
 

Copyright © 2023 The Author(s): This is an open-access article distributed under the terms of the Creative 

Commons Attribution 4.0 International License (CC BY-NC 4.0) 

 

 

 

 
International Journal of Scientific Research in Computer Science, Engineering 

and Information Technology 

ISSN : 2456-3307 
 

Available Online at :www.ijsrcseit.com 

doi : https://doi.org/10.32628/IJSRCSEIT 
  

 

 

  

 

 

 

475 

Digital Twin-Enabled Vulnerability Assessment with Zero Trust Policy 

Enforcement in Smart Manufacturing Cyber-Physical System 
Chima Nwankwo Idika 1, Ugoaghalam Uche James2, Onuh Matthew Ijiga3, Lawrence Anebi Enyejo4 

1Department of Information Technology, De Meek Builders Ltd, Umuahia, Abia State, Nigeria. 
2Department of Computer Information Systems. College of Engineering, Prairie View A&M University, Praire 

View ,77446, Texas, USA. 
3Department of Physics, Joseph Sarwaan Tarkaa University, Makurdi, Benue State, Nigeria. 

4Department of Telecommunications, Enforcement Ancillary and Maintenance, National Broadcasting 

Commission, Aso-Villa, Abuja, Nigeria 

A R T I C L E I N F O 
 

A B S T R A C T 

Article History: 

Accepted:  01 Nov  2023 

Published: 30 Nov 2023 

 

 The convergence of digital twin (DT) technology and zero trust architecture 

(ZTA) offers a transformative framework for enhancing cybersecurity and 

operational resilience in smart manufacturing cyber-physical systems (CPS). This 

review explores how DTs—virtual representations of physical assets—can 

simulate, monitor, and evaluate vulnerabilities across complex manufacturing 

networks in real time. Traditional perimeter-based defenses are increasingly 

ineffective in distributed and interconnected industrial environments. In 

response, zero trust policy enforcement—anchored in the principles of "never 

trust, always verify"—introduces dynamic access controls, micro-segmentation, 

and continuous authentication that address latent security gaps in CPS. The 

integration of DTs with ZTA provides contextual awareness for asset behavior, 

enabling predictive threat modeling, anomaly detection, and proactive security 

orchestration. This paper reviews recent advancements in DT-enhanced 

vulnerability assessment tools, zero trust policy engines, and their interplay in 

manufacturing systems with high cyber-physical interdependence. Emphasis is 

placed on identifying research gaps, evaluating system architectures, and 

proposing future directions for implementing resilient, secure-by-design CPS 

infrastructures. By systematically reviewing case studies, industrial applications, 

and academic frameworks, this study underscores the critical role of DT and ZTA 

synergy in safeguarding smart manufacturing environments against evolving 

cyber threats. 
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1.Introduction 

1.1 Background on Smart Manufacturing and Cyber-

Physical Systems (CPS) 

Smart manufacturing is the core of Industry 4.0, 

characterized by the integration of advanced digital 

technologies with physical manufacturing systems to 

enhance adaptability, efficiency, and intelligence 

across production lines. At the center of this 

transformation are Cyber-Physical Systems (CPS), 

which tightly couple computational resources with 

physical processes through real-time feedback loops, 

sensors, and intelligent control systems (Lee et al., 

2016). These systems support seamless data flow from 

operational equipment to decision-making platforms, 

enabling predictive maintenance, autonomous quality 

control, and optimization of manufacturing processes. 

The incorporation of artificial intelligence (AI), 

Internet of Things (IoT), and cloud-edge architectures 

further intensifies the ability of CPS to function 

adaptively under dynamic production conditions. In a 

typical smart manufacturing environment, CPS 

enables machines, sensors, and controllers to self-

organize and make informed decisions without 

centralized intervention. For example, AI-enabled 

robotic arms in an automotive production facility can 

detect anomalies in assembly tasks and recalibrate 

operations instantly, minimizing downtime and 

improving yield (Andronie, et al., 2021). However, 

this integration of digital intelligence introduces 

unprecedented security challenges, as each 

interconnected device and control node becomes a 

potential attack surface. Consequently, secure-by-

design CPS architectures and frameworks such as 

Digital Twins and Zero Trust are increasingly 

essential to preserving the integrity, confidentiality, 

and availability of smart manufacturing systems. 

 

1.2 The Growing Threat Landscape in Industrial CPS 

The expansion of Industrial Cyber-Physical Systems 

(CPS) has significantly broadened the threat 

landscape in manufacturing and process industries. 

Unlike traditional isolated control environments, 

modern CPS are deeply interconnected with 

enterprise networks, cloud services, and third-party 

applications—exponentially increasing their 

vulnerability surface (He et al., 2021). The complexity 

of CPS arises from the confluence of diverse hardware, 

real-time software, and communication protocols, 

which often lack standardized cybersecurity controls. 

As industrial automation grows more intelligent and 

data-driven, cyber adversaries are exploiting these 

systemic weaknesses through sophisticated methods 

such as advanced persistent threats (APTs), 

ransomware, and lateral movement attacks. 

Industrial control systems (ICS), supervisory control 

and data acquisition (SCADA), and programmable 

logic controllers (PLCs) are among the most targeted 

components due to their mission-critical role and 

historically weak security posture (McLaughlin, et al., 

2016). For example, the Triton malware incident, 

which targeted safety instrumented systems in 

petrochemical plants, underscores how cyberattacks 

can have life-threatening consequences when 

targeting CPS. Moreover, the convergence of IT and 

operational technology (OT) domains in Industry 4.0 

environments has blurred traditional security 

boundaries, complicating threat detection and 

response efforts. This evolving threat landscape 

necessitates a proactive cybersecurity paradigm built 

on real-time threat intelligence, system redundancy, 

and dynamic access controls—elements that digital 

twins and zero trust architectures are well-positioned 

to provide within the context of secure smart 

manufacturing. 

 

1.3 Emergence of Digital Twin Technology in 

Security Applications 

Digital twin (DT) technology has rapidly evolved 

from a simulation-based concept for predictive 

maintenance into a multifaceted cybersecurity tool in 

smart manufacturing environments. A digital twin, 

defined as a dynamic, real-time digital representation 

of a physical asset or system, enables continuous 

monitoring, simulation, and behavior analysis under 
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various operational conditions (Fuller et al., 2020). 

This duality of physical and virtual synchronization 

allows manufacturers to predict potential 

vulnerabilities and test mitigation strategies without 

disrupting live operations. In the context of 

cybersecurity, DTs provide critical insights into 

anomalous system behavior by establishing baseline 

models of normal operations and flagging deviations 

that could signal cyber intrusions or process 

anomalies. 

By embedding security intelligence into DT 

architectures, organizations gain a proactive defense 

mechanism capable of conducting threat emulation, 

scenario simulation, and automated alert generation. 

For example, a DT of a robotic assembly line can 

detect suspicious command sequences or 

configuration changes that deviate from expected 

patterns, enabling early containment responses. 

Glaessgen and Stargel (2012) highlight that the digital 

twin paradigm offers strategic foresight in mission-

critical systems by enabling continuous assurance of 

safety and performance integrity. These capabilities 

are essential for securing Industrial CPS, where real-

time situational awareness and predictive anomaly 

detection are paramount. As threats grow in 

sophistication, DTs are positioned as integral assets in 

a resilient, secure-by-design manufacturing 

infrastructure. 

