
Copyright © 2023 The Author(s): This is an open-access article distributed under the terms of the Creative

Commons Attribution 4.0 International License (CC BY-NC 4.0) which permits unrestricted use, distribution, and

reproduction in any medium for non-commercial use provided the original author and source are credited.

International Journal of Scientific Research in Computer Science, Engineering and

Information Technology

ISSN : 2456-3307

Available Online at : www.ijsrcseit.com

doi : https://doi.org/10.32628/IJSRCSEIT

125

Study of Various Known Bugs and Other Challenges

Associated with IoT System Development
Sandhya Devi1, Dr. Dev Singh2

1Assistant Professor, Dept. of Computer Science and Engineering, Allenhouse Institute of Technology, Rooma,

Kanpur
2Professor, Dept. of Applied and Computational Mathematics, Allenhouse Institute of Technology, Rooma,

Kanpur

A R T I C L E I N F O

A B S T R A C T

Article History:

Accepted: 05 Sep 2023

Published: 16 Sep 2023

 Embedded systems and smart homes are only two examples of the fast expanding

use cases for Internet of Things (IoT) infrastructure. There has been no in-depth

research of the difficulties developers face while working on the Internet of

Things despite its rising popularity and widespread use. We provide the first

comprehensive assessment of the issues and difficulties encountered by IoT

developers via a large-scale empirical inquiry. A total of 5,565 bug reports from

91 typical IoT project repositories were gathered, and from those, a random

sample of 323 were classified according to failure types, underlying causes, and

physical locations of problematic components. To learn more about IoT problems

and the difficulties faced by IoT developers, we also conducted nine interviews

with industry insiders. In the end, we polled 194 IoT developers for confirmation

and further information. Based on our findings, we offer the first bug

classification for IoT systems. We focus on the most prevalent types of bugs that

affect IoT systems, along with their origins, relationships, and the difficulties and

obstacles that programmers often encounter while fixing them.

Keywords – IoT, Software Engineering, Data Mining, and Real-World Evidence

Publication Issue

Volume 9, Issue 5

September-October-2023

Page Number

125-139

I. INTRODUCTION

The concept of the Internet of Things (IoT) calls for a

network of “smart objects” equipped with sensors and

actuators to be connected to the web using standard

protocols for exchanging data [1]. By 2020, there will

be four times as many smart, connected gadgets as

people [2], and by 2025, that number is expected to rise

to 75.44 billion [3]. These “things” are capable of

collecting data or carrying out commands when

programmed and operated remotely. The specific

aspects of the difficulties in designing IoT systems

include programming physical devices with limited

resources, dealing with different network protocols,

and merging different organizations. IoT bugs are more

Volume 9, Issue 5, September-October-2023 | http://ijsrcseit.com

Sandhya Devi et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., September-October-

2023, 9 (5) : 125-139

126

difficult to understand than software defects because of

the factors listed above.

The features of IoT repositories [4] and various

problems of IoT systems [5–7] have been the subject of

previous research. The existing literature on bug

classification focuses on certain areas of the Internet of

Things, such as flaws in smart aquaculture systems [8],

operating system flaws in IoT devices [9], and

deployment flaws in IoT systems [5].

To the best of our knowledge, there is no similar

research available for IoT, although more established

software domains have benefitted from empirical and

qualitative studies on their problems and developer

issues [10]–[12].

This document surveys the problems that developers

face while working on IoT systems, and it does so in a

comprehensive and methodical way. We achieve this

by collecting 5,565 bug reports from 91 typical IoT

applications by crawling their GitHub repositories. We

apply RCA to a sample of 323 bug reports, classifying

them according to failure type, potential causes, and

geographic origin. Based on our findings, we present

the first comprehensive taxonomy of IoT system

problems. We performed semi-structured interviews

with nine IoT practitioners with real-world experience

in various IoT layers to supplement the taxonomy and

learn more about the difficulties faced by IoT

developers. Finally, we confirmed our results with an

online poll completed by 194 IoT developers.

II. CONTEXT AND INSPIRATIONS

The usual architecture of an IoT system is shown in

Figure 1 [1, 7], [13], [14]. This layer is for the devices.

Smart, programmable items whose embedded sensors

and actuators interact with the physical environment

are part of the device layer. Developers may create

embedded code on top of the device OS with the help

of lightweight embedded operating systems (like

Contiki, RIOT, and TinyOS) [15]. Bare metal IoT

devices, on the other hand, execute the embedded code

directly in the hardware.

Device Layer: TinyOS with support for multiple

programming languages, developers may build

embedded code on top of the device OS [15]. These

gateway devices have less resource limits and can

collect, analyze, and route telemetry data locally at the

network's edge. Bare metal IoT devices, on the other

hand, execute the embedded code directly in the

hardware.

Figure 1: Architecture of an IoT system

Edge Layer: In this layer, gateway nodes with less

resource constraints collect, analyze, and route

telemetry data at the network's periphery.

Cloud Layer: Cloud servers in the Internet of Things

collect and analyze all telemetry data and provide two-

way communication between diverse IoT gadgets for

remote management and monitoring. Users may

specify the interoperability behaviors of the IoT system

by writing automation logic between IoT devices using

the rule engine found in IoT cloud servers [17].

Inspiring Illustration: Motivated by a real-world IoT

problem, we investigate the difficulties faced by

developers while working on IoT systems. The actions

done by IoT developers (shown on the right side of

Figure 1) to determine what caused the problem

reported as PYTRADFRI/135 [18] are shown. This

malfunction happened in a smart home setting, which

necessitates the use of a gateway device to link various

gadgets to a server handling home automation.

Developer conversations have shown that this flaw

initially appears at the application layer. When the

user installs a light bulb device (D3), the software

Volume 9, Issue 5, September-October-2023 | http://ijsrcseit.com

Sandhya Devi et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., September-October-

2023, 9 (5) : 125-139

127

thinks it's a sensor and attempts to turn it off (steps 1

and 2), crashing (step 2). The developers' first

hypothesis (step 3) was that a mismatch between a

gateway library and the home automation server was

at the heart of the problem.

Step 4's study into the edge layer failure, however,

uncovered the fact that D3 is incorrectly identified as

a remote controller (F3) by the gateway. The

possibility for irregularities in the subject device's

payload data was also explored (step 5), since the

gateway in this system depends heavily on a precise

format of response data from devices to identify their

kinds correctly.

Developers also tested pairing in a variety of scenarios

(step 6) to account for factors like device battery life

and distance from the gateway. After elimination of all

other possible explanations, an external firmware flaw

in the G2 gateway device was found as the cause (step

7), and the problem was resolved (step 8) by resetting

both the device and the gateway and re-pairing them.

But, amazingly, F2 survived. After keeping an eye on

the.

