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 There have been several successful implementations of deep RL in game-like 

settings. Deep reinforcement learning (RL) has great potential, but it is difficult 

to apply it to visual navigation in realistic 3D settings. To guide an agent to an 

image-based goal, we present a unique learning architecture. We improved the 

efficiency of visual navigation by including additional tasks into the batched 

advantage actor-critic (A2C) algorithm. For the prediction of the depth map, the 

segmentation of the observation picture, and the segmentation of the target 

image, we propose three new auxiliary tasks. By doing these tasks, supervised 

learning may be used to pre-train a significant portion of the network, cutting 

down on the total number of training iterations. Gradually increasing the 

environment's complexity over time may further increase training performance. 

An effective neural network architecture is described that can generalize across 

numerous goals and settings. Our approach outperforms the best goal-oriented 

visual navigation algorithms in the literature on the AI2-THOR environment 

simulator, and it works in continuous state spaces. 
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I. INTRODUCTION 

 

The area of robotics relies heavily on autonomous 

navigation. Because of its cheap initial cost, small 

footprint, and wealth of data, visual navigation has 

received a lot of attention and research in recent 

decades. Conventional visual navigation techniques 

[1–5] often use rule-based approaches to pinpoint the 

robot's location in service of planning and control. 

These rule-based techniques may be effective, but they 

are labor- and time-intensive to develop manually and 

computationally. 

The expansion of cellular networks has kept pace 

with the speed of scientific and technological progress. 

Wireless communication technologies are frequently 

employed in practice; for instance, 5G networks have 

become widespread in many major cities to facilitate 

easier communication. It is not yet powerful enough to 
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fulfill user capacity, and it does nothing to address the 

root causes of the disconnect between people's 

communication requirements and the availability of 

spectrum [3]. As a result, academics are now focusing 

on how to make the most use of spectrum resources for 

wireless communication via strategic planning and 

implementation. 

Radio's electromagnetic spectrum resources are among 

the most valuable parts of the wireless communication 

network, and the government has distributed them 

wisely. Even if there are more and more IoT terminals, 

the congestion problem has not been solved. However, 

this does not imply that everything has been used up. 

According to research, the usage rate of various 

spectrum resources is as low as 15% in some locations 

of the United States. This study provides conclusive 

evidence that existing national spectrum resources 

have not been exploited efficiently in many nations [5]. 

So, this problem has been handled by the National 

Spectrum Supervision Bureau. Only those who have 

been granted permission to utilize the allocated 

frequency range may do so using the original 

electrostatic allocation procedure. Unlicensed users 

and legal users may coexist peacefully in the same 

frequency range because to dynamic spectrum resource 

allocation. As a promising new technique, 

reinforcement learning offers considerable promise in 

addressing challenging issues related to the allocation 

of dynamic resources [7]. The notion of deep 

reinforcement learning (DRL) has been introduced in 

response to the rising profile of deep learning 

algorithms in the world of computing. The first is that 

it prioritizes the system's long-term profitability above 

its short-term profitability while pursuing 

improvement. The second is that the process of 

application doesn't need any background knowledge of 

the environment to provide near-optimal results, with 

the added bonus of being able to explore and make 

decisions optimally on its own [10]. That's why 

incorporating DRL into wireless communication 

technologies is so crucial. 

Numerous academic investigations of its 

effectiveness and enhancements have been undertaken. 

Three simple network procedures were also developed 

for use in assessing these networks' efficacy. Finally, 

excellent transmission performance was observed 

between VLC at varying speeds and FSO in five 

representative air quality circumstances, validating the 

viability [11]. Nayak et al. [12] made it easier to 

regulate the velocities, amplitudes, and directions of 

waves, which improved the quality of radiation along 

the receiving line. The antenna was discovered to rely 

mostly on a flat construction, which allowed for easier 

integration and minimization of mobile terminals [12]. 

After comparing several energy-efficient 

communication strategies for WSNs, Sopara et al. [13] 

concluded that their suggested system had the best 

energy-saving effects and offered a solid experimental 

foundation for advancing wireless communication 

technologies. 

People living in the Internet of Things age deal with an 

overwhelming quantity of data and information on a 

daily basis. As a result, data processing that takes use of 

intelligence is crucial. Application of deep learning, 

which is utilized for the intelligent extraction of 

information characteristics, is expanding rapidly 

throughout all sectors of society. Eventually, Ohsugi et 

al. [14] in the area of materials medicine used deep 

learning to identify RRD in ultra-wide field fundus 

pictures. For early detection of RRD and avoidance of 

blindness, they observed that ultra-wide field fundus 

considerably improved diagnostic accuracy [14. The 

potential of deep neural networks (DNNs) to filter out 

background noise was investigated by Chen et al. [18]. 

The anti-noise capabilities of DNNs has been bolstered 

by the proposal of a novel activation function called 

rand-softplus (RSP) to model the response process [18]. 

For their regression models, Joy et al. [19] turned to 

DNNs. Standardization at the discourse level was 

shown to be possible using the DNN-based technique 

after training and optimizing the model. Liu and Wang 

[20] turned to DNNs. In addition, two distinct DNN 

training methodologies were developed, therefore 



Volume 9, Issue 5, September-October-2023 | http://ijsrcseit.com 

Pooja Upadhyay et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., September-October-2023, 9 (5) : 216-235 

 

 

 

 
218 

extending the use of DNNs beyond the realms of 

language and signal processing [20]. To optimize the 

DNNs' architecture. 

 

In conclusion, there are several studies on both DRL 

and wireless communication, but very few that 

combine the two.Both rule-based and learning-based 

approaches may be used for visual navigation in robots.  

An overview of IL can be found in [13], and a subset 

of IL techniques refers to the work as  behavior cloning  

(BC), a kind of specialized supervised learning. 

NVIDIA [14] introduced a standard end-to-end visual 

navigation technique for autonomous driving. Yang 

[15] suggested an IL-based multi-task architecture that 

uses picture sequences to anticipate both the vehicle's 

speed and its steering angles. Wang [16] suggested a 

unique angle-branch network for autonomous driving, 

including sequential pictures, vehicle speed, and 

subgoal angle as inputs. Visual navigation techniques 

based on imitation learning have their uses, however 

they are vulnerable to overfitting when employing just 

IL. 

