Earthquake 0.94 0.92 0.93 

Flood 0.90 0.93 0.91 

Wildfire 0.95 0.93 0.94 

 

The effectiveness of the system in classifying 

individual disasters is detailed in Table I. The Cyclone 

class has the highest performance because it was 

trained with higher- quality satellite images. Then 

come wildfires, earthquakes, and floods respectively. 

They all have comparable scores and perform 

exceptionally well on the classification task. 

Table II : Evaluation score of overall model 

Evaluation Metric Score 

Accuracy 0.94 

Precision 0.92 

Recall 0.93 

F1-Score 0.925 

 

Table II details the overall performance of the model, 

which received high evaluation scores. The model’s 

accuracy is 0.94, its precision is 0.93, its recall rate is 

0.92, and its F1 score is 0.925. This demonstrates its 

robustness and operational excellence. 

 

VII. CHALLENGES FACED 

 

A. Dataset 

Finding an appropriate dataset posed a significant 

challenge, as we sought to procure a diverse set of 

images that not only exhibited high resolution, but also 

featured low-quality depictions, variable 

environments, inadequate lighting and other forms of 

interference. To implement Federated Learning, a 

larger dataset was required so as to ensure there is 

sufficient data on each local client for training. 
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B. Hardware requirements 

The hardware requirements are one of the most 

challenging aspects of implementing the disaster 

classification method with Federated Learning (FedML) 

and computer vision. The computational requirements 

of training deep learning models and the resource-

intensive character of Federated Learning impose 

significant hardware constraints. High-performance 

GPUs or specialized hardware accelerators are often 

necessary to efficiently process the large volume of 

image data and perform complex operations involved 

in feature extraction and model training. In addition, 

the decentralized nature of Federated Learning 

necessitates that each client has sufficient hardware 

resources to execute local model training and 

contribute to the collaborative learning process. To 

simulate this environment a device with sufficient 

power was required. 

 

VIII. CONCLUSION 

 

In conclusion, this research paper proposed a 

methodology for disaster classification using computer 

vision and Federated Learning (FedML). ResNet50 was 

utilized as a feature extractor with a custom model 

head for classification, and the FedAvg algorithm was 

implemented for the Federated Learning framework. 

The use of computer vision techniques allowed for the 

extraction of meaningful features from disaster images, 

enabling accurate classification of various disaster 

scenarios. ResNet50, a widely adopted pre-trained 

convolutional neural network, served as a powerful 

feature extractor, capturing important visual patterns 

and representations from the input images. The paper 

suggests the use of Federated Learning to address the 

challenges of data privacy and distributed data storage 

in disaster classification. FedML facilitated the 

collaborative training of the classification model across 

multiple clients without requiring centralized data 

aggregation. These client model updates were 

aggregated using the FedAvg algorithm. The proposed 

method yielded promising results in disaster 

classification, demonstrating the efficacy of integrating 

computer vision techniques with Federated Learning. 

The model obtained a high degree of precision in 

classifying images of disasters, thereby facilitating 

rapid response and decision-making in emergency 

situations. 

 

IX. FUTURE SCOPE 

 

A. Threat level categorization 

Incorporate categorization of various threat or severity 

levels related to catastrophes. This could entail 

classifying dangers or their seriousness into categories 

like low, moderate, or high, or into levels particular to 

the kind of disaster, such as earthquake intensity levels 

or flood intensity levels. 

B. Finding malicious clients 

Due to secured averaging, all FL clients are anonymous, 

which allows any malicious clients to upload 

ambiguous updates to the server and launch a targeted 

model poisoning attack on the server to harm the 

performance of the global model. It is essential to look 

for and identify these malicious model upgrades and 

the attackers behind them. Byzantine- robust FL 

approaches are among the few defence measures 

against suspect clients, although they cannot 

experimentally ensure whether or not the predicting 

labels used for testing are altered. 

C. Developing a plan to mitigate the negative impact of 

the unreliable nodes 

Unreliable nodes in Federated Learning (FL) refer to 

de- vices or servers that exhibit inconsistent behaviour 

or provide inaccurate updates throughout the training 

process. Unreliable nodes can have a negative effect on 

the final model’s quality and dependability. Mitigating 

this improves the accuracy and dependability of the 

model by minimising the impact of inconsistent or 

imprecise updates. It assures more reliable node 

selection, robust aggregation algorithms, and outlier 

detection mechanisms, resulting in a more accurate 

and reliable aggregated model. 
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