III. METHODOLOGY

We want to learn more about the nature of software

defects in IoT systems and the difficulties faced by

developers. In order to achieve this goal, we answer the

following study questions:

RQ1: What are the classes of bugs in IoT systems?”

RQ2: What challenges do IoT developers face in

practice?”

To find the answers to these questions, we perform a

two-stage empirical study. We examine 323 open-

source IoT project bugs and code changes in the first

phase. We use the results to provide the first

comprehensive classification of IoT system flaws. We

undertake a qualitative research in the second stage

(RQ2) by (1) conducting semi-structured interviews

with Internet of Things (IoT) developers to identify

previously unidentified categories of bugs and issues,

and (2) conducting a survey of IoT developers to

confirm the results and glean further insights. Our

whole set of quantitative and qualitative data [19] is

now accessible.

A. Classification of Internet-of-Things Flaws

Receipt of reported bugs: Locating repositories that are

typical of Internet of Things initiatives is the first order

of business. We used the “GitHub topic feature” to

locate repositories pertinent to the Internet of Things.

The official GitHub documentation [20] explains that

Topics are tags used to establish relationships between

repositories based on shared interests. We conducted a

search for subjects that had “internet-of-things” and

“IoT” as relevant keywords, and then added “IoT-

application”, “IoT-platform”, and “IoT-device” from

the results to our list of desired areas of study. In

January of 2020, we gathered 8,774 repositories based

on these five themes. Repositories with fewer than 10

ratings were disregarded [21], leaving 1,356 for analysis.

In order to filter for legitimate issues, we only included

complaints that were marked as “closed” and had the

words “bug,” “defect,” or “error” in the subject line. We

also hand-analyzed repositories with more than five

labelled problems or more than fifty closed issues based

on data from the readme page, issued bug reports, and

the website (where available) to ensure that we

included only typical IoT repositories in our analysis.

We didn't include UI, documentation, or old

repositories since these aren't typical of Internet of

Things solutions. To complete this study, we compiled

a list of 91 open-source IoT repositories. We modified

our search terms to include the labels used by five

repositories (such as “problems”, “kind/bug”, and “type:

bug”) that use custom labels. There were a total of 91

IoT repositories, from which we gathered 5,565

problem complaints.

All of the components of the IoT system's architecture

shown in Figure 1 are represented in our topic IoT

repository. Python (21%), Java (18%), JavaScript (17%),

C (13%), and C++ (13%), are the most common

programming languages found in the topic repositories.

Volume 9, Issue 5, September-October-2023 | http://ijsrcseit.com

Sandhya Devi et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., September-October-

2023, 9 (5) : 125-139

128

Besides Java, C++, and Python, some developers prefer

Go, Ruby, and C#. There is a wide range of star and fork

counts across the chosen repositories. About 32% of

the repositories we looked at had over 500 ratings in

February 2020, while 40% had between 50 and 500,

and 28% had between 10 and 50.

Labeling: Each report of a problem in our dataset was

converted into a JSON object that details the failure,

the reason for the failure, and the exact line or lines of

code that were flawed. When a system exhibits

behavior that goes against what should be expected of

it, we call it a failure [22], [23]. We performed root-

cause analysis (RCA) on each report of a problem,

digging into the “why” behind the issue using the “five

whys” approach [24]. This method recognizes that a

system failure may have originated from a number of

diverse sources. Using this method, we began with the

error and probed for the underlying reason by asking

“why” again and over. When anything goes wrong

with your software, it's probably because of something

your developers did wrong when creating your

Internet of Things system. We utilized the structure

described in Section II as a standard by which to

identify and designate potential problem areas.

Participants: To find programmers with sufficient

expertise making IoT systems, we employed purposive

sampling [27]. We choose GitHub because it has such

a large community of engineers working on a wide

variety of projects, making it ideal for recruiting

interviewees. The top three contributors to the most

popular open-source IoT repositories' email addresses

were the only ones we were able to get for our

candidate interviewees.

We used email to contact potential participants and in-

person interviews to gather information until we had

enough information to repeat the research [26]. We

based our decision to discontinue conducting

interviews based on this well-established

methodological guideline [28, 29], which is also

employed in other qualitative research in software

engineering [30, 31]. To account for differences in

experimental outcomes among groups, we conducted

interviews with persons from a wide range of

development experiences and backgrounds [32].

Protocol: We used a semi-structured approach to

interviews because we wanted to be receptive to fresh

information and we lacked a definite framework for

classifying bugs. Participants were first asked about

their experience with and knowledge of IoT

development. We may use this knowledge to ask more

in-depth questions on the topic at hand during the

technical portion of the interviews. The technical

component of the test included both free-form and

narrowly focused inquiries about several classes of IoT

development flaws and obstacles. To prevent

participants from being predisposed to our results, we

began with open-ended questions and transitioned to

more closed ones later on.

Analysis: To assure the quality of the theory developed,

we used the grounded theory technique [33], since the

fundamental goal of this research is to generate

theories from the experiences of IoT practitioners

rather than utilizing pre-conceived theories. By

repeatedly comparing all the previously analyzed data

with the emerging theories, we (i) collect qualitative

data from the interviews, (ii) analyze the interview

transcript line by line and assign labels (tags) to distinct

units of meaning, and (iii) identify emerging categories

and relate categories to their sub-categories. Each

interview followed the same format. We were able to

glean an average of 18 tags per interview. After each

round of editing, the writers addressed any labeling

issues that had arisen.

B. Survey Validation

To make sure our results can be extrapolated to the

wider IoT developer community, we conducted a poll

online.

Participants: We sent our web-based survey to

programmers who have made at least three

contributions to the compiled IoT repositories in

section III-A, as well as to IoT development groups on

social media sites like Linkedin and Facebook, and to

Volume 9, Issue 5, September-October-2023 | http://ijsrcseit.com

Sandhya Devi et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., September-October-

2023, 9 (5) : 125-139

129

online forums. Between July 19 and August 19, 2020,

we conducted an online survey. Our artifact bundle [19]

includes the survey in its entirety as it was sent out to

participants.

IV. BUG CATEGORIES IN THE IOT

Here, we detail what we discovered about security

flaws in the internet of things.

A. Bugs' Taxonomy

To create taxonomy of IoT system issues, we utilized

all the tags acquired by RCA from the bug reports in

our dataset. Our illustrative figure II shows how IoT

flaws might have several manifestations at various

levels and places. As a result, we made sure that our

bug taxonomy could account for all of these features.

Taking into account the numerous methods proposed

by Usma et al. Since IoT bugs are complex and mostly

uncharted, we followed Kwasnik et al.'s [34] method

for building a taxonomy of them. Taking cues from

their method, we started by defining the failures and

places that would become central to our categorization.

We then categorized all reported bugs into a

hierarchical taxonomy according to these factors.