The capacity of RL, particularly DRL, to interact 

with its surroundings has led to its recent use in robot 

navigation challenges. One such DRL approach is 

DeepMind's proposed deep Q-learning algorithm 

(DQN), which has already helped robots acquire 

human-level control strategies]. Many techniques for 

enhancing the DQN network model have now been 

described in rapid succession, with promising 

outcomes in a variety of contexts [20–23]. Including 3D 

VizDoom, and a feedforward architecture is described 

in [27] for learning a deep successor representation. It 

was also suggested that navigation challenges may be 

solved using the AutoRL approach [28], which 

combines DRL with gradient-free hyperparametric 

optimization. However, the RL-required reward 

function is notoriously hard to build and often fails to 

ensure optimum performance. To address the whole 

scope of visual navigation issues, Zhu [12] presented a 

target-driven DRL (TD-DRL) architecture, which has 

shown promising results whereas our proposed method 

is specifically tailored to improve sample efficiency in 

visual navigation tasks. 

In multi-agent deep reinforcement learning 

(MADRL), agents (or decision makers) work together 

or against one another in a given setting to attain a 

common objective. By incorporating deep learning 

(DL), the most current AI development, MADRL 

improves upon the capabilities of classical RL and 

multi-agent RL (MARL). This allows the agents to 

work together[4] to improve system performance. 

In recent years, MADRL has made significant 

progress because of its capacity to address challenging 

real-world situations, which conventional RL has 

struggled to address. Numerous agents collaborate or 

compete with one another, has shown to be 

insufficient [6]. As interest in MADRL has grown, 

researchers have conducted several surveys to learn 

more about it from various angles. The collaborative 

nature of MADRL is discussed by Oroojlooyjadid and 

Hajinezhad [9]. Knowledge reuse in MADRL is 

discussed by Da Silva et al. [10]. Gronauer and Diepold 

[12] and Zhang et al. [11] explored the technical issues 

of MADRL from a mathematical viewpoint, while 

other research focused on theoretical assessments. 

This study contributes to the current literature by 

establishing a taxonomy of MADRL aspects such as 

aims, characteristics, problems, applications, and 

performance measurements, and by surveying MADRL 

algorithms applied to different state-of-the-art 

applications. Based on the taxonomy, the MADRL 

algorithms are categorized, examined, and debated, 

and their unresolved problems are elucidated. Our 

interpretations from these angles are new to the 

literature to the best of our knowledge. Focus, method, 

and intended multi-agent setting are summarized 

across recent MADRL surveys in Table 1. Information 

regarding our article is included in the table as well. 

This paper's overarching goal is to provide an overview 

of current and emerging MADRL application research 

fields and to inspire readers to go further into the topic. 

When it comes to human navigation, a specific 

location isn't necessary; rather, we only have to figure 
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out where to travel based on the sights we've seen. This 

kind of conduct has sparked a rise in curiosity in 

comprehensive visual navigation strategies that let 

users go straight from viewing a picture to performing 

an action. picture classification [6, 7], object 

identification [8, 9], and picture segmentation [10, 11] 

have all made significant strides thanks to deep 

learning's (DL) ability to directly extract valuable 

features from pixels. Achieving a greater degree of 

intelligence. First, the observation is assumed to be 

four consecutive photos; in reality, the robot has access 

to additional observations from its immediate 

surroundings. Second, the halt action is ignored despite 

the fact that it may be automatically identified in a 

simulation setting by comparing the current state's ID 

number to the target state's ID number; however, this 

method is inappropriate in the real world because there 

is no ID number and only photos are available for 

comparison. Finally, DRL needs a lot of training data to 

develop an effective navigation policy, which increases 

training time and decreases efficiency. The imitation 

learning (IL) approach is an option to enhance sample 

efficiency during training; it can correctly mimic 

expert experience, and it needs less training time to 

build a navigation model. Overfitting is a potential 

issue when employing IL instead of DRL. Several 

effective applications of deep RL in game-like contexts 

have been developed. Although deep RL shows 

promise, it is challenging to apply to visual navigation 

in realistic 3D environments. We provide a novel 

learning architecture for directing an agent toward an 

image-based objective. By adding more work to the 

batched advantage actor-critic (A2C) algorithm, we 

were able to increase the effectiveness of visual 

navigation. We propose three new ancillary tasks: 

depth map prediction, observation picture 

segmentation, and target image segmentation. By 

doing these actions, supervised learning may be 

utilized to pre-train a sizable chunk of the network, 

reducing the need for iterations during actual training. 

We offer a powerful neural network design that can 

generalize over a wide range of objectives and 

environments. 

 

II. THE STRUCTURE OF THE SYSTEM 

 

One of the fundamental requirements for an 

autonomous agent to carry out a wide range of 

activities in complicated situations is the ability to 

navigate visually. This feature refers to an agent's 

capacity to comprehend its immediate surroundings 

and safely travel to a predetermined destination using 

data collected from its own on-board visual sensors. 

There are wokey aspects to this. To begin, the agent has 

to be able to evaluate the current observation and 

deduce the factors that are most important to the goal. 

Second, the agent has to know how its navigational 

behaviors influence the way it looks at its environment. 

 

 
Fig. 1.1: Visual Guidance System Diagram 

 

III. SYSTEM OVERVIEW 

 

In contrast to [3], which employs ResNet features, our 

method has the agent learn navigation only from the 

observed raw pictures, which allows the agent to 

acquire valuable traits even when there are no 

informative rewards available. We employ depth-maps 

and picture segmentations as training objectives for the 

auxiliary tasks while training the deep neural network. 

We also provide a technique for pre-training the neural 

network before to using the RL algorithm. This is 

achieved by acquiring knowledge in one context and 

applying it to a more complicated one. Finally, we offer 

a unique, efficient, and compact neural network design 



Volume 9, Issue 5, September-October-2023 | http://ijsrcseit.com 

Pooja Upadhyay et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., September-October-2023, 9 (5) : 216-235 

 

 

 

 
220 

to solve the partial observability issue. We test our 

approach in a variety of interior settings representative 

of real-world use, as in [3] and [8]. 

 

IV. RELATED WORK 

 

The expansion of cellular networks has kept pace with 

the speed of scientific and technological progress. 