 

1.4 Introduction to Zero Trust Architecture (ZTA) 

Principles 

Zero Trust Architecture (ZTA) has emerged as a 

cornerstone framework for securing modern cyber-

physical infrastructures by fundamentally challenging 

traditional perimeter-based security models. Rooted 

in the principle of “never trust, always verify,” ZTA 

assumes that no user, device, or application—whether 

inside or outside the network perimeter—should be 

implicitly trusted. Instead, access is granted based on 

dynamic policy enforcement, user authentication, and 

continuous system monitoring (Rose et al., 2020). This 

principle is especially critical in smart manufacturing 

environments, where interconnected assets and 

remote access capabilities expand the attack surface 

exponentially. 

A core feature of ZTA is micro-segmentation, which 

partitions networks into secure zones and restricts 

lateral movement by isolating workloads and 

enforcing strict access controls. This is complemented 

by identity-centric policies that evaluate attributes 

such as device posture, user behavior, and contextual 

risk before authorizing access to resources 

(Cunningham, & Pollard, 2017). For instance, a 

programmable logic controller (PLC) in a smart 

factory may only be allowed to communicate with 

predefined supervisory systems and only when 

encrypted protocols and trusted certificates are 

validated in real-time. In this architecture, trust is 

never assumed—it must be earned through verified 

compliance with security policies. ZTA thus provides 

a strategic paradigm for proactively mitigating threats, 

reducing breach impact, and ensuring cyber resilience 

in industrial CPS infrastructures. 

 

1.5 Objectives and Scope of the Study 

The primary objective of this study is to explore the 

integration of Digital Twin (DT) technology and Zero 

Trust Architecture (ZTA) as a unified framework for 

enhancing cybersecurity in smart manufacturing 

Cyber-Physical Systems (CPS). It seeks to demonstrate 

how DT-enabled systems can simulate, detect, and 

assess vulnerabilities in real time, while ZTA 

principles enforce continuous authentication, micro-

segmentation, and dynamic access controls. The study 

also aims to highlight the advantages of combining 

these technologies for proactive threat detection, 

operational visibility, and risk mitigation in highly 

interconnected industrial environments. 

The scope of the review encompasses recent 

developments in the application of DT technology for 

cybersecurity monitoring, with emphasis on 

behavioral analytics, threat simulation, and predictive 

vulnerability assessment. Additionally, it evaluates 

the core mechanisms of ZTA, including identity and 
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access management, trust evaluation, and policy 

enforcement, within the context of industrial CPS. 

Case studies, architectural models, and 

implementation frameworks are examined to assess 

real-world applicability and performance outcomes. 

This study is particularly focused on smart 

manufacturing sectors leveraging Industry 4.0 

technologies, such as IoT, edge computing, and AI, 

where security threats are increasingly dynamic and 

complex. Ultimately, this review contributes to the 

broader discourse on resilient industrial systems by 

proposing an integrated security paradigm that 

bridges physical infrastructure and digital intelligence. 

 

1.6 Structure of the Paper 

This paper is organized into six main sections to 

provide a coherent and systematic exploration of 

Digital Twin-enabled vulnerability assessment and 

Zero Trust policy enforcement in smart 

manufacturing Cyber-Physical Systems (CPS). 

Following the introduction in Section 1, which 

outlines the background, threat landscape, emergence 

of relevant technologies, and research objectives, 

Section 2 delves into the foundational aspects of 

Digital Twin technology. This includes its 

architecture, real-time capabilities, and cybersecurity 

applications in industrial settings. 

Section 3 introduces the principles and mechanisms of 

Zero Trust Architecture (ZTA), highlighting its 

departure from traditional security models and its 

specific relevance to industrial CPS. This section 

further discusses policy enforcement techniques, 

identity management, and monitoring strategies 

essential for ZTA implementation. Section 4 presents 

a synthesized view of how Digital Twins and Zero 

Trust models can be integrated to enhance 

vulnerability detection and response. It offers 

architectural frameworks, operational workflows, and 

real-world case studies demonstrating the synergy 

between these technologies. Section 5 outlines future 

trends, challenges, and open research directions, 

including emerging technologies like AI and edge 

computing in security contexts. Finally, Section 6 

summarizes the key findings and offers strategic 

recommendations for researchers, engineers, and 

industrial cybersecurity professionals seeking to 

implement secure, resilient smart manufacturing 

systems. 

 

2. Digital Twin Technology for Security in 

Manufacturing CPS 

2.1 Architecture and Functional Components of 

Digital Twins 

The architecture of Digital Twin (DT) systems in 

smart manufacturing encompasses a multilayered 

integration of physical assets, virtual models, and 

bidirectional data exchange. Fundamentally, a digital 

twin consists of three core components: the physical 

entity, its digital counterpart, and the data linkage 

that enables synchronization between the two 

environments as shown in table 1. This 

synchronization allows the virtual model to simulate 

the physical system in real time, providing actionable 

insights for monitoring, control, and optimization (Qi 

et al., 2021). These insights are essential in cyber-

physical systems (CPS) for proactive decision-making, 

anomaly detection, and resilience under variable 

production conditions. Functionally, digital twins are 

composed of data acquisition layers, simulation 

engines, and predictive analytics modules. The data 

acquisition layer integrates sensors, IoT gateways, and 

embedded systems that continuously feed telemetry 

from the physical asset into the digital model. The 

simulation engine replicates the system’s structural 

and behavioral dynamics, enabling engineers to test 

scenarios without disrupting live operations. Finally, 

the analytics module applies artificial intelligence and 

machine learning algorithms to detect patterns, 

forecast outcomes, and support real-time control. 

Barricelli et al. (2019) emphasize that the scalability 

and interoperability of these components are vital for 

effective DT deployment in heterogeneous industrial 

environments. Modular architecture also enables 

digital twins to evolve dynamically, accommodating 
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system upgrades, security policies, and context-aware 

process adjustments necessary for robust smart 

manufacturing cybersecurity frameworks. 

 

 

Table 1: Summary of Architecture and Functional Components of Digital Twins 

Component  Description  Function in Smart 

Manufacturing 
 

Example Application 
 

Physical Entity 
 

The real-world 

machine, device, or 

asset being mirrored 
 

Source of real-time 

operational data 

through sensors and 

embedded systems 
 

CNC machines, 

robotic arms, HVAC 

systems 
 

Digital Model (Twin) 
 

Virtual 

representation that 

simulates structure, 

behavior, and 

performance 
 

Enables simulation, 

visualization, and 

state monitoring of 

physical assets 
 

Simulating wear 

patterns in a robotic 

joint 
 

Data Integration 

Layer 
 

Infrastructure 

enabling bidirectional 

communication 

between physical and 

digital 
 

Collects sensor data, 

sends control 

commands, and 

maintains 

synchronization 
 

IoT platforms, 

SCADA interfaces, 

industrial gateways 
 

Analytics & 

Simulation Engine 
 

Processes telemetry 

using AI/ML models 

to generate insights 

and detect anomalies 
 

Supports predictive 

maintenance, fault 

diagnostics, and cyber 

threat detection 
 

Predicting motor 

failure or identifying 

command injection 

anomalies via DT 

analytics 

 

2.2 Real-Time Data Acquisition and Simulation in DT Systems 

Real-time data acquisition and simulation form the foundational pillars of digital twin (DT) functionality, 

enabling dynamic responsiveness and predictive control in smart manufacturing systems. These capabilities are 

achieved through continuous bidirectional communication between physical assets and their virtual 

representations. Embedded sensors and industrial IoT devices stream high-frequency data on operational 

variables—such as temperature, vibration, load, and cycle times—into cloud or edge-based DT platforms, 

where it is processed and synthesized into actionable insights (Leng et al., 2021). This real-time synchronization 

ensures that the digital twin mirrors the physical system's current state and behavior with high fidelity. 