Interview and survey responses were utilized to

supplement and improve the taxonomy after the

original version had been developed. Following each

revision to the taxonomy, we went through all of the

data and re-applied tags. Our taxonomy of IoT bugs is

shown in Figure 3. Our taxonomy of bugs continues

with a discussion of its primary divisions. We'll

illustrate each kind of problem using real-world

instances. All these illustrative bugs

Protocol: There are three parts to the survey. In the

first portion, we gather general and IoT development

experience from participants, as shown in Figure 2. In

the second half, we ask questions on the difficulties of

creating IoT systems in an effort to draw parallels

between our research and the participants' own

experiences.

Analysis: We received 194 legitimate replies to our poll,

for a response rate of around 10%. There were 95

responses to the free-form questions. Following the

same method outlined in section III-B, all survey

responses are coded and evaluated.

IoT Gadget: Hardware and software flaws in IoT

devices are the subject of this taxonomy category. In

this subcategory, bugs manifest themselves in the

hardware of an Internet of Things device. Wiring

problems, incorrect pin status, and malfunctioning

sensors and actuators are all examples of faults that may

arise from improper hardware. For instance, the

PEDALINOMINI/34 issue is associated with the

gadget's inability to distinguish between single and

double button pushes. Similar flaws sometimes stem

from the device's limited storage space, battery life, or

computing power.

Device firmware: Firmware bugs consist of three sub-

categories. The first pertains to device firmware

unexpected exception and hang issues. The second sub-

category includes issues related to the configuration of

the IoT device, which can be specified as an external

instruction sent to the device for a specific purpose.

This bug usually happens in the early stages of

introducing an IoT device to the IoT network. Each

device has to be configured properly in a way to be

compatible with other hardware or software

components and also be able to communicate with

others on the network. Issues associated with

configuring the device with WiFi credentials or with

configuring the device with the correct firmware

version are some common examples here. The third

and most common sub-category is the firmware

upgrade issue. There are various cases where poor

practices for handling over-theair (OTA) updates of the

device firmware, stale updates, or updating the device

firmware with the wrong binary have caused failures

of the IoT system. The WTHERMOSTATBECA/54 is

an example of a device that requires WiFi credentials

to be changed after each firmware update or else future

firmware upgrades will be obsolete.

Volume 9, Issue 5, September-October-2023 | http://ijsrcseit.com

Sandhya Devi et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., September-October-

2023, 9 (5) : 125-139

130

Compatibility: Compatibility issues are those that

manifest themselves on just one device,

communication protocol, or external component.

Some devices may have compatibility issues because

they display their telemetry data in a way that is not

understood by other devices. Other frequent

difficulties stem from incompatibilities between

sensors and development boards, such as the DHT

temperature sensor's incompatibility with the ESP32

microcontroller in MONGOOSE-OS/277. Problems

with the compatibility of several protocols is another

example. As an example, consider the

MAINFLUX/1079 issue about the compatibility of the

HTTP and MQTT protocols. Building protocol- or

device-specific code is a typical error in IoT

development that contributes to these problems. In

DEVICE-OS/1938, for instance, the IoT platform

depends on event components to indicate what

protocols each event is meant for, allowing for separate

functions to be executed for each protocol. However,

in order to get around the restrictions of third-party

devices, developers are occasionally forced to resort to

this error-prone method. For instance, [2] highlighted

an example where developers were obliged to design

bespoke logic to communicate between the Raspberry

Pi and certain kinds of sensors due to the mismatch

between the two platforms. Depending on the kind of

sensor, developers have to choose between the

Raspberry Pi's default implementation and a bespoke

one.

Connection to the Internet of Things: Communication

flaws between IoT devices or between IoT devices and

external entities. There are two main families of bugs

to consider here:

Problems with a device's Internet connection may

stem from difficulties with the network via which the

device is trying to connect. If the device is unable to

locate a working network, such as a Wi-Fi hotspot,

Internet connectivity will be lost. In addition to the

network discovery, not handling a network reset or

unstable and unreliable networks are also common

issues that can lead to failures, as mentioned by P9:

“When the device location is changed to another room

or another building, the device has to be reconfigured

for the new access point.” However, even a good

network, Internet of Things devices don't always

succeed in establishing a reliable connection to the

gateway or distant cloud servers. IoT developers also

face challenges related to reconnecting devices,

updating connections, and preventing failures in one

component from spreading to others as a result of a

connectivity issue.

Bugs in this category also reveal themselves in the form

of sudden disconnection or connection closure.

Connectivity issues are the most significant and

difficult, according to two interviewers [6, 9]. Our

ability to interface with IoT devices is our platform's

weak point, as P9 puts it.

Issues with the transmission of data and messages

inside the IoT system fall under this category.

Communications between devices in the Internet of

Things (IoT) often take the form of instructions

delivered to devices in the cloud or telemetry data

received from devices at the edge, cloud, or apps.

Occasionally, flaws prevent these communications

from reaching their intended recipients. The timing of

messages is a source of trouble for certain users. Some

of the identified issues include the delivery time and

sequence of messages.

Moreover, certain flaws are associated with the content

of the communications themselves. Failures may

sometimes be traced back to issues with the payload's

size or structure. Message truncation and overwriting

are other common causes of payload integrity breaches.

Hybrid cloud and edge computing services: Edge-layer

services provided by distant cloud servers or gateway

devices are susceptible to this group of problems.

Management of Devices: All Internet of Things gadgets

should communicate their status to a central server or

hub, where they may also receive orders from users.

Failures in device management (DM) may be attributed

to a variety of factors. The first category of DM

Volume 9, Issue 5, September-October-2023 | http://ijsrcseit.com

Sandhya Devi et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., September-October-

2023, 9 (5) : 125-139

131

problems occurs during initialization of the IoT device

in either the cloud or the edge systems. When the

cloud or edge components do not correctly identify the

IoT device, this is an example of a device initialization

(DI) problem that may lead to further problems in the

targeted IoT system. In addition, the IoT device

wouldn't be able to access distant services if it couldn't

prove its identity to the cloud or edge. Bugs with device

registration and provisioning may manifest itself in a

number of different ways, such as with duplicate

device certificates, problems with automatically

provided devices, or an inability to get data from the

provisioning service. Binding, association, and pairing

issues with IoT devices are yet another category of DI

defects. When the relationship between a sensor

device and a physical item is not handled correctly,

flaws may be introduced into the IoT system simply by

grouping devices (such as devices in one room). One of

our interviewees [5] gave an example in which two

switches controlled the same bulb, but only one of the

switches really worked owing to problems with

labeling devices with multiple instances. The second

group of DM concerns involves checking up on the

health of IoT gadgets. The connection status of a device

may be checked to see whether it is online; this is also

called a heartbeat check. This category of defects

includes issues like incorrect device heartbeat rate,

incorrectly displaying a lost connection as active, or

failing to inform other components when the device is

offline. The state of the device, such as the color and

brightness of a light bulb, may not be retrieved, the

status may be shown erroneously, or the device's status

may not be updated.