Wireless communication technologies are frequently 

employed in practice; for instance, 5G networks have 

become widespread in many major cities to facilitate 

easier communication. It is not yet powerful enough to 

fulfill user capacity, and it does nothing to address the 

root causes of the disconnect between people's 

communication requirements and the availability of 

spectrum [3]. As a result, academics are now focusing 

on how to make the most use of spectrum resources for 

wireless communication via strategic planning and 

implementation. Radio's electromagnetic spectrum 

resources are among the most valuable parts of the 

wireless communication network, and the government 

has distributed them wisely. Even if there are more and 

more IoT terminals, the congestion problem has not 

been solved. However, this does not imply that 

everything has been used up. According to research, 

the usage rate of various spectrum resources is as low 

as 15% in some locations of the United States. This 

study provides conclusive evidence that existing 

national spectrum resources have not been exploited 

efficiently in many nations [5]. So, this problem has 

been handled by the National Spectrum Supervision 

Bureau. Only those who have been granted permission 

to utilize the allocated frequency range may do so using 

the original electrostatic allocation procedure. 

Unlicensed users and legal users may coexist peacefully 

in the same frequency range because to dynamic 

spectrum resource allocation. As a promising new 

technique, reinforcement learning offers considerable 

promise in addressing challenging issues related to the 

allocation of dynamic resources [7]. The notion of DRL 

has been introduced in response to the rising profile of 

deep learning algorithms in the world of computing. 

By seeing high-dimensional raw data, DRL is able to 

train the resulting agents to learn the behaviors in 

photos or videos, which is not possible  characteristics 

[8,9]. There are two main features of DRL. The first is 

that it prioritizes the system's long-term profitability 

above its short-term profitability while pursuing 

improvement. The second is that the process of 

application doesn't need any background knowledge of 

the environment to provide near-optimal results, with 

the added bonus of being able to explore and make 

decisions optimally on its own [10]. That's why 

incorporating DRL into wireless communication 

technologies is so crucial. Huang et al. [11] suggested 

interconnection, particularly in a radio frequency-

sensitive or safety-required setting. Three simple 

network procedures were also developed for use in 

assessing these networks' efficacy. Finally, excellent 

transmission performance was observed between VLC 

at varying speeds and FSO in five representative air 

quality circumstances, validating the viability of this 

HOW network [11]. Nayak et al. [12] made it easier to 

regulate the velocities, amplitudes, and directions of 

waves, which improved the quality of radiation along 

the receiving line. Some designs of the receiving 

equipment were envisioned by incorporating the 

existing state of advancements in telecommunication 

frameworks and radio lines. After comparing several 

energy-efficient communication strategies for WSNs, 

Sopara et al. [13] concluded that their suggested system 

had the best energy-saving effects and offered a solid 

experimental foundation for advancing wireless 

communication technologies. People living in the 

Internet of Things age deal with an overwhelming 

quantity of data and information on a daily basis. As a 

result, data processing that takes use of intelligence is 

crucial. Application of deep learning, is expanding 

rapidly throughout all sectors of society. Eventually, 

Ohsugi et al. [14] in the area of materials medicine used 

deep learning to identify RRD in ultra-wide field 

fundus pictures. For early detection of RRD and 

avoidance of blindness, they observed that ultra-wide 

field fundus considerably improved diagnostic 
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accuracy [14]. It was also suggested that navigation 

challenges may be solved using the AutoRL approach 

[28], which combines DRL with gradient-free 

hyperparametric optimization. However, the RL-

required reward function is notoriously hard to build 

and often fails to ensure optimum performance. To 

address the whole scope of visual navigation issues, 

Zhu [12] presented a target-driven DRL (TD-DRL) 

architecture, which has shown promising results. these 

methods typically rely on sequence data of trajectory 

for IL, whereas our proposed method is specifically 

tailored to improve sample efficiency in visual 

navigation tasks. In multi-agent deep reinforcement 

learning (MADRL), agents (or decision makers) work 

together or against one another in a given setting to 

attain a common objective. This allows the agents to 

work together [4] to improve system performance [5]. 

In recent years, MADRL has made significant progress 

because of its capacity to address challenging real-

world situations, which conventional RL has struggled 

to address. As interest in MADRL has grown, 

researchers have conducted several surveys to learn 

more about it from various angles. The collaborative 

nature of MADRL is discussed by Oroojlooyjadid and 

Hajinezhad [9]. Zhang et al. [11] explored the technical 

issues of MADRL from a mathematical viewpoint, 

while other research focused on theoretical 

assessments. This study contributes to the current 

literature by establishing a taxonomy of MADRL 

aspects such as aims, characteristics, problems, 

applications, and performance measurements. Based 

on the taxonomy, the MADRL algorithms are 

categorized, examined, and debated, and their 

unresolved problems are elucidated. Our 

interpretations from these angles are new to the 

literature to the best of our knowledge. Focus, method, 

and intended multi-agent setting are summarized 

across recent MADRL surveys in Table 1. Information 

regarding our article is included in the table as well. 

This paper's overarching goal is to provide an overview 

of current and emerging MADRL application research 

fields and to inspire readers to go further into the topic.  

There are two main approaches to visual navigation for 

robots: rule-based and learning-based. Because of our 

interest in the latter, we will discuss the related field of 

learning-based navigation, introducing concepts like 

IL and DRL as they pertain to visual orientation. 

An overview of IL can be found in [13], and it is 

defined as the process of learning a behavior policy 

from a set of demonstrations. Some IL techniques 

approach the problem by treating it as a kind of 

specialized supervised learning, or behavior cloning 

(BC). NVIDIA [14] introduced an end-to-end visual 

navigation approach based on BC that accumulates a 

huge number of expert samples from three cameras and 

is employed in unmanned driving regions. Visual 

navigation techniques based on imitation learning 

have their uses, however they are vulnerable to 

overfitting when employing just IL. 

Due to its capacity to adapt to its surroundings, RL, and 

specifically DRL, has lately found use in robot 

navigation challenges. The deep Q-learning algorithm 

(DQN) introduced by DeepMind is an example of a 

common DRL approach; it has allowed robots to learn 

human-level control strategies[19]. Many techniques 

for enhancing the DQN network model have now been 

described in rapid succession, with promising 

outcomes in a variety of contexts [20–23]. DDPG [24] 

and the A3C [25] are two further examples of policy 

gradient-based approaches. Using the MazeBase 

gridworld as a testing ground, the authors of [27] offer 

a feedforward architecture that is adaptable to shifting 

incentives and is trained on 3D VizDoom to acquire a 

deep successor representation. It was also suggested 

that navigation challenges may be solved using the 

AutoRL approach [28], which combines DRL with 

gradient-free hyperparametric optimization. However, 

the RL-required reward function is notoriously hard to 

build and often fails to ensure optimum performance. 

