
Copyright © 2023 The Author(s): This is an open-access article distributed under the terms of the Creative

Commons Attribution 4.0 International License (CC BY-NC 4.0) which permits unrestricted use, distribution, and

reproduction in any medium for non-commercial use provided the original author and source are credited.

International Journal of Scientific Research in Computer Science, Engineering and

Information Technology

ISSN : 2456-3307

Available Online at : www.ijsrcseit.com

doi : https://doi.org/10.32628/CSEIT2390646

60

Real-time Sentiment Analysis from Data Streaming
Samit Shivadekar1, Ketan Shahapure2, Shivam Vibhute3, Milton Halem4
12Department of CSEE, University of Maryland Baltimore County, USA

3San Jose State University, San Jose, California, United States
4University of Maryland, Baltimore County

A R T I C L E I N F O

A B S T R A C T

Article History:

Accepted: 02 Jan 2024

Published: 10 Jan 2024

Public sentiment is a potent indicator of how people perceive and receive a topic.

It has the power to make or break companies and people. Twitter is one of the best

platforms in today’s generation to gauge public sentiment. [10] Utilizing the power

and influence Twitter has we decided to create a service that would enable us to

know how a trending topic is being viewed by the masses in real-time. The user

gives the topic as input to the front-end graphical user interface that topic is then

taken and fed to the Twitter streaming API. Tweets containing the hashtag of the

topic mentioned by the user are returned and the sentiment of those tweets is

predicted and sent to the front end where analysis prediction of the sentiment of

the tweets is done dynamically as the tweets come in. By using our service for a

few minutes the user will get to know what the overall outlook of a topic is and

use that information as a guiding beacon for any future decisions regarding that

topic.

Index Terms : Twitter, Sentiment Analysis, Real-Time, Stream-ing Data, Topic

Analysis, Model training, Prediction

Publication Issue

Volume 10, Issue 1

January-February-2024

Page Number

60-70

I. INTRODUCTION

The Goal we set out to achieve was to create a service

that would enable the user to get a real-time sentiment

analysis of the tweets that were coming from the

Twitter streaming API based on the topic the user gave

as input. Using the Service-oriented computing

principles we came up with a service that provided a

simple user interface that took input from the user as

well as also displayed the tweets and charts that came

from the back end. We made use of a large data set to

train our model which was later employed to predict

tweets as they came in real-time. The working

prototype we were able to produce was quick and

accurate in its predictions. We feel that this service

would come in handy for anyone who is curious to

know how a trending topic is performing amongst the

masses. Emotions and feelings are two very strong

influencing powers that dictate how people behave and

they also have a huge impact on actions people take in

Volume 10, Issue 1, January-February-2024 | http://ijsrcseit.com

Samit Shivadekar et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., January-February-2024, 10 (1) : 60-70

61

the real world. We strongly believe humans learn from

their mistakes. Our service helps the user understand

how some topics are perceived and based on that

information the user can make changes so that the next

time around the topic has an overwhelmingly positive

sentiment around it.

II. SERVICE OBJECTIVES

The Objectives of our Service are as follows:

• Obtain Sentiment of tweets produced by Twitter

users on a specified topic in real-time.

• Predict whether the tweet is positive negative or

neutral in nature.

• Perform analytics on the tweets that have been

obtained and show those results in the form of

pictorial charts to the user.

III. IMPLEMENTATION PLAN

The following steps are what we followed to

implement the service:

• Obtain topic input from the user through the front-

end user input page.

• Obtaining real-time tweets from Twitter using

Twitter streaming API for the topic given by the

user.

• Stream the topic using Apache Kafka.

• Train a sentiment analysis model on static data.

• Using the trained model, we predict the sentiments

of the tweets that come in real-time.

• Take predictions from the model to create pictorial

charts that aid in the overall analysis of the topic.

USERS AND CLIENTS

Marketing and Executive teams of Companies that

release products. Marketing teams in a company can

use our service to see how their marketing strategies

for products are playing out if they see that the product

is being viewed negatively they can take necessary

marketing steps and make necessary recommendations

for the product teams for changes. Executive teams can

see how their product performs when they release it

and based on that they can make decisions on whether

to fund or scrape the product because if a product

brings the company’s reputation down there is no point

in putting it out to the market.

Stock, Crypto and NFT investors. Twitter is one first

places that gets any news on Cryptos and NFTs and

based on that its users react. If the sentiment about a

stock is negative it’s better to sell it as that is an

indication that the stock or Crypto or NFT is going to

lose its value and market share. On the other hand, if

the sentiment on a stock or Crypto or NFT is positive

then it would be a good idea to invest in those things

as people are more likely going to buy it more thus

increasing its value.

Famous People. When famous people tweet about

things. They can use our service to see how what they

said is being viewed by Twitters users. Based on that

they can decide to continue on a said topic or avoid it.

There are many instances where famous people have

either gained or lost fans because of what they have

tweeted.

IV. SERVICE ARCHITECTURE

The service architecture diagram of our service is

shown in Figure 1. which shows all the components

involved in the system.

Fig. 1. Service architecture of Real-time Sentiment

analysis

Volume 10, Issue 1, January-February-2024 | http://ijsrcseit.com

Samit Shivadekar et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., January-February-2024, 10 (1) : 60-70

62

As shown in Figure 1, there are mainly 3 components

in the system. The front end, Machine Learning model

and the backend. Each of these components and their

working is explained in much detail in the coming

sections. All the components are connected to each

other and all of them will be communicating with the

help of REST APIs, sockets and Web Sockets.