Progress in General Terms: Many errors encountered

while programming are cataloged here. Unexpected

crashes or performance issues in the IoT project are also

typical, as are difficulties with installation, compilation,

and construction. Authentication and authorisation

flaws are also considered part of generic development

flaws. The generation, signing, or upkeep of certificates

that devices must submit for utilizing cloud or edge

services (AZURE-IOT-SDK-C/657) is one IoT-specific

authorisation challenge. Interface-related, usability,

and external problems are other types of development

flaws.

B. Typical Insect Traits

Reasons why: General programming errors account for

48% of all faults, followed by device management

problems at 29% and communication problems at 19%.

In terms of root causes, semantic programming errors

(SEM) are the most common sources of defects,

followed by generic software programming faults

(SWP) such syntax difficulties. Mistakes in control

flow, functionality logic, or return values are examples

of semantic errors made by IoT developers. Recent

studies [37] also examine logical flaws in automation

applications and other semantic errors that are

connected to the automation logic of the IoT system.

Dependency errors (DEP) are another common source

of problems, and they occur when programmers utilize

outdated versions of necessary libraries, tools, devices,

or protocols in their code. Timing errors (TM) are a

common source of problems in hardware, network,

and message delivery. Time-related reasons include,

but are not limited to, incorrect time-out values for

connection closures, improper handling of

asynchronous behaviors, and improper management of

time-outs and rates of operations. Hardware

programming failures (HWP) are those that occur

more often in hardware-specific code, such as interrupt

handling. Another common source of IoT flaws is

improper handling of exceptional circumstances (EC).

Mistakes in handling edge situations (big or out of

range data), failures, and modifications to

specifications or third-party components are all

examples. Finally, concurrency faults (CON),

configuration faults (CNF), and memory faults (MEM)

account for the remaining reasons.

Relationships between various types of bugs: Based on

our research, we found that some types of bugs tend to

cluster together. We utilized Lift [38], a statistical

measure developed by Han and Kamber that

Volume 9, Issue 5, September-October-2023 | http://ijsrcseit.com

Sandhya Devi et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., September-October-

2023, 9 (5) : 125-139

132

determines the likelihood of two categories occurring

together, to analyze the relationships between bug

types. A lift number more than 1 indicates a positive

connection between the two bug categories, whereas a

lift value less than 1 indicates a negative association.

How often and how badly bugs occur: We polled users

and asked them how often they encounter each

problem (sub)category, how severely it affects the IoT

system, and how long it takes to remedy. The outcomes

are shown in Table III. All of the categories in our

taxonomy reflect genuine defects in IoT systems, since

at least 82% of IoT developers have encountered them.

More than 97% of IoT developers have encountered

connectivity difficulties, making it the most common

and serious fault category.

After connection concerns, device-related bugs are the

second most serious kind of defect there is. Automation

problems are the least serious flaws, yet more than 91%

of IoT engineers have encountered them at some point,

according to the report. According to the experiences

of IoT developers, compatibility problems are the least

common kind of defect. About 95% of IoT developers

have encountered device initiation difficulties, making

them the most common and serious device

management defects.

Bugs affecting the device's connection state have also

become increasingly common. However, issues with

the current settings of a device were seen as more

serious by survey participants. Bugs that arise from the

limitations of IoT devices are the most common kind

of device-related problem. The worst device-related

defects are those that occur due to exceptions in the

firmware. As a middleware developer put it in [5], “IoT

device vendors do not provide a mock of their devices,

and we have to do reverse engineering on the actual

hardware devices rather than working with the

simulated ones.” Additionally, [5, 8, 9] all agreed that

the current simulation solutions in IoT are not mature

enough and are only valid for limited scenarios, such as

testing high-level controllers or small unit tests.

The report highlights the difficulties of having a wide

variety of IoT devices, developing complicated custom

logic for realistic IoT device mocking and simulation,

and establishing test environments with IoT devices.

Identifying the precise location of the problem: Fault

localisation is hampered by a lack of visibility into the

inner workings of IoT systems, as reported by eight

interviews, nine survey comments, and half of the

survey's respondents. A major challenge in tracking

executions of various external components in IoT

systems is that, as described in [7], “there is no

environment that logs everything.” Open-source

software was highlighted by [3] as a means to provide

comprehensive logging.

Improved taxonomy: Our data set for Internet of

Things flaws includes 79 interview tags and 18 survey

comments. Experienced interviewers uncovered new

problems, such as those with device binding,

performance, and third-party compatibility, after the

fact. No more taxonomic detail was revealed in the

survey responses. However, the contextual data

provided by the retrieved tags allowed us to better

describe each problem category (from both the

interviews and the survey).

V. RESULTS OF RQ2

Here, we provide our results on the difficulties

encountered by IoT developers. Difficulties in Testing

and Bug-Fixing depending on use of the actual gadget.

IoT developers depend on access to devices to test and

debug their IoT system, through operations like

manual reset or monitoring device output [2, 3, 7], as

reported by 7 interviewers and many GitHub issues.

When devices are located in inconvenient or

inaccessible areas, remote debugging becomes even

more important. Four of the individuals surveyed

agreed that realistic simulation solutions are necessary

for improved IoT testing and debugging. Fault

localisation may also be affected by the presence of

concealed failures.

This is seen in GitHub issues (DEVICEOS/1926,

ZWAVE2MQTT/141, VSCP/207), and is illustrated by

Volume 9, Issue 5, September-October-2023 | http://ijsrcseit.com

Sandhya Devi et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., September-October-

2023, 9 (5) : 125-139

133

[7], which states, “It's hard to recognize on the app that

the temperature the device is reporting now is for

several minutes ago.” [2, 4] also provided examples of

failures that manifest themselves only after the device

has worked for a certain amount of time (five minutes

for [2], several hours for [4]). This problem increases

the unpredictability of IoT failures and may mask

mistakes made by developers. The absence of tools and

developer assistance is another roadblock on the path

to fault localization. For instance, [3] uses Wireshark

to monitor communications and do bit-level

inspections of device messages. Since there is no

feedback of faults or corruptions from devices, [2], a

developer of a hardware platform, stated, “Since there

is no feedback of errors or corruptions from devices,

we've added some LEDs to them to track if something

is working in the device level or not.”

Flaws in the Internet of Things that keep reproducing:

We gathered four tags from interviews and three

survey responses about the difficulty of replicating IoT

problems by following various GitHub conversations

(DITTO/414, TESLA-API/68). Some flaws only occur

with a particular device configuration or with certain

conditions of the IoT system, in addition to the above

described variables which harden bug replication, such

as restricted access to devices or concealed failures.

Without the same context, IoT developers will not be

able to replicate these issues. One survey response, for

instance, said

Verifying and fixing special-case issues: Problems arise

when trying to test for extreme conditions, such as

when there are too many devices or when it's really

cold outside. Several GitHub threads (DEVICE-

OS/1926, TEMPERATURE-MACHINE/13) and

comments from interviews and survey takers all point

to this difficulty.