To address the whole scope of visual navigation issues, 

Zhu [12] presented a target-driven DRL (TD-DRL) 

architecture, which has shown promising results. The 

authors in [29] highlighted nine difficulties in RL, one 

of which being DRL's low-sample efficiency, which 
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means it requires large samples to train and is hence 

unsuitable for many real-world systems and tasks. 

While methods combining DRL and IL have been 

proposed for a wide variety of tasks, including grasping 

[30], MuJoCo [31, 32], and traffic control [33], the 

sequence data of a trajectory is required for these 

methods, whereas the sample efficiency for visual 

navigation tasks is the focus of our proposed method. 

 

One possibility is curiosity-driven exploration35, 

which draws its inspiration from biological systems 

and uses intrinsic motivation to steer discoveries. 

Several theorists from other fields have suggested the 

following pattern of intrinsic motivation: novelty[38], 

surprise[37], and empowerment[36]. Based on the 

evidence presented by the novelty hypothesis, we 

design the reward function to encourage the animal to 

seek out unique experiences. In addition, our reward 

function includes not one but two distinct reward 

categories, both of which are related to episodic 

memory. 

 

Similar models, like ours, infer the uniqueness of a 

state-action combination from how often the agent 

accesses that pair. Our reward function contains a 

count-based first component. Using ow(owW) 

waypoints and the TC-network TC:SW to discretize 

the state space is fundamental to our strategy. States are 

given waypoints so that their occurrence rates may be 

calculated. When a fresh observation is made in a 

region of the environment that has not yet been 

mapped, however, how will the reward be calculated 

if the mapping does not exist? Now let's go on to the 

next question we'll be asking. The idea may be 

formalized by rewarding researchers for gathering data 

in parts of the environment that have not yet been 

studied. A waypoints buffer is useful because it can 

recall past events and be maintained up to date when 

new areas of the globe are explored. 

 

 

 

V. Research Methodology 

 

REINFORCEMENT LEARNING FOUNDATION 

As was previously said, both the value-based approach 

and the policy-based approach aim to get policies, but 

they go about doing it in different ways, each with 

their own set of benefits and drawbacks. The actor-

critic (AC)32 algorithm is developed to incorporate the 

benefits of both approaches. Advantage estimate 

A(st,at)=Q(st,a)V(st) is used to scale the policy gradient, 

where the actor and critic are represented by policy 

and value function V(st), respectively. Therefore, 

universities are increasingly emphasizing the need of 

designing and implementing strategies to make the 

most efficient use of spectrum resources for wireless 

communication. The government has done a good job 

allocating the electromagnetic spectrum resources used 

by radio, which are among the most important 

components of the wireless communication network. 

Congestion has not been resolved, even with the 

proliferation of IoT terminals. This does not, however, 

mean that there is nothing left. Research shows that in 

certain parts of the United States, just 15% of available 

spectrum is being used. This analysis presents 

compelling evidence that many countries are failing to 

fully take use of their current national spectrum 

resources [5]. The National Spectrum Supervision 

Bureau has thus addressed this issue. authority to use 

the given frequency range through the initial 

electrostatic allocation mechanism is restricted to those 

who have been granted such authority. Due to 

dynamic spectrum resource allocation, licensed and 

unlicensed users may live harmoniously in the same 

frequency band. Reinforcement learning is a promising 

new approach that shows promise in solving difficult 

problems involving the allocation of dynamic 

resources [7]. As interest in deep learning algorithms 

grows, the concept of DRL has been introduced to the 

field of computer science. DRL can train the resultant 

agents to learn the behaviors in photographs or videos, 

which is not achievable with other methods because to 

the high-dimensionality of the raw data [8,9]. DRL is 
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distinguished by two key characteristics. The first is 

that it seeks to enhance the system over the long run 

rather than only in the near term. The second is that 

exploration and decision-making may be performed 

optimally without any prior knowledge of the 

environment, leading to near-optimal outcomes [10]. 

That's why it's so important for DRL to be integrated 

into wireless communication systems. In conclusion. 

Fig. 3.1 is a flowchart depicting the iterative 

optimization process that is the AC algorithm. 

 
 

Fig. 3.1. : Implemented navigation system 

Go to: 2. Research in Existing Works The development 

of wireless communication systems has been 

accelerated by the rise of mobile network applications. 

There have been a plethora of scholarly studies 

conducted on its efficacy and ways to improve it. In a 

radio frequency sensitive or safety-required 

environment, Huang et al. [11] proposed 

interconnectivity as a future air-ground-sea integrated 

communication architecture. Additionally, three 

simple network processes were created for evaluating 

the performance of these systems. Lastly, in five sample 

air quality situations, good transmission performance 

was recorded between VLC at different speeds and FSO 

[11], proving the practicality of this hybrid optical 

wireless network. Nayak et al. [12] simplified the 

process of controlling wave speeds, amplitudes, and 

orientations, which enhanced radiation quality at the 

receiver end. Incorporating the current state of the art 

in telecommunications frameworks and radio lines, 

certain designs of the receiving equipment were 

envisioned. Sopara et al. [13] compared a number of 

different energy-efficient communication techniques 

for WSNs and came to the conclusion that the 

approach they proposed had the greatest impact on 

reducing energy consumption and provided a strong 

experimental basis for developing wireless 

communication technologies. In today's Internet of 

Things era, information and data may easily become 

overwhelming for the average person. Therefore, it is 

essential to use intelligence in the data processing 

process. Deep learning, which is used for the 

intelligent extraction of information features, is 

quickly increasing across all societal domains. One 

group eventually employed deep learning to identify 

RRD in ultra-wide field fundus images was the 

materials medicine group led by Ohsugi et al. [14]. 