Simultaneously, simulation engines within the DT framework leverage the incoming data to conduct parallel 

modeling of system dynamics, stress responses, and failure probabilities. This allows for immediate feedback on 

potential anomalies or inefficiencies, which can be used to recalibrate system behavior or initiate preventive 

maintenance protocols. In the context of security, real-time simulations help detect command injection, process 

deviations, or unusual latency patterns that may indicate malicious interference. 
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Xie et al. (2021) emphasize that the performance of real-time DT systems is enhanced through adaptive 

learning models that incorporate historical data trends and predictive analytics to optimize operations under 

varying conditions. This real-time capability is vital in manufacturing CPS, where even milliseconds of delay 

can have significant implications for safety, productivity, and cyber-resilience. 

 

2.3 Applications of DT in Predictive Maintenance and Process Optimization 

Digital twin (DT) systems are transforming predictive maintenance and process optimization by enabling real-

time monitoring, prognosis, and decision support across smart manufacturing environments. Predictive 

maintenance, empowered by DTs, goes beyond traditional condition-based monitoring by integrating real-time 

telemetry with historical degradation models and machine learning algorithms to forecast failure points before 

they occur. This allows industries to schedule maintenance operations with precision, minimize unplanned 

downtime, and extend asset lifecycles. For instance, in an automotive assembly plant, DTs can monitor the 

thermal load and vibration data of robotic arms to anticipate bearing wear and trigger automated service 

requests before faults propagate (Zheng et al., 2021). 

In parallel, DTs enhance process optimization by simulating various production scenarios and adjusting 

operational parameters to achieve optimal performance under resource and time constraints. Through 

embedded feedback loops and closed-loop control mechanisms, DTs autonomously recalibrate process flows in 

response to material inconsistencies, equipment inefficiencies, or environmental changes. This real-time 

adaptation boosts throughput, reduces energy consumption, and increases manufacturing flexibility. 

Leng et al. (2022) underscore the value of integrating DTs with AI-driven analytics and cloud-based platforms 

to facilitate large-scale optimization across distributed production networks. These capabilities are especially 

vital for smart factories aiming to balance operational efficiency with sustainability and resilience in rapidly 

evolving industrial ecosystems. 

 

2.4 Role of DT in Cybersecurity Monitoring and Threat Modeling 

Digital Twin (DT) systems are emerging as a powerful tool for cybersecurity monitoring and threat modeling in 

industrial environments, especially within the context of CPS. A DT's capacity to replicate real-time behavior 

of assets enables detailed visibility into system operations, thereby supporting the detection of anomalies and 

potential breaches as represented in figure 1. By continuously monitoring system parameters and comparing 

them against baseline behavior models, DTs can identify deviations that may signify cyber intrusions, insider 

threats, or data integrity violations (Alcaraz, & Lopez, 2022). These deviations, when analyzed with embedded 

AI algorithms, provide critical indicators for early threat detection and response. 

In the domain of threat modeling, DTs allow manufacturers to simulate various cyberattack scenarios—such as 

man-in-the-middle, ransomware, or command injection attacks—within a controlled virtual environment. This 

simulation capability supports risk assessment, system hardening, and prioritization of mitigation strategies 

without affecting operational continuity. Balta, et al., (2023) emphasize that DT-enhanced threat modeling 

leverages reinforcement learning and anomaly detection techniques to evaluate system vulnerabilities under 

dynamic threat landscapes. Moreover, DTs support forensic analysis by preserving a digital trace of system 

activity, which aids in post-incident investigation and compliance reporting. As industrial systems evolve in 

complexity, the DT framework ensures scalable, proactive cybersecurity monitoring that aligns with real-time 

system demands and zero trust policy enforcement principles. 
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Figure 1 shows a highly digitized industrial facility where Digital Twin (DT) technology is actively integrated 

into the cybersecurity infrastructure of a smart manufacturing system. At the core of the image is a large 

refinery or process plant surrounded by sensors and advanced control units, overlaid with a transparent, 

holographic DT interface displaying real-time analytics, behavioral models, and network telemetry. This visual 

representation exemplifies how DTs function in cybersecurity monitoring by continuously synchronizing with 

physical assets to detect anomalies, simulate threat scenarios, and visualize system vulnerabilities. The interface 

shows dynamic charts, heat maps, and node connections, reflecting the DT’s ability to perform predictive threat 

modeling by comparing live telemetry with historical baselines. Any deviations—such as unauthorized 

commands or unusual data flows—can be flagged for immediate risk analysis. The DT system, embedded with 

AI algorithms, also supports forensic capabilities, allowing operators to trace and understand potential intrusion 

paths within the cyber-physical environment. This fusion of real-time monitoring and threat intelligence 

encapsulates the critical role of DTs in strengthening situational awareness and enabling proactive 

cybersecurity defense mechanisms across complex, interconnected industrial control systems. 

 

 
Figure 1: Picture of Digital Twin-Enabled Cybersecurity Monitoring and Threat Modeling in a Smart Industrial 

Plant (Vigna, R. 2023). 

 

2.5 Challenges in DT Implementation for Security Operations 

While DT systems hold immense promise for strengthening cybersecurity in industrial cyber-physical systems 

(CPS), their implementation introduces several critical challenges. First, constructing and maintaining a high-

fidelity digital twin requires seamless integration of heterogeneous data sources from sensors, actuators, edge 

nodes, and enterprise systems. Achieving this integration across legacy and modern infrastructure can be 

difficult due to protocol incompatibilities, latency issues, and varying levels of system observability (Koulamas 
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& Kalogeras, 2018). Additionally, real-time synchronization between the physical and virtual environments 

must be accurate to avoid decision-making based on outdated or incomplete data—an issue that compromises 

the security value of the DT. 

Another significant challenge lies in the computational overhead and scalability of DT systems in large-scale 

industrial environments. Modeling complex assets and simulating multiple failure or attack scenarios demand 

high-performance computing resources and robust data governance strategies. Grieves and Vickers (2017) also 

highlight the difficulty of modeling emergent behaviors in complex systems, where seemingly benign 

interactions can cascade into unpredictable vulnerabilities. This unpredictability complicates threat modeling 

and incident forecasting. 

Moreover, securing the DT itself poses another layer of complexity. Because the DT mirrors operational assets, 

unauthorized access or manipulation of its data can lead to misinformation, incorrect threat responses, or 

exploitation of mirrored control systems. Therefore, cybersecurity operations must treat the DT as both a 

defense tool and a potential attack surface. 