For instance, [4] mentioned that “We should put effort

to write proper tests against concurrency issues since

we should be able to handle 140, 000 HTTP requests

per second because our IoT system is deployed in

different cities.” This issue has been encountered by

the largest percentage of respondents (83%), making it

the most experienced testing challenge.

Lack of experience in testing. Sixty-four percent of

respondents said developers are the primary testers in

their IoT project, as seen in Figure 5. 'We do not have

a QA crew,' P6, creator of a nearly 7,000-star IoT

project, said. Often, software developers lack the

expertise to test the hardware side, thus it's up to the

developers to undertake the testing, either manually or

by designing automated tests. The lack of

understanding about methods and techniques of

hardware testing was cited by P9, the creator of an IoT

platform with 1.5K stars, as the main bottleneck of

their IoT platform.

Heterogeneity: Some IoT developers have noted that

their platform is limited to specific protocols rather

than devices in order to achieve interoperability [2, 5,

8]. For example, [3] stated he has to develop a distinct

adapter for talking with each particular device. He

added, “There is no guarantee that something that

works with brand A also works with brand B.”

All interviewees mention the difficulty of third-party

breaking changes (23 tags), and 63% of survey

participants agree with this assessment; furthermore,

several comments in the survey (eight tags) discuss this

issue. Three interviewees stated that third-parties

make breaking changes without prior notice.

Challenges posed by the fundamental diversity of IoT

technologies are the most repeated challenges in both

interviews (30 tags) and survey comments (25 tags),

and this is agreed upon by 60% of survey respondents.

Multiple interviewees and survey commenters noted

that IoT development necessitates a wide range of

development skills, including hardware programming

and familiarity with dealing with network protocols.

Programmers seldom go through this training:

“developers tend to use protocols which they are

familar with, but sometimes better solutions exist and

developers do not know/use them.” [2, 3, and 2] survey

comments mentioned that user requirements and

users' backgrounds and skills can be very disparate,

Volume 9, Issue 5, September-October-2023 | http://ijsrcseit.com

Sandhya Devi et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., September-October-

2023, 9 (5) : 125-139

134

making it challenging to develop a generalized IoT

system that can support all possible use cases. For

example, [2] mentioned they had to i) understand the

low-quality documentation of some device

manufacturers and ii) interpret complex response

payloads from some devices.

A. Various Difficulties

Six of the 14 participants who mentioned security-

related challenges cited it as the most important

challenge. Furthermore, 66% of IoT developers find

security a complicated task.

Similarly, nearly 60% of IoT developers believe that

device constraints make security tasks difficult.

Another theme from our data concerns the difficulty

of end-to-end security, from the IoT device to the

cloud. Some [8, 9] believe that the security of the local

communication between the device and IoT gateway is

usually underestimated while it can be highly insecure.

Six IoT developers mentioned “getting critical updates

installed on already sold devices” or “firmware updates

in large deployments” as difficulties associated with

releasing updates for IoT devices, with half of

interviewees agreeing that this is an inevitable

challenge [5, 8].

Device limitations in different layers have also been

mentioned by our interviewees [2, 3, 6, 8], and 63% of

participants agreed that device constraints make IoT

development more difficult. Most IoT developers

struggle to design and implement software to consume

less processing power and energy.

Lack of device-level monitoring tool support:

Investigating the log data of IoT devices is a common

debugging task for IoT developers. This task becomes

even more important as the device status issues are

among the most frequent bug categories. This bug

category has appeared in around half of the bug reports

in our dataset, and most IoT developers reported that

they need to log communications or internal

executions of the device as part of the debugging

process for these bugs [1, 2, 3, 4, 7]. There is no

universal tool that receives log data from all types of

devices, and developers often have to manually employ

naive approaches to monitor device status and

communications, such as serial print for each device

separately [2, 7] or using general-purpose tools like

Wireshark [3, 7]. As several IoT developers discussed

their limitations, existing logging solutions to track

devices are considered inefficient. One IoT developer

best mentioned it: “even if some devices provide log

libraries and tools, they should be manually aggregated

or traced from each component separately to track an

issue.”

The Internet of Things environment is chaotic and

always evolving: The quick decline in usefulness of

hardware is now one of the biggest obstacles to the

expansion of the Internet of Things. Several IoT

specialists and blog postings [47], [48] highlight a rapid

increase in the rate at which IoT devices become

unsupported and hidden from public view. IoT device

upgrades often render previously-released devices

obsolete and cause havoc for existing IoT developer

implementations. Developers have challenges when

trying to keep their device- or protocol-specific code

up-to-date inside the dynamic IoT ecosystem. Not only

must IoT developers be able to purchase all versions of

devices to keep up with these changes, but they must

also devote a significant portion of their development

work to moving from one version or ecosystem to the

other. Some nations in 2019 have imposed laws on the

minimum period IoT providers may send updates after

the device is acquired [49], since this problem affects

both IoT users and developers. Some alternatives, such

as contract-based testing, were also proposed by

respondents in interviews [5] to guarantee ongoing

interoperability with external systems. Since they are

all dependent on preexisting contracts and rules, none

of these approaches can provide a permanent and all-

encompassing fix.

B. Validity Threats

Internal consistency: Researchers' bias in categorizing

qualitative data is an intrinsic danger to the validity of

our study, as it is to the validity of most qualitative

Volume 9, Issue 5, September-October-2023 | http://ijsrcseit.com

Sandhya Devi et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., September-October-

2023, 9 (5) : 125-139

135

investigations. We reduced this possibility by having

all article authors participate in the tagging process and

by addressing any labeling differences across all bug

reports, interview transcripts, survey comments, and

other types of qualitative data. Through the use of

triangulation, we were able to rule out the influence of

interviewer bias on our findings by having two

researchers independently tag all relevant information

in interview transcripts.

Context-free proof: The potential for the

generalizability of the examined IoT repositories poses

an external danger to the reliability of our research. To

lessen the impact of this problem, we analyzed 91

repositories representative of all IoT system levels. Our

study's validity is further threatened by the fact that

the interview and survey participants may not be

typical of IoT developers. However, we were able to

reduce this possibility by selecting interview and

survey respondents from a wide range of backgrounds,

experiences, industries, and firms relevant to the

Internet of Things. In addition, 194 IoT developers

with a wide range of expertise and experience have

participated in our poll. You may get the bug dataset,

as well as interview and survey questions we used in

our research, on our website [19].

VI. SUBJECT MATTER

Internet of Things flaws and difficulties: Even while

certain forms of IoT system problems have been

recognized in the past [5, 8, 9], no prior research has

attempted to systematically classify all sorts of true IoT

system faults. Recent research from 2020 [4] looked at

the ways in which developers contribute to IoT

repositories to draw conclusions about the unique

characteristics of these open-source resources.