They found that ultra-wide field fundus significantly 

increased diagnostic accuracy for early identification of 

RRD and prevention of blindness [14]. The incentive 

function necessary for RL, however, is notoriously 

difficult to construct and typically fails to guarantee 

optimal performance. Zhu [12] introduced a target-

driven DRL (TD-DRL) architecture that has 

demonstrated promising results in addressing the 

whole spectrum of visual navigation difficulties. Its 

application in many tasks is limited due to its low-

sample efficiency, which means it takes large samples 

to train. Our proposed method is tailored to improve 

sample efficiency in visual navigation tasks, while 

other methods combining DRL and IL have been 

proposed for tasks such as grasping [30], the MuJoCo 

task [31, 32], and traffic control [33]. To achieve a goal 

in multi-agent deep reinforcement learning (MADRL), 

agents (or decision makers) may cooperate or compete 

with one another in a specific environment. This 

permits the agents to coordinate [4] and boost [5] 

overall system efficiency. MADRL has made great 

strides in recent years because to its ability to tackle 

difficult real-world scenarios, something that 

traditional RL has had trouble doing. Researchers have 

performed many surveys to get a better understanding 
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of MADRL from a variety of perspectives as interest in 

the topic has increased. In [9], Oroojlooyjadid and 

Hajinezhad highlight the cooperative aspect of 

MADRL. While previous studies concentrated on 

theoretical evaluations, Zhang et al. [11] investigated 

the mathematical underpinnings of MADRL's 

technological difficulties. By creating a classification 

system for MADRL features such goals, characteristics, 

challenges, applications, and performance metrics, that 

we bring to the literature with our interpretations. 

Table 1 summarizes the focus, methodology, and 

intended multi-agent context of current MADRL 

surveys. The table also contains data relevant to the 

article we wrote. The primary purpose of this work is 

to introduce readers to existing and potential MADRL 

application research topics and to encourage their 

further exploration.  

When it comes to visual navigation, robots may use 

either a rule-based or a learning-based approach. Our 

focus on the latter motivates us to talk about learning-

based navigation, where we will introduce ideas like 

internal locus (IL) and dynamic representation 

learning (DRL) as they apply to visual orientation. 

According to [13], some IL methods tackle the issue by 

framing it as a subset of supervised learning, often 

known as behavior cloning (BC). NVIDIA [14] created 

a full-stack BC-based visual navigation method that 

uses three cameras to collect a large number of expert 

samples and is used in autonomous driving 

environments. To predict both the vehicle's speed and 

its steering angle, Yang [15] proposed an IL-based 

multi-task architecture that leverages image sequences. 

To get around the fact that most existing IL methods 

need a well calibrated actuation setup in order to train 

on a dataset, Xu [18] presented a novel framework for 

doing so. While IL-based visual navigation systems 

have their merits, they are susceptible to overfitting if 

just IL is used. 

 
Fig. 3.2: Flowchart of the AC algorithm 

 

VI. Experiment and Result 

 

4.1 EXPERIMENT SETUP & ENVIRONMENT 

Here, we compare our technique to relevant baselines 

and assess its performance on exploration and goal-

attainment tasks. In DMlab44, we put our method to 

the test against relevant baselines throughout a number 

of mazes, and Fig. 1 depicts an agent making its way 

through the environment to reach its destination. 12. 

The agent has first-person perception in this 3D 

simulated world, along with access to extra 

environmental data like inertial and local depth. Six 

distinct actions—forward/backward, left/right, and 

left/right + forward—make up the action space, which 

is discrete while yet allowing for precise control. 

Reaching the apple (+1 point) and the objective (+10 

points) in the environment grants extrinsic rewards, 

and the environment refreshes at a frame rate of 60 

frames per second. If the objective is completed, the 

agent is reborn in a different initial location, and the 

episode will continue for a predetermined length of 

time. Ubuntu 18.04 is used as the operating system, and 

a DELL T7920 workstation equipped with 64 GB of 

RAM, an Intel Xeon Gold 5118 processor, and two 

Nvidia RTX 2080TI graphics cards will serve as the 

https://www.nature.com/articles/s41598-022-07264-7/figures/1
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hardware environment for this experiment. Python 

was used for all of the experiment's programming 

needs. 

 
Fig. 4.1: Simulation environment. (a) Go forwards. (b) 

Apple. (c) Goal. (d) Door.” 

 

4.2 PRINCIPLES 

We contrasted our approach to a control group whose 

agents were also given an innate drive to explore in a 

series of studies in which agents were instructed to 

create exploration behavior. Trust region policy 

optimization (TRPO) [45], the simplest RL method, 

uses the heuristic greedy way of promoting intrepid 

discovery. We then utilize VIME[19], a comparative 

tool based on a Bayesian neural network (BNN), to 

detect environmental changes in real time and derive 

an exploration strategy by optimizing the information 

obtained from these observations. Third, we have 

EX2[20], which is a classifier-centric baseline that 

investigates novelty detection using just a 

discriminatively trained exemplar model. Finally, we 

also duplicate the current state-of-the-art curiosity 

approach ICM[21], as a sanity check. We use three 

DRL-enabled models as our starting points for 

achieving-goal experiments. There is the previously 

described Nav A3C3, the popular feedforward model 

DQN[29], and the recurrent model Deep Recurrent Q 

Network (DRQN)[46]. Experiments also report on a 

more advanced form of Nav A3C called Nav A3C + D2L, 

which learns supplementary tasks in tandem with the 

primary aim.  

 

4.3 METHOD APPLICATION  

Here we discuss the architecture of our learning model. 

In the first convolutional layer, 16 feature maps and 44 

stride filters are used. In the second convolutional layer, 

32 feature maps and 44 stride filters are used. This is 

followed by a 256-unit fully-connected layer, and 

finally a ReLU nonlinearity unit is placed after all three 

layers. The CNN-encoded observations, actions, and 

rewards are then fed into a 256-unit long short-term 

memory (LSTM) layer, which produces linear 

projections for the policy and value function. Each of 

the TC-network and L-network's inputs is a 512-

dimensional feature vector generated by the ResNet-18 

encoder from two observations. The TC-network 

predicts if the two observations are next to one other 

by first concatenating these characteristics and then 

placing them in a fully connected network with 4 

hidden layers, each with 512 units and a ReLU 

nonlinearity unit. Similarly, the L-network takes these 

properties and processes them in parallel. All of the 

agent's possible actions are represented by 6 outputs 

from the softmax layer, which is part of the fully-

connected portion. 

 

4.4 HYPERPARAMETERS 

For this research, we employ the widely-adopted A3C 

algorithm as our foundational RL strategy with a 

sample size of 84 x 84. Input data consists of RGB 

images captured every three frames, with each action 

repeated four times. Eight employees, each with their 

own decentralized RMSProp, labor in tandem to shape 

their surroundings. A log-uniform distribution 

between 0.0001 and 0.005 is used to sample the 

learning rates, while a log-uniform distribution 

between 0.0005 and 0.01 is used to sample the entropy 

costs. All training data was created by the agents 

themselves, and their only inputs are two RGB pictures 

with a resolution of 160x120 pixels to the TC-network 

and L-network, respectively. 