 

3. Zero Trust Architecture in Industrial Environments 

3.1 Fundamentals of Zero Trust: Micro-Segmentation and Least Privilege 

ZTA is grounded in two core principles: micro-segmentation and least privilege access, both of which are 

critical for securing distributed CPS. Micro-segmentation refers to the partitioning of a network into granular, 

isolated zones where access between zones is tightly controlled as represented in figure 2. Instead of relying on 

perimeter-based defenses, micro-segmentation ensures that even if an attacker breaches one segment, lateral 

movement within the system is significantly hindered. This is particularly important in smart manufacturing 

environments where CPS components, such as programmable logic controllers and IoT sensors, must be 

shielded from unauthorized interactions (Alsmadi & Xu, 2020). 

Least privilege, on the other hand, dictates that users, processes, and devices should only be granted the 

minimum access necessary to perform their functions. This minimizes the risk of privilege escalation and 

reduces the attack surface available to insider threats or compromised credentials. Implementing least privilege 

policies requires context-aware access control systems that evaluate identity attributes, behavioral analytics, 

and risk levels in real time (Ray, 2023). 

Together, micro-segmentation and least privilege enforce a denial-by-default posture that aligns with the Zero 

Trust philosophy. In dynamic industrial environments, this approach enables secure-by-design system 

architectures capable of withstanding advanced threats while maintaining operational continuity and safety. 

 

Figure 2 illustrates the core principles of ZTA applied to industrial cyber-physical systems (CPS), emphasizing 

micro-segmentation and least privilege access. At the top, ZTA functions as the central policy engine enforcing 

the “never trust, always verify” doctrine. From this, two branches emerge. The first branch, micro-

segmentation, divides the industrial network into granular security zones where each device—such as 

programmable logic controllers (PLCs), robots, or sensors—is isolated. This approach minimizes lateral 

movement by introducing internal firewalls, asset-specific containment, and zone-level monitoring, ensuring 

that a breach in one segment does not compromise others. The second branch, least privilege access, governs 

user and device interactions by enforcing role-based access control, device authentication, time-bound and 

task-specific permissions, and dynamic revocation in response to behavioral anomalies. These policies ensure 

that only verified and contextually authorized entities interact with CPS components. At the base of the 



Volume 9, Issue 6, November-December-2023 | http://ijsrcseit.com 

 

 

 

 

 
483 

diagram lies the operational environment—comprising smart factory assets such as IoT sensors, SCADA systems, 

and HMIs—which is continuously protected through this layered, adaptive framework. Arrows depict the real-

time flow of policy enforcement and monitoring, reflecting a tightly integrated, proactive security model that 

adapts to threats without disrupting industrial operations. 

 
Figure 2: Diagram Illustration of Zero Trust Architecture in Industrial CPS – Micro-Segmentation and Least 

Privilege Enforcement 

 

3.2 Policy Enforcement Mechanisms: Authentication and Authorization 

Authentication and authorization are foundational mechanisms for policy enforcement in ZTA, especially 

within smart industrial environments that rely on interconnected CPS. Authentication validates the identity of 

users and devices attempting to access resources, while authorization determines their access rights based on 

predefined policies as presented in table 2. In contrast to traditional systems, where authentication is often 

performed once at login, ZTA requires continuous verification based on context, risk posture, and behavior (Li, 

et al., 2017). This ensures that access decisions are dynamically updated as system conditions change. 

Modern authentication frameworks in industrial CPS employ multi-factor authentication (MFA), digital 

certificates, hardware-based security modules, and behavioral biometrics to strengthen identity assurance. 

These methods are reinforced by risk-based authentication systems that assess anomalies in login time, device 

fingerprint, or location to detect potential compromises. Once authenticated, authorization is enforced through 

fine-grained access control policies, typically governed by Attribute-Based Access Control (ABAC) models that 

account for user roles, system context, and operational states (Alzubaidi & Kalutarage, 2021). 
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For example, a maintenance technician may be authorized to access a robot controller only during a scheduled 

maintenance window and only from a trusted workstation. Such contextual enforcement mechanisms are vital 

for preventing privilege misuse and ensuring operational integrity in dynamic, threat-prone industrial 

environments. 

 

Table 2: Summary of Policy Enforcement Mechanisms: Authentication and Authorization 

Mechanism  Description  Role in Zero Trust 

Architecture 
 

Example in Industrial 

CPS 
 

Multi-Factor 

Authentication 

(MFA) 
 

Requires users to 

verify identity using 

two or more factors 

(e.g., password, 

biometrics, token) 
 

Enhances identity 

assurance and 

prevents 

unauthorized access 
 

Maintenance 

engineer must verify 

identity via 

fingerprint and time-

restricted access code 
 

Risk-Based 

Authentication 
 

Dynamically 

evaluates risk level 

based on device, 

location, and user 

behavior 
 

Adjusts 

authentication 

requirements in real 

time based on risk 

context 
 

User logging in from 

unfamiliar IP must 

pass additional 

verification steps 
 

Attribute-Based 

Access Control 

(ABAC) 
 

Grants access based 

on attributes like 

role, device health, 

and operational 

context 
 

Enables fine-grained 

authorization tailored 

to dynamic 

operational states 
 

PLC access allowed 

only for certified 

technicians during 

scheduled downtime 
 

Context-Aware 

Policy Engine 
 

Continuously 

enforces access 

policies based on 

real-time system and 

identity context 
 

Aligns access 

privileges with 

security posture and 

system behavior 
 

Automatically revokes 

access when 

behavioral anomalies 

or asset tampering are 

detected 

 

3.3 Continuous Monitoring and Adaptive Access Control 

Continuous monitoring and adaptive access control are critical enablers of ZTA, particularly in dynamic CPS 

where static policy enforcement is insufficient. Continuous monitoring involves real-time surveillance of 

system behaviors, network flows, user interactions, and device states to detect deviations from normal baselines. 

These telemetry inputs feed into machine learning models and rule-based engines that provide timely risk 

assessments, which are then used to trigger policy updates and enforce contextual restrictions (Wang, et al., 

2021). Unlike traditional models that rely on perimeter-centric validation, ZTA ensures every access request is 

evaluated against the most current trust state. Adaptive access control builds upon this foundation by 

dynamically altering permissions based on trust scores, environmental variables, and behavior analytics. For 

example, if an industrial robot begins communicating with an unauthorized PLC, the system automatically 

reduces its privilege level or isolates it from the network until further investigation. Yan et al. (2020) describe 

how trust management frameworks in ZTA utilize attributes like historical reliability, behavior trends, and 

device reputation to continuously calibrate access decisions. 
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This real-time, feedback-driven loop strengthens CPS resilience by enabling proactive mitigation of insider 

threats, lateral movement, and advanced persistent threats. In industrial contexts, where uptime and safety are 

paramount, such adaptability is crucial for maintaining both operational efficiency and cyber integrity. 

 

3.4 Zero Trust vs Traditional Perimeter-Based Security in CPS 

The shift from perimeter-based security to ZTA in CPS marks a fundamental evolution in industrial 

cybersecurity strategy. Traditional perimeter-based models assume that once inside the network, users and 

devices can be trusted, enforcing minimal segmentation and static firewall policies. While effective in isolated, 

monolithic infrastructures, this model fails in dynamic CPS environments where IoT devices, remote access, 

and cloud integration are prevalent. As a result, lateral movement, credential theft, and insider threats often go 

undetected within trusted zones (Federici, et al., 2023). 