However, the study's findings on the features of IoT

development do not take into account issues and the

experiences of IoT developers.

There is a growing amount of research on the problems

and defects in design that lead to security breaches in

IoT systems [50], [51]. Security flaws in smart home

ecosystem devices' firmware [52]–[54],

communication protocols [55]–[57], smart applications,

and the safety of their interactions [37], [58], [59], and

interactions between various IoT system components

[17] have all been investigated. There are taxonomies

for characterizing the features of IoT systems in terms

of privacy and security [60, 61]. These articles have a

different emphasis, on security needs and threats, and

they don't provide their taxonomy development

technique.

The difficulties of evaluating Internet of Things

systems have been the subject of many research [39, 46,

62, 63]. Model-based testing [62], IoT mutation

operators and test event generators [64, 65], and testing

tools [39] are only a few of the methods presented for

IoT testing. There have also been suggestions made for

tools and procedures to help IoT developers create IoT

systems [66–68].

Different approaches to the difficulties of creating IoT

systems have been presented [5, 7, 13]. Previous

research looked at the difficulties of newbie IoT

developers to determine which aspects of development

posed the most difficulty [6] and created a tool to aid

novice developers. However, there has been no

attempt to systematically examine the difficulties

encountered by IoT developers via in-depth interviews

and surveys of IoT professionals.

Problems with bug mining and programming: Many

research have used mining of software repositories or

issue trackers to classify defects in Machine Learning

systems [10], [69]-[71], but no such work has focused

on mining IoT repositories. Prior studies in Blockchain

systems [11], Big Data computing platforms [72], web

applications [73], and service compositions [74] have

all used this method to classify problem types.

Furthermore, the difficulties encountered by

developers have been studied in many settings,

including mobile app development [12] and

Blockchain development [75].

VII. CONCLUSIONS

Volume 9, Issue 5, September-October-2023 | http://ijsrcseit.com

Sandhya Devi et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., September-October-

2023, 9 (5) : 125-139

136

In this study, we presented the first comprehensive

taxonomy of Internet of Things (IoT) system bugs.

Using a qualitative analysis, we also identified a series

of categories of problems encountered by these systems.

Our results may inform the development of new

methods and tools for IoT development by

illuminating the challenges that developers in the wild

face. Our research reveals the most common and severe

IoT issues, their correlations, and their core causes,

which may help developers avoid or quickly spot these

problems as they work on IoT systems.

VIII. REFERENCES

[1] Demeter, Minerva, and D. As stated by Rotondi in

the IEEE Internet Initiative volume, “Towards a

definition of the internet of things (IoT),” 1, no. 1,

pp. 1-86, 2015.

[2] M. Hung, “Leading the IoT, Gartner Insights on

How to Lead in a Connected World,” Gartner

Research, 2017, pp. 1–29.

[3] F. Data from Schwandt, “Internet of Things (IoT)

Connected Devices Installed Base Worldwide from

2015 to 2025 (in billions),” Statista, 2016.

[4] F. Corno, Louise De Russis, and John R. P. Sáenz,

“How is open source software development unique

in mainstream IoT endeavors?' IEEE Access, vol. 8,

pp. 28 337-28 348, 2020.

[5] T. It was found by W. Hnat, V. Srinivasan, J. Lu, T.

I. Sookoor, R. Dawson, J. Stankovic, and K.

Whitehouse, “The hitchhiker's guide to successful

residential sensing deployments,” Proceedings of

the 9th ACM Conference on Embedded Networked

Sensor Systems, 2011, pp. 232-245.

[6] F. Corno, Louise De Russis, and John R. “On the

challenges novice programmers experience in

developing IoT systems: A survey,” P. Sáenz, Journal

of Systems and Software, vol. 157, p. 110389, 2019.

[7] LR Stojkoska & K. V. Trivodaliev, “A review of

internet of things for smart home: Challenges and

solutions,” Journal of Cleaner Production vol. 140,

pp. 1454-1464, 2017.

[8] Y. Chen, Zhen-Zhen, Hui-Yu, and Jian-Ping. Xu,

“Application of fault tree analysis and fuzzy neural

networks to fault diagnosis in the internet of things

(IoT) for aquaculture,” Sensors, volume, page. 17,

no. 1, p. 153, 2017.

[9] H. Together, Liang, Zhao, Wang, and H. Liu,

“Understanding and detecting performance and

security bugs in IoT oses,” 17th IEEE/ACIS

International Conference on Software Engineering,

Artificial Intelligence, Networking, and

Parallel/Distributed Computing (SNPD), 2016.

IEEE, 2016. pp. 413–418.

[10] G. The authors (Jahangirova, N. Humbatova, G.

Bavota, V. Riccio, A. Stocco, etc)

[11] P. This article cites the 2019 arXiv publication by

Tonella, “Taxonomy of real faults in deep learning

systems,” as its primary citation.

[12] Z. Xia, and L. Cai, “Bug characteristics in blockchain

systems: a large-scale empirical study,” in

IEEE/ACM MSR 2017: The 14th International

Conference on Mining Software Repositories. In

2017 edition of IEEE, pages 413–424.

[13] M. By E. Joorabchi, A. Mesbah, and P. According to

Kruchten, “Real challenges in mobile app

development,” was published in the 2013

ACM/IEEE International Symposium on Empirical

Software Engineering and Measurement. 15-24 in

IEEE's 2013 publication.

[14] According to “The three software stacks required for

IoT architectures,” written by I. W. Group et al. in

2016, all IoT architectures must include all three.

[15] Javed, Muhammad K. Afzal, Muhammad Sharif, and

B.-S. Kim, “A Comparative Review of the Support

for Internet of Things (IoT) Operating Systems,

Networking Technologies, Applications, and

Challenges,” IEEE Communications Surveys &

Tutorials, vol. 20, no. 3, pp. 2062-2100, 2018.

[16] H. The authors Tschofenig, Arkko, and D.

According to McPherson, “Architectural

Considerations in Smart Object Networking,”

Internet Engineering Task Force, Fremont, CA,

USA, 2014.

[17] W. A group of researchers led by Zhou found that

Y. See: Zhang, “Discovering and Understanding the

Volume 9, Issue 5, September-October-2023 | http://ijsrcseit.com

Sandhya Devi et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., September-October-

2023, 9 (5) : 125-139

137

Security Hazards in the Interactions between IoT

Devices, Mobile Apps, and Clouds on Smart Home

Platforms,” in Proceedings of the 28th USENIX

Security Symposium (USENIX Security), 2019, pp.

1133-1150.

[18] 2018;

https://github.com/ggravlingen/pytradfri/issues/135

“Lamps not identified as lamps with f/w 1.3.14,”

Github.