 

4.4.1 Experiment to Determine Parameter Values  

Although we're interested in agents that can explore 

and encode the environment on their own accord, we 

can't evaluate our method's efficacy until we've 

determined a few key parameters. In the labyrinth 

shown in Fig. 1, we isolate the parameters relevant to 

the training details of the TC-network and L-network, 
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as well as the main elements of the reward function. 13. 

Fig. Location for Choosing Parameters (Section 4.2).  

 

 
Fig. 4.2: Parameter selection environment. 

 

4.4.2 Parameter for Separating Samples  

As with the L-network's training samples, the TC-

network's threshold k is used to categorize training 

samples as either positive or negative. Therefore, we 

undertake an experiment where we illustrate the 

consequences of altering k from 1 to 10. The 

percentage of waypoints is determined using the 

associated TC-network and 30 random observation 

sequences, with training results from both the TC-

network and L-network (1.5 M interaction quantity) 

averaged across the top 5 random hyperparameters. As 

can be seen in Table 4.1, the difference between 

positive and negative samples is strongly correlated 

with the training impact of the TC-network. Initial 

TC-network accuracy suffers from sample-to-sample 

consistency issues.” Then, when k grows, the threshold 

rises, but the accuracy drops below a certain point once 

again. 

 

 

 

 

 

Table 4.1 The experimental results of the sample 

separation parameter.” 

 
The performance of the L-network steadily declines 

with increasing k, particularly when k>4. This is in 

stark contrast to the TC-network. Finally, the number 

of waypoints reduces with increasing k, however as 

we've indicated, the predictive capability of the TC-

network approaches a bottleneck when k is bigger than 

certain value, causing an increase in the number of 

waypoints. Sample separation parameter testing results 

are listed in Table 4.1.  

4.4.3 Parameter of interaction volume  

Pretraining parameters include not just the threshold k 

but also the degree of environmental interaction. Our 

approach divides the sample's difficulty into two stages: 

pre- and post-learning. The sample size does not affect 

the exploratory behavior of online learning, but the 

number of samples does affect the pretraining impact. 

The top 5 random hyperparameters are aggregated to 

highlight the correlation between interaction volume 

and network performance in Table 2. 

 

Table 4.2: The experimental results of the interaction 

volume parameter. ” 

 



Volume 9, Issue 5, September-October-2023 | http://ijsrcseit.com 

Pooja Upadhyay et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., September-October-2023, 9 (5) : 216-235 

 

 

 

 
227 

Table 2 demonstrates that as the training data is 

increased, the TC-network's accuracy improves, but 

accuracy declines after overfitting. Similarly, the L-

network's prediction accuracy improves with an 

increase in interaction volume, however the rate of 

improvement slows down with time.  

As shown in Table 4.2, the interaction volume 

parameter was measured experimentally. In conclusion, 

both the TC-network and the L-network are capable of 

learning effective controllers from the trajectories of 

randomly behaving agents, and can then apply these 

controllers to problems in visual perception and local 

navigation. This lack of generalizability is a 

consequence of the fact that all samples in the 

pretraining phase come from the same context. 

Therefore, we gather data from new locations to train 

these networks twice throughout the future 

exploration.  

4.4.4 Parameter of the reward function  

Our reward function is a hybrid one, consisting of both 

traditional and unique incentives. We demonstrate 

two main results—the episode reward (novelty 

rewards achieved by the agent within 1800 time steps) 

and the number of interactions required to encode the 

environment—to compare the effects of different 

parameter sets that are set +1 and sampled within the 

same interval (0.1). The findings are presented in Fig. 

by taking an average across the top 5 random 

hyperparameters. 14 after data standardization (using 

the minimum value as the standard). For example, The 

agent may develop a wide range of exploratory 

behaviors by depending on a novelty reward of the 

form,=(0.0,1.0) or,=(1.0,0.0). They need more contact 

with the environment to encode it, but their 

exploration is less efficient than agents that employ 

both novelty incentives. The experimental findings 

may also be understood in terms of the components of 

the reward function. First, we use a count-based 

method to calculate novelty rewards for previously 

explored environments and push the agent toward 

infrequently visited waypoints; second, we use a 

temporal distance method to calculate novelty rewards 

for previously unexplored state spaces and try to nudge 

the agent toward more remote locations. These two 

benefits might serve as excellent indicators of where to 

go next in your investigation. The parameter of the 

reward function, as determined experimentally, is 

shown in Figure 4.3. In the next experiment, we choose 

the agent equipped with the parameter sets,=(0.2,0.8), 

since it demonstrates the highest exploration efficiency 

and needs the least amount of human intervention 

while encoding the surroundings. In addition, at the 

fine-tuning step, agents no longer behave randomly 

but instead learn the exploration policy in the 

environment. 

 
“Fig. 4.3: Experimental results on the reward function 

parameter.” 

4.5 EXPERIMENTAL EXPLORATION METHOD  

The experiment's goal is to demonstrate the impact of 

various learning strategies and training patterns on 

encoding efficiency by providing a quantitative 

evaluation of their exploration performance. Fig. 

displays the test setups. 15; Maze-1 has three routes of 

varying lengths, while Maze-2 has a center corridor 

and six limbs; both are based on tests with rodents and 

their spatial cognition. The third maze is a standard 

kind, with a variety of traps and many possible exits. 

These mazes do not have any external incentives (such 

a destination or a fruit, for example).  

 

 
Fig. 4.4: Test maze seen from above (a) Maze-1. 

(b) Maze-2. (c) Maze-3. 

 

An episode-wide reward based on the agent's region of 

exploration is used to compare the effectiveness of the 

various approaches. An episodic reward/training step 

diagram is used to explain how the agent learns to 
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successfully complete a task under a time constraint of 

7200 steps (2 minutes). The agent dies at the conclusion 

of each episode and is reborn in a different area, forcing 

him or her to start exploring from scratch.  

 

4.1 Adaptive tuning using internal drives  

Figure below demonstrates that when ICM and our 

method are trained in conjunction with the fine-

tuning method, random exploration can be terminated; 

However, there is an interesting trend in the learning 

curve. The exploration strategy can be learned rapidly 

from start because of Maze-1's straightforward design. 