In contrast, Zero Trust discards the notion of a trusted internal network. Every request for access—whether 

from inside or outside the system—is verified, authenticated, and authorized based on identity, context, and 

device posture. This granular verification includes real-time assessment of behavior anomalies, privilege level, 

and the sensitivity of the requested resource (Ihimoyan, et al. 2022). Unlike perimeter defenses, ZTA segments 

the network into micro-perimeters and enforces strict policies continuously, limiting attack propagation. 

Xu and Duan (2020) highlight how CPS in Industry 4.0 demands continuous protection mechanisms due to 

high data velocity, distributed control, and remote operational environments. Therefore, ZTA provides superior 

resilience by aligning access control with operational dynamics rather than relying on static borders. This 

paradigm shift significantly enhances visibility, accountability, and system integrity across industrial networks. 

 

3.5 Industrial Adoption Barriers and Compliance Considerations 

Despite the clear advantages of ZTA in securing CPS, its adoption across industrial sectors faces several 

technological, organizational, and regulatory challenges. One of the primary barriers is legacy system 

integration. Many industrial environments still operate on outdated protocols and hardware that lack native 

support for micro-segmentation, dynamic policy enforcement, or continuous authentication. Upgrading these 

systems or retrofitting them with ZTA-compatible technologies requires significant investment in both 

infrastructure and training (Fernández-Caramés & Fraga-Lamas, 2020). Moreover, industrial organizations 

often face resistance to operational changes due to concerns over downtime, complexity, and the disruption of 

production workflows. 

Another critical barrier is the lack of standardization in implementing ZTA across heterogeneous CPS 

ecosystems. While guidelines exist, many organizations struggle with aligning ZTA deployment with 

established compliance frameworks such as NIST SP 800-82, ISA/IEC 62443, and GDPR. Regulatory compliance 

is especially complex in multinational industrial operations where cybersecurity mandates vary by region. (Paul, 

& Rao, 2022) emphasize that achieving regulatory alignment under a ZTA framework necessitates rigorous 

documentation, auditability, and real-time monitoring—all of which demand scalable and interoperable 

security orchestration platforms. Additionally, industries must balance ZTA's technical rigor with usability and 

accessibility to avoid overburdening system users. Therefore, addressing industrial adoption barriers requires a 

phased, risk-based approach supported by strong governance, vendor cooperation, and policy harmonization. 
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4. Integrating Digital Twin with Zero Trust for Vulnerability Assessment 

4.1 Framework for DT-Driven Security Risk Visualization 

DT-driven security risk visualization offers a proactive and context-aware approach to identifying, analyzing, 

and mitigating vulnerabilities in smart manufacturing CPS. Unlike static risk models, DTs enable dynamic and 

real-time representations of physical processes, making it possible to visualize how security threats manifest 

and propagate within operational environments (Abiodun, et al., 2023) as represented in figure 3. A robust DT-

driven security framework typically integrates three components: real-time sensor data ingestion, behavior 

modeling of system assets, and a visualization interface capable of reflecting threat states and impact trajectories 

across the digital replica of the physical system. 

Wen, et al. (2022) highlight that digital twins in cybersecurity contexts act as "virtual security analysts," 

synthesizing telemetry from programmable logic controllers (PLCs), industrial control systems (ICS), and IoT 

endpoints. This data feeds into analytics engines equipped with machine learning models that classify threats 

and map them spatially and temporally across the digital twin interface. For instance, if a coordinated denial-

of-service (DoS) attack is initiated, the DT visualizes affected nodes, their cascading dependencies, and potential 

countermeasure zones in real time. This enhances situational awareness and shortens response cycles. 

Furthermore, DT-based risk visualization frameworks allow for simulation of “what-if” cyberattack scenarios, 

supporting proactive strategy planning. This dynamic and visual insight is essential for decision-makers and 

operators to prioritize mitigation steps, allocate cybersecurity resources efficiently, and maintain CPS 

continuity under evolving threat conditions. 

 
Figure 3: Diagram Illustration of Framework for Digital Twin-Driven Security Risk Visualization in Industrial 

CPS. 
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Figure 3 illustrates a comprehensive framework for Digital Twin (DT)-driven security risk visualization in 

industrial CPS, highlighting the layered integration of data acquisition, threat analytics, and visual feedback. At 

the core is the DT engine, which synchronizes with real-world assets—such as sensors, programmable logic 

controllers (PLCs), SCADA systems, and IoT devices—via real-time telemetry. This engine models operational 

behavior and detects deviations that may indicate cyber threats or system anomalies. Data from the physical 

layer feeds into the risk analytics layer, where AI and machine learning modules perform anomaly detection, 

simulate attack vectors (e.g., denial-of-service or spoofing), and generate predictive scenarios to assess cascading 

vulnerabilities. These analyses inform the visualization layer, which presents security insights through 

interactive dashboards, heatmaps, and asset health indicators. This enables stakeholders—including plant 

operators, cybersecurity analysts, and maintenance engineers—to visualize threats spatially and temporally, 

prioritize mitigation actions, and understand the interdependencies between assets. The system operates as a 

closed feedback loop, allowing detected anomalies to trigger policy responses or adjustments in real time. 

Overall, the diagram demonstrates how DTs transform raw data into actionable security intelligence, enhancing 

visibility, responsiveness, and resilience in complex industrial environments. 

 

4.2 Enhancing Threat Detection with DT-Powered Behavioral Analysis 

DT-powered behavioral analysis significantly elevates the fidelity and responsiveness of threat detection 

systems in cyber-physical environments by establishing continuously adaptive baselines for normal operations 

and systematically identifying deviations that may indicate cyber intrusions or system compromise. Unlike 

traditional intrusion detection systems that often rely on static rules or signature-based detection, DT-enabled 

platforms leverage contextual intelligence and time-series analytics to understand asset behavior under real-

world conditions and infer intent behind anomalies (Li, et al., 2023). 

The behavioral analysis process begins with data ingestion from interconnected devices, including sensors, 

control units, and human-machine interfaces. This telemetry is mapped against the digital twin model to 

simulate expected operations in real time. When an observed behavior deviates from the predicted digital 

counterpart—such as unexpected packet routing, command injection attempts, or abnormal equipment 

cycles—the system flags it for investigation (Imoh, 2023). For example, if a robotic arm’s movement trajectory 

unexpectedly changes during routine operation, the DT system can analyze whether the deviation stems from 

mechanical wear, calibration error, or unauthorized control override. Sun et al. (2021) demonstrate how 

integrating machine learning algorithms within the DT ecosystem enables early detection of zero-day threats 

and persistent anomalies that evade conventional detection tools. The DT’s continuous feedback loop ensures 

the system remains adaptive and self-learning, offering intelligent, context-aware threat detection essential for 

maintaining the resilience of smart manufacturing systems. 

 

4.3 Real-Time Access Verification Using DT State Awareness 

Real-time access verification in smart manufacturing systems can be significantly strengthened by leveraging 

Digital Twin (DT) state awareness. In contrast to static access control models that grant permissions based 

solely on user roles or credentials, DT-based systems continuously assess the real-time operational state of 

physical assets and contextualize access decisions accordingly. This allows the system to evaluate not only who 

is requesting access, but also whether the system’s current conditions justify that access under ZTA) principles 

(Liu et al., 2021). By maintaining a synchronized and dynamic model of the physical environment, DTs monitor 

process parameters such as machine health, workload status, maintenance cycles, and operational risks. For 
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example, if a technician attempts to remotely access a conveyor belt control panel during a high-speed 

production cycle, the DT can block the action if the system’s real-time state analysis deems the access unsafe or 

suspicious. Conversely, during downtime or maintenance windows, verified access requests can be temporarily 

elevated based on contextual approval mechanisms. 