[19] Both Makhshari and A. August 2020, Mesbah,

https://github.com/IoTSEstudy/ IoTbugschallenges,

IoT Bugs and Development Challenges Artifact

Package.

[20] Topics are a great way to organize your repository,

https://help.github.com/en/github/administering-a-

repository/.

[21] classifying-your-repository-with-topics.

[22] H. In a similar vein to Borges, M. What's the value

of a star on GitHub?,” T. Valente. a study of

repository-starring habits on GitHub, “Journal of

Systems and Software,” vol. 146, pp. 112-129, 2018.

[23] L. X. Wang, Y. Zhou, and C. Liu; Z. Li; C. Tan; C.

Liu; X. “Bug characteristics in open source

software,” by Zhai. Empirical software engineering,

vol. 19, no. 6, pp. 1665-1705, 2014.

[24] For this study, Avizienis, J.-C. Laprie, B. Randell,

and C. In “Basic Concepts and Taxonomy of

Dependable and Secure Computing,” by Landwehr

(IEEE Transactions on Dependable and Secure

Computing, Vol. 1, no. 1, pp. 11-33, 2004.

[25] O. Knowledge solutions, Serrat's “The five whys

technique,” 2010. Pages 307 and 310, Springer, 2017.

[26] “Qualitative methods in empirical studies of

software engineering,” by B. Seaman, IEEE

Transactions on software engineering, vol. 25, no. 4,

pp. 557-572, 1999.

[27] P. Fusch, I., and L. Are we there yet?,” R. Ness.

qualitative study reaches a point of data saturation,

The Qualitative Report, Vol. 20, no. 9, p. 1408, 2015.

[28] M. Purposive sampling was first described by D. C.

Tongco in his article “Purposive sampling as a tool

for informant selection,”

[29] Research on ethnobotany and its practical uses,

volume. 5, pp. 147-158, 2007.

[30] J. Morse, M. 2015. “Data were saturated...”

[31] The three of you, L. Johnson: “At what point do we

have enough interviews? data saturation and

variation in a field experiment,” Field Methods,

volume, number. 18, no. 1, pp. 59-82, 2006.

[32] L. F. Figueira Filho Singer and M.-A. Storey,

“Software engineering at the speed of light: how

developers stay current using Twitter,” 36th

International Conference on Software Engineering,

2014, pp. 211-221.

[33] M. Aniche, Christian Treude, Ian Steinmacher, Ian

Wiese, Giuseppe Pinto, Michael A. Storey, and

Michael J. 2018 IEEE/ACM 40th International

Conference on Software Engineering (ICSE), A.

Gerosa, “How contemporary news aggregators help

development communities shape and share

knowledge.” 499–510 (IEEE, 2018).

[34] J. All three authors (Henrich, S. J. Heine, and A. The

most peculiar people on Earth?” —

Norenzayan.Science of the Brain and Behavior, Vol.

33, no. 2-3, pp. 61-83, 2010.

[35] Coley and R. O'Connor, “Using grounded theory to

understand software process improvement: A study

of Irish Software Product Companies,” in

Information and Software Technology, vol. 49, no.

6, pp. 654-667, 2007.

[36] M. The authors (Usman, R. Britto, J. Börstler, and E.

As Mendes et al. detail in “Taxonomies in Software

Engineering: A Systematic Mapping Study and a

Revised Taxonomy Development Method,”

published in Information and Software Technology,

volume 59, issue 1, pages 61-80. 85, pp. 43-59, 2017.

[37] H. Kwasnik, “The role of classification in knowledge

representation and discovery,” GSLIS. A school in

Illinois. .., 1999.

[38] vyshwanara, “Potential Time Lag Issues Due to

Raspberry Pi's Missing Hardware Clock,” 2018.

[Online]. Lack of a hardware clock in the Raspberry

Pi might cause scheduling problems; for more

information, see https://blog.pisignage.com/.

[39] M. Together, Alhanahnah, C. Stevens, and H.

Bagheri, “Scalable analysis of interaction threats in

Volume 9, Issue 5, September-October-2023 | http://ijsrcseit.com

Sandhya Devi et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., September-October-

2023, 9 (5) : 125-139

138

IoT systems,” in Proceedings of the 29th Annual

ACM SIGSOFT International Symposium on

Software Testing and Analysis, 2020, pages 272-285.

[40] M. Data Mining: Concepts and Techniques, by J. Pei

Kamber et al. San Francisco: Morgan Kaufmann

Publishers, 2001, volume. 2.

[41] J. Dias, Couto, Paiva, and H. S. Ferreira, “A brief

overview of existing tools for testing the internet-

of-things,” in 2018 IEEE International Conference

on Software Testing, Verification, and Validation

Workshops (ICSTW). Page numbers: IEEE, 2018.

[42] P. Pontes, Lima, and Pontes, J. For example, see P.

Faria, “Test patterns for IoT,” in the 2018

proceedings of the 9th ACM SIGSOFT International

Workshop on Automating TEST Case Design,

Selection, and Evaluation. Pages 63–66.

[43] IOTIFITY [Online]; “Advanced IoT system

simulation engine and test automation for enterprise

IoT apps.” To access, visit https://iotify.io/.

[44] Authors: V. Looga, Z. Ou, Y. Deng, and A. Ylä-

Jääski, “Mammoth: A Massivescale Emulation

Platform for the Internet of Things,” 2012 IEEE 2nd

International Conference on Cloud Computing and

Intelligence Systems, vol. 3. Reference: IEEE, 2012.

pp. 1235–1239.

[45] M. “Arduinounit,” by Murdoch. 2013. [Online]. Get

it at: https://github.com/.

com/mmurdoch/arduinounit

[46] Kravets, “Platformio: An Open Source Ecosystem

for IoT Development,” PlatformIO.[On-line].

Platformio: https://platformio.com/. org.

[Referenced on September 25, 2019] 2018.

[47] “Fit IoT-lab: A large scale open experimental IoT

testbed,” by R. Pissard-Gibollet, F. Saint-Marcel, G.

Schreiner, J. Vandaele, et al., in 2015 IEEE 2nd

World Forum on Internet of Things (WF-IoT).

Specifically: IEEE, 2015. p.

[48] It was Voas, Kuhn, and P. “Testing IoT systems,” by

Laplante, at 2018 IEEE Symposium on Service-

Oriented System Engineering (SOSE). Pages 48–52

in IEEE's 2018 publication.

[49] Song, V. “The Neverending Death of Smart Home

Gadgets,” March 2020. [Online]. For more

information on the inevitable demise of smart home

devices, see https://gizmodo.com/ the-never-

ending-death-of-smart-home-gadgets-1842456125.

[50] P. Paul, P. Jabangwe, P. Nguyen-Duc, and P. XP

Workshops, 2017, pp. 11-1, Abrahamsson, “Security

challenges in IoT development: a software

engineering perspective.”