Some mismatches occur early on in training when 

using the fine-tuning strategy, since wall walking and 

obstacle avoidance are not explicitly taught. While the 

fine-tuning strategy greatly improves ICM's training 

efficiency and helps the policy converge faster in 

Maze-2 than when starting from scratch, its overall 

contribution to our method is little. Maze-3 provides a 

clearer demonstration of the importance of fine-tuning, 

which is reflected in two main ways: the improvement 

in the ICM module's performance, where exploration 

efficiency rises once more following the first policy 

stabilization, and the use of fine-tuning to further 

decrease the required number of interactions in the 

maze's encoding. Precision tuning with intrinsic 

motivation: experimental findings, number  

 
Fig. 4.6: Results from the Maze-1 experiment, The 

results of the second version of the Maze experiment). 

The outcomes of the Maze-3 study, in (c). Importantly, 

the experiments demonstrate that the fine-tuning 

method does not always help and might sometimes 

hinder learning, particularly in easy settings. Fine-

tuning, on the other hand, excels in complicated 

contexts because it can take a previously-trained policy 

as input and utilize it to help the agent better adapt to 

the new setting.  

4.2 Using monetary incentives for fine-tuning  

It is important for the reader to bear in mind that the 

current experiment employed extrinsic incentives as 

drivers to direct investigation. The placements of the 

apples (Fig. 12c, value + 1) and the objectives (Fig. 12b, 

value + 10) were consistent within an episode but 

shuffled between episodes to provide extrinsic 

incentives. The agent's success in each way is still 

judged by the uniform reward it gets during an episode 

(the area traversed was estimated by the count-based 

approach), but once the objective is accomplished, the 

agent respawns to a new starting place and must 

explore the labyrinth again. Particular findings are 

highlighted in Fig. See also Table 6 (average outcomes 

over the top 5 best performances in the learning 

process) and Table 18 (average results over the top 5 

random hyperparameters).  

Fig. 4.7: The experimental results of fine-tuning with 

extrinsic reward. (a) Maze-1 experiment results. (b) 

Maze-2 experiment results. (c) Maze-3 experiment 

results.” 

Using extrinsic incentives to perform fine-tuning has a 

greater detrimental impact than the previous strategy, 

since it not only slows down training but also muddles 

the distinction between exploration and navigation. 

Because reaching the objective is often seen as gaining 

a substantial intrinsic reward during exploration, the 

state holding the extrinsic appealing reward is 

desirable, and the agent desires to attain it consistently. 

This performance degradation is the core reason of the 

policy shift. Furthermore, it seems that the aim of fine-



Volume 9, Issue 5, September-October-2023 | http://ijsrcseit.com 

Pooja Upadhyay et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., September-October-2023, 9 (5) : 216-235 

 

 

 

 
229 

tuning is to discover the goal rather than to explore the 

environment, since the agent is reset to a new starting 

location upon achieving the goal. Because of this, 

agents in Maze-1 and Maze-2 may earn substantial 

rewards rapidly during the first stages of training, but 

they still need further involvement to finish the 

investigation. The worst of it takes place in Maze-3, 

where the whole area is too large to explore in a single 

episode. Extrinsic reward fine-tuning experiment 

findings are shown in Figure 4.7. Results from the 

Maze-1 experiment, (a). The results of the second 

version of the Maze experiment (part b). The outcomes 

of the Maze-3 study, in (c). Consequently, agents are 

more effectively motivated to act in accordance with 

their goals when they are motivated by extrinsic 

incentives, which take the form of discrete objects in 

the environment. This Noisy-TV trial is an experiment 

As shown above, the ICM approach beats the other 

baselines and comes close to matching the performance 

of our approach in the first two test mazes. This 

prediction-based curiosity strategy has yet to solve the 

couch potato issue, as shown by the noisy-TV 

experiment. This experiment is designed to help us 

determine whether our approach, which uses agents' 

observation and memory to direct exploration, is more 

resilient to stochastic objects. This is how we really did 

our loud TV experiment. The TV was always shown on 

the agent's primary display, and its location within an 

episode was always the same but changed randomly 

between episodes. Each time the agent does an action, 

the TV screen displays an unrelated, 21x21-pixel 

picture in one of the four quadrants the agent is 

monitoring, with each pixel evenly sampled from the 

range [0,255]. The data from the experiments shown in 

Fig. As can be seen in figure (average results over the 

top 5 best performances in the learning process) and 

figure (average results over the top 5 random 

hyperparameters), the addition of the randomness 

source has a negative impact on the performance of 

both the ICM and our technique. While the fine-

tuning technique may ease exploration to some amount 

and help ICM keep learning when starting from fresh, 

the resultant policy is still unsatisfying. It's clear that 

not all of the state space can be modeled, such the 

motion of leaves in the wind or the noise in the 

television set. The ICM method gets sucked into the 

curiosity trap and devolves into undesirable behavior 

because its prediction mistakes stay high and exhibit an 

attractive allure to the agent. The agent's continued 

interest in the rustling of the leaves and the flickering 

of the TV screen serves no useful purpose. That's why 

we used memory to look for what we were curious 

about rather than making any assumptions. The agent 

gets over the couch potato issue by making use of 

historical similarities to eliminate its curiosity for 

seemingly unrelated items. Furthermore, in our future 

study, we will elaborate on additional potential origins 

of environmental unpredictability.  

 
Fig. 4.8: The experimental results of Noisy-TV. Results 

from the Maze-1 experiment, (a). The results of the 

second version of the Maze experiment (part b). The 

outcomes of the Maze-3 study, in (c).  

4.6 Purposeful Experiment  

We evaluate our method against a variety of DRL-

supported navigation models (DQN, DRQN, Nav A3C, 

and Nav A3C + D2L) on a variety of navigation tasks. 

Exploration-based topological learning may be 

immediately applied to the task at hand. We trained 

these models using the same training procedures as the 

exploratory policy and then saved the trained models 

as baselines so that we could fairly compare them. 