Chen et al. (2021) demonstrate that integrating state-awareness into access control frameworks enhances both 

security and operational continuity. The digital twin not only authenticates identity but also validates system 

readiness, reducing the risk of misconfigurations, privilege misuse, or accidental disruptions. This approach 

aligns real-time decision-making with the operational posture of cyber-physical systems, enabling adaptive, 

risk-sensitive access control. 

 

4.4 Coordinated Anomaly Response via DT-ZTA Fusion 

The integration of DT capabilities with ZTA establishes a highly responsive framework for coordinated 

anomaly detection and mitigation within industrial CPS. This fusion leverages the predictive modeling and 

state-aware monitoring of DTs alongside the identity-centric, policy-enforced decision-making of ZTA to 

create a closed-loop security system capable of reacting to complex threats in real time (Balta, et al., 2023) as 

presented in table 3. While DTs identify deviations from baseline operational behavior, ZTA dynamically 

verifies identity, device posture, and access context before triggering corresponding response actions. In this 

combined model, anomaly detection through the DT initiates immediate trust reassessment in the ZTA domain. 

For example, if a programmable logic controller (PLC) begins exhibiting communication patterns inconsistent 

with its digital model, the DT flags the behavior and informs the ZTA policy engine (Atalor, 2019). The policy 

engine then enforces adaptive controls—revoking privileges, triggering multi-factor reauthentication, isolating 

affected nodes, or re-routing system operations—to contain the anomaly and prevent lateral movement. 

Wang et al. (2021) demonstrate that this DT-ZTA coordination significantly reduces mean time to detect 

(MTTD) and respond (MTTR) to security incidents by synchronizing contextual threat intelligence with policy 

enforcement. The result is a proactive and resilient cybersecurity posture that enables industrial CPS to 

maintain operational continuity while dynamically adapting to evolving threat vectors. 

 

Table 3: Summary of Coordinated Anomaly Response via DT-ZTA Fusion 

Component Description  Function in DT-ZTA 

Fusion 
 

Example in 

Manufacturing CPS 
 

Digital Twin 

Anomaly Detection 
 

Uses real-time 

behavioral models to 

detect deviations 

from normal 

operations 
 

Identifies irregular 

patterns indicating 

cyber threats or faults 
 

DT detects abnormal 

vibration in robotic 

arm signaling possible 

malicious command 

injection 
 

ZTA Trust Evaluation 

Engine 
 

Reassesses identity 

and system 

trustworthiness upon 

detection of 

anomalies 
 

Enforces access 

control changes, 

isolation, or 

remediation based on 

risk context 
 

Automatically 

revokes user access 

after DT flags 

inconsistent 

command sequences 
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Policy-Based 

Automated Response 
 

Executes predefined 

actions to contain 

threats (e.g., revoke 

access, segment 

system) 
 

Enables real-time 

mitigation with 

minimal human 

intervention 
 

Affected PLC is 

isolated from 

network while 

forensic analysis 

begins 
 

Feedback Loop & 

System Update 
 

Synchronizes DT 

models and ZTA 

policies post-incident 
 

Ensures adaptive 

learning and 

continuous 

improvement of 

detection and 

response systems 
 

DT updates its 

behavior model; ZTA 

modifies access 

thresholds based on 

the new risk signature 

 

 

4.5 Case Studies of DT-ZTA Integration in Manufacturing Systems 

Case studies on the integration of DT and ZTA in manufacturing systems offer compelling evidence of their 

synergistic impact on cybersecurity, operational intelligence, and system resilience. In a recent implementation 

within a smart automotive assembly facility, DTs were deployed to monitor robotic arms, CNC machines, and 

automated guided vehicles (Atalor, et al., 2023) as represented in figure 4. These DTs maintained real-time 

replicas of operational status, enabling proactive fault detection and behavior modeling. When abnormal signal 

fluctuations occurred in one of the robotic joints, the DT flagged the anomaly, prompting the ZTA framework 

to reevaluate trust credentials, limit access, and segment the affected control channel before any system-wide 

disruption occurred (Xu, et al., 2023). Another application was observed in a semiconductor fabrication plant, 

where DT-ZTA fusion was used to protect precision lithography equipment from unauthorized code execution. 

The DT monitored process consistency and machine telemetry, while the ZTA system employed continuous 

policy enforcement to restrict remote access and enforce real-time multifactor authentication. As a result, the 

integrated framework neutralized a credential spoofing attempt before it could escalate. Yin et al. (2021) 

demonstrate that these real-world use cases underscore the practical feasibility and benefits of DT-ZTA 

alignment—namely, early threat containment, minimal operational interference, and improved decision-

making. Together, they represent a foundational shift toward cyber-resilient industrial architectures. 

 

Figure 4 depicts a modern manufacturing environment where a worker in a smart factory is engaging with a 

holographic DT of a turbine component, illustrating a practical case study of DT-ZTA integration. The engineer 

appears to be conducting a simulation or inspection, supported by the DT’s dynamic visualization of the 

turbine’s internal structure. This use case exemplifies how digital twins can provide real-time feedback on asset 

performance, allowing the system to identify abnormalities such as excessive vibration, structural fatigue, or 

unauthorized command executions. When such anomalies are detected, the Zero Trust system dynamically 

reassesses access privileges, ensuring that only verified and authorized personnel can initiate further 

interactions with the physical equipment. In a full DT-ZTA deployment, this turbine would also be 

continuously monitored by ZTA’s policy engine, which would enforce micro-segmentation and least-privilege 

access controls. If, for instance, an anomaly is triggered during an off-shift remote access attempt, the system 

could isolate the turbine’s network segment and alert cybersecurity personnel. This integration demonstrates 
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the dual capability of DTs to enhance operational precision and of ZTA to protect critical assets through 

adaptive, context-aware security enforcement within industrial cyber-physical systems. 

 

 
Figure 4: Picture of Real-World Application of Digital Twin and Zero Trust Integration in Manufacturing 

(Terca, K. 2022). 