[51] Y. Xiao, Yujia Jia, Cheng Xiao, Yu Jia, Jia Yu, and

Wei Xue. Author: Lv, “Edge computing security:

State of the art and challenges,” Proceedings of the

IEEE, vol. 107, no. 8, pp. 1608-1631, 2019.

[52] G. A. Hernandez, D. Buentello, Y. According to Jin

in “Smart Nest Thermostat: A Smart Spy in Your

Home,” published in Black Hat USA, issue 2015,

2014.

[53] Z. X. Ling, K. Wu, C. Gao, Y. Xu, J. Luo, and X.

Reference: Fu, “Security vulnerabilities of internet

of things: A case study of the smart plug system,”

IEEE Internet of Things Journal, vol. 4, no. 6, pp.

1899-1909, 2017.

[54] S. With the help of M. Siddiqi, R. Notra, V.

Sivaraman, H. H. Gharakheili, and R. Boreli, “An

Experimental Study of Security and Privacy Risks

with Emerging Household Appliances,” 2014 IEEE

Conference on Communications and Network

Security. IEE, 2014, pages 79–84.

[55] Asher Shamir, Alexander Weingarten, Daniel

Ronen, and C. O'Flynn, “IoT Goes Nuclear: Creating

a Zigbee Chain Reaction,” IEEE Symposium on

Security and Privacy (SP), 2017. Page numbers:

IEEE, 2017.

[56] R. Researchers Goyal, N. Dragoni, and A. Spognardi,

“Mind the tracker you wear: a security analysis of

wearable health trackers,” in Proceedings of the

2016 ACM Symposium on Applied Computing, pp.

131-136.

[57] B. Both Fouladi and S. “Honey, i'm home!” Ghanoun

exclaimed.Zwave home automation system

hacking,” Black Hat USA 2013.

[58] Z. We thank B. Celik, G. Tan, and P. Author: D.

McDaniel Citation: “IoTguard: Dynamic

enforcement of security and safety policy in

commodity IoT.” in NDSS, 2019.

Volume 9, Issue 5, September-October-2023 | http://ijsrcseit.com

Sandhya Devi et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., September-October-

2023, 9 (5) : 125-139

139

[59] Z. For this article, we consulted the expertise of B.

Celik, P. McDaniel, and G. Annual Technical

Conference (USENIX ATC), 2018, Tan, “Soteria:

Automated IoT safety and security analysis,” pages

147-158.

[60] A. Alqassem and D. Reference: Svetinovic, “A

taxonomy of security and privacy requirements for

the internet of things (IoT),” 2014 IEEE

International Conference on Industrial Engineering

and Engineering Management. Reference: IEEE,

2014. p. 1244-1248.

[61] S. Zhang, Z. Li, Y. Zhang, Q. Deng, S. Ray, and Y.

Journal of Hardware and Systems Security, vol. Jin,

“Internet-of-Things Security and Vulnerabilities:

Taxonomy, Challenges, and Practice,” 2, no. 2, pp.

97-110, 2018.

[62] Ahmad, F. Bouquet, E. Fourneret, F. Le Gall, and B.

Reference: Legeard, “Model-based testing as a

service for IoT platforms,” in International

Symposium on Leveraging Applications of Formal

Methods. 727-742 in Springer (2016).

[63] P. R. Rosenkranz, M. Wählisch, E. Baccelli, and L.

Ortmann, “A distributed test system architecture for

open-source IoT software,” in 2015's Workshop on

IoT issues in Mobile and Industrial Systems'

proceedings, pp. 43-48.

[64] A. Garca-Domnguez, G. Gutiérrez-Madroal, and I.

Software: Practice and Experience, Vol. Medina-

Bulo, “Evolutionary Mutation Testing for IoT with

Recorded and Generated Events,” p. 49, no. 4, pp.

640- 672, 2019.

[65] According to research by Gutiérrez-Madroal, I.

Medina-Bulo, and J. “IoT-teg: Test event generator

system,” by J. Domnguez-Jiménez, appeared in

Journal of Systems and Software volume 2017. 137,

pp. 784-803, 2018.

[66] B. The authors Morin, N. Harrand, and F. IEEE

Software, vol. Fleurey, “Model-based software

engineering to tame the IoT jungle,” 2016. 34, no. 1,

pp. 30-36, 2017.

[67] Le Pallec, Radu Mateescu, Laurent Noirie, and

Gurumaa Krishna. “IoT composer: Composition and

deployment of IoT applications,” by Salaün, will

appear in the Companion Proceedings of the 2019

IEEE/ACM International Conference on Software

Engineering (ICSE-Companion). 19–22 in IEEE's

2019 publication.

[68] Corno, Louise De Russis, and John R. P. Sáenz,

“Towards computational notebooks for IoT

development,” in Extended Abstracts of the 2019

CHI Conference on Human Factors in Computing

Systems, 2019, pp. 1–6.

[69] R. An article by Zhang, W. Xiao, H. Zhang, Y. Liu,

H. Lin, and M. “An empirical study on deep learning

jobs program failures,” by Yang, to appear in the

proceedings of the 42nd IEEE/ACM International

Conference on Software Engineering (ICSE) in

2020. pages 1159–1170 in IEEE's 2020 publication.

[70] The authors (Zhou, J.-G. Lou, H. Zhang, H. Lin, H.

Lin, and T. 2015 IEEE/ACM 37th IEEE International

Conference on Software Engineering, “An Empirical

Study on Quality Issues of Production Big Data

Platform,” Qin. 2. 2017 IEEE, pages 17–26.

[71] F. Researchers S. Ocariza, K. Bajaj, K. Pattabiraman,

and A. According to Mesbah's research, “A study of

causes and consequences of client-side javascript

bugs,” published in IEEE Transactions on Software

Engineering, volume 2, issue 1, is a good example.

43, no. 2, pp. 128-144, 2016.

[72] K. Those authors (Chan, Bishop, Steyn, Baresi, and

Chan) are M. Presented at the International

Conference on Service-Oriented Computing with

the title “A fault taxonomy for web service

composition,” by Guinea. Pp. 363.–375. Springer,

2007.

[73] W. We thank X.-B. D. Le, X. Xia, Y. Feng, Z. Chen,

and B. Zou for their contributions to this work. Xu,

“Smart contract development: Challenges and

opportunities,” IEEE Transactions on Software

Engineering.

Cite this article as :

Sandhya Devi, Dr. Dev Singh, "Study of Various Known

Bugs and Other Challenges Associated with IoT System

Development ", International Journal of Scientific

Volume 9, Issue 5, September-October-2023 | http://ijsrcseit.com

Sandhya Devi et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., September-October-

2023, 9 (5) : 125-139

140

Research in Computer Science, Engineering and

Information Technology (IJSRCSEIT), ISSN : 2456-3307,

Volume 9, Issue 5, pp.125-139, September-October-2023.