These models were trained and additional experiments 

aimed at achieving the goals were conducted using the 

environment described in the Fine-tuning with 

extrinsic rewards section. We compared the 

percentage of time spent moving toward the objective 

at various time steps to the extrinsic reward gained by 

the agent throughout the course of an episode (5000 

time steps). The Static Maze Procedure In this test, we 
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guarantee the correctness of all operations by 

performing them in a static environment where the 

only variables are the locations of the agent and the 

target. Once an episode has begun, the only remaining 

computational activity is the agent's self-localization, 

since target localization is done only once. For example, 

In order to make up for the DQN's inability to recall its 

previous visits to the target, the DRQN model 

incorporates a long short-term memory (LSTM) to 

speed up subsequent visits to the site during 

subsequent episodes. The Nav A3C model incorporates 

more data (relative agent velocity, action, and reward) 

to further enhance navigational efficacy. In the first 

two test mazes, its performance is comparable to ours 

when paired with a ground-truth depth map and loop 

closure. Maze-3 is different, however, as its structure is 

more complex, depth information contributes less to 

action selection, and Nav A3C + D2L's navigation 

efficiency shows a declining trend, all while our 

method still maintains an efficient navigation policy. 

The experimental outcomes of goal attainment in 

stationary mazes are shown in Figure 20. Results from 

the Maze-1 experiment, (a). The results of the second 

version of the Maze experiment (part b). The outcomes 

of the Maze-3 study, in (c). To begin, navigation relies 

heavily on the memory function, and its absence 

greatly affects the frequency with which an agent 

accomplishes a goal and the rewards it obtains during 

an episode. This finding is most obvious in memory-

intensive settings like Maze-2, where the DRQN model 

offers nearly twice as much reward as the DQN model. 

Second, although the DRQN model is superior than the 

DQN model in all test mazes, it still takes a long time 

for the DRQN model to reach the endpoint. We 

attribute this to the agent's lack of observant clarity, 

which calls for more inputs and depth information to 

solidify the mapping link between states and actions. 

Finally, the results show that the map-less strategy is a 

viable alternative to the map-based approach in basic 

situations, but that its performance degrades in Maze-

3, suggesting that the map-based approach is better 

able to deal with the increasing complexity of the state 

space. A Study of Dynamic Blocking Here, we compare 

and contrast how well these various approaches do 

when faced with dynamic obstructions in state space. 

The test environments are replicas of Maze-1 with the 

addition of obstacles at the places shown in Fig. 21 (the 

labyrinth still has accessible routes). Next, we perform 

tests in  

 
Fig. 4.9: The goal reaching experimental results in 

static mazes. 

 

Fig. 4.9's surroundings using the space topological 

cognition and navigation model we developed in 

Maze-1. 21. In fact, if you look at Fig. 22 (the findings 

are an average of 30 iterations), the navigation 

efficiency of all techniques is impacted by the addition 

of dynamic obstructions to Maze-1. However, as 

compared to map-based approaches, the effects of 

obstructions are catastrophic for map-less approaches. 

Both DQN and DRQN rely heavily on reactive 

behavior while searching for the objective. 

Consequently, the success rate plummets if the agent is 

blocked from reaching the target until the conclusion 

of the episode. Even if they perform very well in the 

non-blocking state space, Nav A3C and Nav A3C + D2L 

fail to ensure arrival at the destination when the 

blockage emerges at point A or B. Since there are now 

two obstructions in the path between the agent and the 

target, the performance drop is more pronounced in 

the final environment. Our method also has a lower 

success rate since it takes more time steps to redirect 

the agent around the obstacle.  

4.7 Conclusion  

As obstacles are introduced, the success rate and 

reward achieved by all approaches declines, but the 

approaches without maps suffer the most. When 

barriers are put at either site A or B, the incentives for 

DQN and DRQN drop by about 30%, and they drop by 
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nearly 50% when there are two barriers in the 

environment. Furthermore, the presence of blockages 

reveals the limitations of Nav A3C and Nav A3C + D2L, 

particularly in the case where the agent and the target 

are placed at both ends of the blockage, where the 

agents constantly attempt to break through the 

blockage, significantly reducing the frequency with 

which they reach the target. Our method assures the 

agent can identify a viable route to the objective by 

relying on the agent's recollection of the environment 

structure and a dynamic path planning mechanism. By 

updating the topological memory, the bot may 

navigate around obstacles A and B. However, our 

method typically needs the whole of the episode to 

achieve the objective, which results in fewer payouts 

owing to the additional navigation distance. 

 

VII. CONCLUSION 

 

The capacity to navigate visually is crucial for an 

autonomous agent to perform a broad variety of tasks 

in challenging environments. Using information 

gathered from its own internal visual sensors, an agent 

is able to understand its immediate surroundings and 

safely navigate to a predefined location. There are two 

main points to consider. The first step is for the agent 

to assess the present observation and infer the aspects 

that are crucial to the end result. Second, the agent 

must be aware of how its navigational behaviors shape 

its perceptions of its surroundings. In this research, we 

offer a new navigation architecture that combines 

topological knowledge of space with the discovery of 

intrinsic motivation. Our method is two-pronged, with 

the first part of the method tasked with exploring the 

environment and the second part tasked with encoding 

it. Analyses and findings from experiments 

demonstrate the significance of reward function and 

training patterns in the acquisition of an exploratory 

stance. We also looked at how space topologically 

cognizant bots fared in both static and semi-dynamic 

settings when it came to navigation. The cognitive 

mechanisms of animals serve as inspiration for our 

method because of their ability to simultaneously 

investigate and encode the structure of their 

surroundings. We utilized DRL as the foundational 

learning framework and gave AI agents the freedom to 

design their own incentives in order to achieve 

spontaneous exploration from unprocessed visual 

inputs. Unlike prediction-based exploration 

approaches, our reward function is calculated using 

episode memory and has two distinct sorts of non-

traditional rewards. Exploration waypoints are a 

common feature of both space topological cognition 

and episode memory. Such spatial cognition may be 

employed as a planning module for the navigation 

system and to progressively cover the surroundings by 

merging exploration sequences. 

Our method efficiently learns an exploration strategy 

inside the end-to-end DRL framework; but, the 1-layer 

LSTM's limited memory might be overstretched in 

very vast settings. Increasing the LSTM size or 

including external memory will be crucial in the future 

if we want to make our learnt model more powerful. 

In addition, when more ground is covered, our spatial 

awareness expands proportionally. Again, this may be 

problematic when trying to find your way across really 

expansive areas. One approach is secondary sampling, 

in which only the most useful or distinguishable 

landmarks are retained. Finally, we foresee further 

development in taking our technology outside and 

contrasting it with vision-based SLAM techniques. 

By switching from our present four-layer fully-

connected model to a pre-trained ResNet, we can 

significantly increase our accuracy. Success rates may 

be increased by retraining segments of the ResNet 

model, introducing new Dagger, and expanding 

training data to include additional scenes and targets. 
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