 

5. Future Trends and Research Directions 

5.1 AI-Augmented DT and Zero Trust Automation 

Artificial Intelligence (AI) significantly enhances the fusion of DT technology and ZTA by enabling 

autonomous threat detection, dynamic access control, and predictive anomaly management in CPS. AI-

augmented DTs continuously learn from operational data, building behavior profiles for assets and identifying 

deviations indicative of cyber threats or system degradation. This learning capability enables DTs to evolve 

beyond static monitoring, transforming into intelligent agents capable of simulating multiple risk scenarios and 

guiding automated responses (Trakadas, et al., 2020). ZTA complements this with policy-based enforcement 

mechanisms, where AI models refine access decisions in real time based on identity, behavior trends, device 

posture, and risk analytics. For instance, a manufacturing execution system (MES) monitored by an AI-driven 

DT may observe irregular command sequences targeting an industrial controller. The ZTA framework, 

informed by AI insights, can immediately revoke access, notify administrators, and revalidate authentication—

without human intervention. Ttakadas et al., (2020) highlight that AI not only enhances the granularity of 

behavioral detection but also reduces false positives by contextualizing data through continuous training. The 

convergence of AI, DT, and ZTA creates a fully automated security ecosystem that adapts to dynamic 

manufacturing environments. This model enables proactive cyber defense strategies that are scalable, self-

regulating, and optimized for real-time operational continuity in smart factories. 
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5.2 Edge-Cloud Interoperability in Security-Enabled CPS 

The interplay between edge and cloud computing is essential for achieving robust, low-latency, and scalable 

cybersecurity in CPS within smart manufacturing environments. Digital Twins (DTs) operating at the edge 

enable localized real-time monitoring, threat detection, and decision-making close to physical assets. When 

integrated with cloud-based ZTA frameworks, this edge intelligence becomes part of a broader, policy-enforced, 

and dynamically scalable security ecosystem (Qi, et al., 2018). Edge-cloud interoperability facilitates layered 

defense by distributing security operations based on latency sensitivity and computational requirements. For 

instance, real-time anomaly detection and access verification occur at the edge, minimizing response time and 

reducing the risk of production delays (Ononiwu, et al., 2023). Simultaneously, cloud resources handle data 

aggregation, model training, system-wide threat correlation, and global policy updates. This division of labor 

enhances resilience against localized failures and ensures coordinated response across distributed assets. Qi, et al. 

2018) demonstrate that secure data pipelines, encrypted communication protocols, and federated learning 

approaches can synchronize edge and cloud components without compromising data integrity or compliance. 

In practice, a robotic welding station can use an edge-resident DT to detect sensor tampering in milliseconds, 

while cloud-based ZTA evaluates broader risk patterns before issuing network-wide policy changes. This 

interoperability is pivotal for building adaptive, security-aware CPS architectures capable of withstanding both 

real-time and persistent cyber threats. 

 

5.3 Standardization of DT-ZTA Frameworks for Industry 4.0 

The standardization of integrated DT and ZTA frameworks is crucial for ensuring secure, interoperable, and 

scalable implementations in Industry 4.0 environments. As smart factories increasingly adopt CPS that rely on 

heterogeneous hardware, software, and networking protocols, the absence of unified standards for DT-ZTA 

fusion leads to compatibility issues, inconsistent security postures, and limited cross-vendor operability. Paul, & 

Rao, (2022) emphasize that standardization efforts must address architectural templates, data exchange 

protocols, policy definition languages, and compliance metrics to support trustworthy automation across 

distributed manufacturing ecosystems. A standardized DT-ZTA framework defines how digital replicas of 

physical assets communicate with zero trust policy engines to validate access, monitor real-time operations, and 

initiate security responses. This includes uniform APIs for identity verification, behavioral telemetry, and trust 

evaluation, enabling seamless integration with existing industrial systems. For example, in a multi-vendor 

industrial robotic cell, standardized communication and authentication protocols prevent fragmented security 

controls and allow synchronized threat response through shared digital twin models. 

 

Paul & Rao, (2022) also highlight the role of international consortia, such as ISO/IEC JTC 1 and the Industrial 

Internet Consortium, in aligning cybersecurity and DT interoperability guidelines. Standardization not only 

facilitates regulatory compliance but also accelerates the deployment of resilient DT-ZTA architectures tailored 

for Industry 4.0’s dynamic and decentralized production paradigms. 

 

5.4 Privacy and Ethical Considerations in DT-ZTA Deployments 

The integration of DT and ZTA in smart manufacturing systems introduces complex privacy and ethical 

challenges that must be addressed to ensure responsible deployment. DT systems continuously collect, process, 

and store high-frequency data from both machine assets and human operators, raising significant concerns over 

personal privacy, consent, and data ownership (Ononiwu, et al., 2023) as represented in figure 5. When 
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combined with ZTA's pervasive monitoring and access validation mechanisms, the potential for invasive 

surveillance and misuse of sensitive data increases substantially (Wang et al., 2023). 

 

One of the foremost ethical concerns is the potential violation of workers’ privacy when behavioral analytics 

and digital profiles are used to enforce access control and monitor productivity. Inadequate data anonymization 

and lack of transparency around data usage can lead to distrust among employees and conflict with privacy 

regulations such as GDPR or CCPA. Furthermore, the delegation of access decisions to AI-driven DT-ZTA 

systems introduces questions of accountability, especially in cases of erroneous denial of access or biased policy 

enforcement. 

 

Wang et al. (2023) argue for the inclusion of privacy-preserving mechanisms such as federated learning, 

differential privacy, and edge-based data minimization in DT-ZTA systems. Ethical deployments must prioritize 

informed consent, data transparency, and explainability to ensure that cybersecurity gains do not come at the 

cost of human dignity and rights within industrial cyber-physical environments. 

 

Figure 5 presents a digital environment populated by silhouettes of IT and cybersecurity professionals working 

within a high-security data center, surrounded by illuminated server racks and transparent padlock icons—

some open, some closed—representing dynamic access control. This visual captures the core concerns discussed 

in 5.4 Privacy and Ethical Considerations in DT-ZTA Deployments, where the fusion of DT technology and 

ZTA introduces both enhanced security and complex privacy challenges. As DTs continuously harvest real-

time data from cyber-physical systems, including user behavior and operational telemetry, they risk capturing 

sensitive or personally identifiable information. ZTA further intensifies this scrutiny through persistent 

identity validation, behavior monitoring, and context-aware access decisions. Without robust data governance 

and ethical AI frameworks, this hyper-surveillance model can erode user privacy, especially in industrial 

settings where employees may be unknowingly monitored (Ononiwu, et al., 2023). The transparent overlay of 

code and locks in the image symbolizes the need for privacy-preserving mechanisms—such as anonymization, 

edge-processing, and federated learning—to prevent unauthorized exposure or misuse of data. This scenario 

underscores the necessity for ethical policy design, transparent data practices, and inclusive consent 

mechanisms in securing DT-ZTA infrastructures without compromising individual rights or regulatory 

compliance in smart manufacturing environments. 
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Figure 5: Picture of Visualizing Privacy and Ethical Dimensions in Digital Twin–Zero Trust Deployments 

(Mutahi, D. 2023). 

 

Figure 5 presents a digital environment populated by silhouettes of IT and cybersecurity professionals working 

within a high-security data center, surrounded by illuminated server racks and transparent padlock icons—

some open, some closed—representing dynamic access control. This visual captures the core concerns discussed 

in 5.4 Privacy and Ethical Considerations in DT-ZTA Deployments, where the fusion of DT technology and 

ZTA introduces both enhanced security and complex privacy challenges. As DTs continuously harvest real-

time data from cyber-physical systems, including user behavior and operational telemetry, they risk capturing 

sensitive or personally identifiable information. ZTA further intensifies this scrutiny through persistent 

identity validation, behavior monitoring, and context-aware access decisions. Without robust data governance 

and ethical AI frameworks, this hyper-surveillance model can erode user privacy, especially in industrial 

settings where employees may be unknowingly monitored. The transparent overlay of code and locks in the 

image symbolizes the need for privacy-preserving mechanisms—such as anonymization, edge-processing, and 

federated learning—to prevent unauthorized exposure or misuse of data. This scenario underscores the 

necessity for ethical policy design, transparent data practices, and inclusive consent mechanisms in securing 

DT-ZTA infrastructures without compromising individual rights or regulatory compliance in smart 

manufacturing environments. 

 

5.5 Open Research Challenges and Opportunities 

Despite significant advancements, the integration of DT and ZTA in cyber-physical systems (CPS) still presents 

a landscape filled with unresolved research challenges and transformative opportunities. A key technical hurdle 

is the lack of a unified semantic model for synchronizing multi-modal data streams across heterogeneous assets, 

which limits real-time consistency and cross-domain interoperability as presented in table 4. Moreover, 

ensuring low-latency access control in DT-ZTA systems remains complex, particularly when balancing cloud-

edge workloads in dynamic industrial environments (Alcaraz, et al., 2022). 
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Another challenge involves the explainability of AI-driven decisions within DT-ZTA frameworks. While 

machine learning enhances threat prediction and policy automation, the absence of interpretable decision-

making models impedes trust, auditability, and regulatory compliance. There is a pressing need for explainable 

AI (XAI) mechanisms that can contextualize risk scoring, access revocations, and anomaly detection processes 

for system administrators and auditors. 

Alcaraz, et al. (2022) also point to an untapped opportunity in leveraging quantum-safe cryptographic protocols 

within DT-ZTA pipelines to future-proof industrial security frameworks. Furthermore, there is increasing 

potential for adaptive digital twin models that evolve with the system’s operational context, enabling predictive 

rather than reactive trust assessments (Ononiwu, et al., 2023). Future research must also address ethical AI 

integration, resilience against coordinated multi-vector attacks, and cross-border governance models for data 

integrity, sovereignty, and cyber-physical compliance in globally distributed manufacturing networks. 

 

Table 4: Summary of Open Research Challenges and Opportunities in DT-ZTA Integration 

Research Area challenge  Opportunity  Potential Impact 

Semantic 

Interoperability 
 

Lack of standardized 

data models across 

heterogeneous assets 
 

Develop unified 

semantic frameworks 

for DT-ZTA 

synchronization 
 

Enables seamless 

integration and real-

time coordination 

across platforms 
 

Explainable AI in 

Security 
 

Limited transparency in 

AI-driven threat 

detection and policy 

decisions 
 

Integrate explainable AI 

(XAI) techniques for 

DT-ZTA systems 
 

Improves trust, 

auditability, and 

regulatory compliance 

 

Quantum-Resilient 

Architectures 
 

Emerging risks from 

quantum computing 

threatening current 

encryption schemes 
 

Design quantum-safe 

cryptographic protocols 

for DT-ZTA 

communications 
 

Future-proofs industrial 

security against 

advanced 

computational threats 
 

Adaptive Digital Twin 

Modeling 
 

Static models struggle to 

capture dynamic, 

evolving system 

behaviors 
 

Implement self-

evolving DTs that learn 

from real-time data and 

context 
 

Enhances predictive 

capability and response 

accuracy in fast-

changing environments 

 

Global Governance and 

Compliance 
 

Regulatory 

fragmentation across 

jurisdictions 

complicates secure DT-

ZTA deployment 
 

Develop cross-border 

data governance and 

compliance frameworks 

 

Facilitates global 

adoption of secure, 

standardized smart 

manufacturing 

infrastructures 
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6. Conclusion 

6.1 Summary of Key Insights 

This review highlights the transformative potential of integrating Digital Twin (DT) technology with ZTA to 

enhance the cybersecurity, resilience, and operational intelligence of smart manufacturing cyber-physical 

systems (CPS). DTs enable real-time behavioral modeling, predictive risk visualization, and anomaly detection 

by maintaining dynamic digital replicas of physical assets. When fused with ZTA, which enforces continuous 

authentication, micro-segmentation, and least-privilege access, the result is a self-adaptive and context-aware 

security framework. Key insights reveal that DT-powered behavioral analytics significantly reduce detection 

latency and support fine-grained access control through real-time state awareness. Furthermore, DT-ZTA 

synergy enables coordinated threat response by fusing system telemetry with policy enforcement engines. 

The deployment of AI-enhanced DTs further amplifies security automation and predictive capabilities, while 

edge-cloud interoperability ensures scalable and latency-aware operations. Case studies demonstrate that such 

integration supports proactive mitigation of advanced persistent threats without compromising operational 

continuity. However, challenges persist around standardization, data privacy, and model explainability. Despite 

these, the convergence of DT and ZTA provides a future-proof foundation for secure-by-design industrial 

infrastructures. This study emphasizes the need for continued research into interoperable architectures, ethical 

AI, and compliance-aligned frameworks that support real-time trust evaluation, decentralized governance, and 

resilient automation in Industry 4.0 environments. 

 

6.2 Implications for Industrial Cybersecurity 

The integration of DT technology with ZTA presents a paradigm shift in industrial cybersecurity by enabling 

intelligent, adaptive, and real-time protection for cyber-physical systems (CPS). Unlike traditional perimeter-

based models, the DT-ZTA approach supports continuous threat monitoring, behavior-based anomaly detection, 

and contextual access control rooted in real-time operational awareness. This ensures that industrial systems 

can autonomously detect and mitigate sophisticated attacks, such as command injection or lateral movement, 

by correlating deviations in digital twin behavior with dynamic trust scoring mechanisms. 

For instance, in a smart manufacturing plant, if a CNC machine controlled via a DT begins executing 

unauthorized instructions outside of its normal operating parameters, ZTA policies can instantly revoke access, 

isolate the machine from the network, and trigger forensic analysis—all without human intervention. This 

elevates the cybersecurity posture from reactive to predictive, reducing mean time to detect (MTTD) and mean 

time to respond (MTTR). 

Additionally, DT-ZTA frameworks support fine-grained micro-segmentation and enforce least-privilege 

principles, ensuring that users and devices only access resources essential to their roles. These implications 

underscore the necessity of incorporating DT-ZTA strategies into cybersecurity blueprints for Industry 4.0, 

establishing a scalable, resilient, and intelligent defense model for modern industrial environments. 

 

6.3 Strategic Recommendations for Stakeholders 

To realize the full potential of Digital Twin (DT) and ZTA integration in smart manufacturing environments, 

stakeholders must adopt a multi-pronged strategic approach that aligns cybersecurity with operational 

resilience and innovation. First, industrial leaders should prioritize the deployment of DTs across critical assets 

to enable real-time visibility, behavioral analytics, and predictive threat modeling. These DTs must be 

synchronized with ZTA policy engines that enforce continuous authentication, dynamic access control, and 
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micro-segmentation across the production network. Stakeholders must also invest in scalable edge-cloud 

infrastructures to support latency-sensitive security decisions at the edge while leveraging centralized policy 

management and AI-driven anomaly detection in the cloud. IT and OT teams should collaborate to ensure 

interoperability, secure data pipelines, and consistent identity governance across cyber-physical boundaries. For 

example, access to robotic assembly arms should be contextually approved based on DT state data, user behavior, 

and role-based constraints. 

Regulatory and compliance teams must be involved early to ensure adherence to data protection and audit 

requirements. Additionally, vendors and integrators should align with emerging standards for DT-ZTA 

interoperability to avoid lock-in and promote system modularity. Finally, continuous workforce training in AI-

enhanced security operations is essential to ensure human oversight, reduce response delays, and build cyber 

resilience across all industrial layers. 
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