It is a kind of Microservice architecture [9] where all

the components work independently of each other. In

general monolithic architectures, all the components

of software lie in the same machine and if one of the

services breaks, it results in breaking the entire

codebase and none of the components will be usable.

This similar strategy is extended by a microservices

architecture to loosely connected services that may be

created, deployed, and maintained separately. Each of

these services is in charge of a certain task and can

interact with other services via straightforward APIs to

resolve more complicated business problems. Instead

of being forced to adopt a more uniform, one-size-fits-

all approach, the microservices architecture makes it

simpler to select the technological stack (programming

languages, communication protocols, etc.) that is most

suited for the desired functionality (service).

Our system is also an application of micro-service

architec-ture. Because we have separated the Machine

Learning com-ponent and streaming component from

the front-end serving component. The streaming and

model prediction service works independently and

even if something in the front end fails, we still can get

a stream of messages with the prediction for a specific

topic if the prediction or the streaming service fails, the

front end service which is powered by Flask will still

be working although there will be no use of it since we

need to get streams of text from the backend for real-

time updates. The main work and flow of the project

are explained in this section as follows.

When the user enters our website, he is prompted with

a Front-end UI which contains a text box where he can

enter the topic. The topic can be anything for which

the user needs to get real-time tweets and get

sentiment analysis from it. Once the topic is entered,

the topic is sent to the Flask backend. Flask receives

this request and it is sent to the backend web server

which hosts Kafka server and the Machine Learning

model with the help of sockets. Once the backend

server receives the topic, the Twitter streaming API is

called and we start getting tweets from the Twitter

server. The tweets are obtained from the Twitter server

and are fed to the Deep Learning model which is

residing in the backend and the sentiment predictions

are obtained. This Deep learning model is a

transformer model which is already trained on a static

twitter dataset where the trained model is saved and is

used for prediction. Since we are using a separate server

for the Kafka and Machine Learning model, we can

customize this server by adding GPU capability or

scaling it up. This further proves that Machine

Learning and Kafka components are isolated from the

Flask which serves the front end and hence

Microservice architecture is achieved.

The prediction and the tweets are sent to the Flask

which acts as a consumer of Kafka. With the help of

WebSockets, a bi-direction connection is made

between the front end and the back end and the tweets

are sent to the front end in real time.

These tweets are organized using front-end

frameworks and are displayed. The number and

percentage of positive and negative sentiments are

displayed using a Bar graph and Pie chart respectively

in the front end which updates dynamically.

V. DATASET OVERVIEW

In order to predict the sentiments of the tweets in real-

time, we need a Machine Learning or Deep Learning

model in predicting the sentiments. So, to get a

sentiment analysis model, we need to train it before,

Volume 10, Issue 1, January-February-2024 | http://ijsrcseit.com

Samit Shivadekar et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., January-February-2024, 10 (1) : 60-70

63

save it, and use it later. We can also use models which

are already pretrained and can be used as an API. We

used a Twitter dataset which is available in Kaggle. The

dataset contains 1.6M rows of data. The dataset consists

of features such as, ‘ids’ where each entry in the dataset

has a unique ID, ‘date’ which has the date when the

tweet is posted, ‘user’ the user that tweeted, ‘text’ has

the text of the tweet. Out of all these attributes in the

dataset, our main focus is on using text field. This text

field is processed and then used in the model for

training. The sentiment of the text is the target variable.

The dataset contains 3 sentiments which are Positive,

Negative and Neutral sentences. Positive sentences are

indicated by 0, 1 for Neutral sentences and 2 for

Negative sentences.

VI. MACHINE LEARNING MODEL

Machine Learning and Deep Learning models are

trained to predict the sentiments of the text in the

dataset. Out of all these attributes in the dataset, our

main focus is on using text fields. This text field is

processed and then used in the model for training.

To train the sentiment analysis model, we created a

baseline model and a final model for completing the

model training cycle. We need a baseline Machine

Learning model using which we can determine the

minimum accuracy which can be obtained. This

baseline model must be very simple without

performing hyperparameter tunings and also basic

default configurations. The baseline model which we

decided to use is the Logistic Regression model. The

model was trained on the text data in the dataset and

the labels.

To train the model on the text data, the data must be

processed and cleaned before feeding to the model. For

data cleaning, we removed all the rows which do not

have any text but have sentiments. The text data is

cleaned by removing all the HTML tags, and

punctuations and converting all the sentences to

lowercase. Also, all the words are lemmatized so that

all the differences between similar words are

eliminated. Stemming is a method by which a portion

of the word is simply sliced off at the end. While

several algorithms are employed to determine how

many letters must be removed, none of them genuinely

understand the meaning of the word in the language to

which it belongs. On the other hand, the algorithms in

lemmatization are aware of this. In fact, you could

argue that these algorithms use dictionaries to

comprehend the meaning of the word before distilling

it to its lemma, or fundamental term. Once we clean

the text data, we have to process the data in order to

convert the text into numerical format since the model

cannot understand characters in the text. We used Tf-

IDF vectorizer to convert the text data into its

numerical format. TF-IDF can be broken down into

term frequency and inverse document frequency.

Term frequency is the frequency of a word with

respect to a document. Inverse document helps in

getting a number for how frequent the word is in the

overall corpus. This helps in reducing the final weight

on common words like articles, etc. The results of the

logistic regression model are shown in the results

section.

Since we have a big dataset having we can use Deep

Learning models to train the sentiment analysis task.

For the same reason, we have used BERT [5]model

which is a transformer model. Transformer is an

attention mechanism that learns the contextual

relationships between words (or subwords) in a text

and is used by BERT. Transformer’s basic design

consists of two independent mechanisms: an encoder

that reads the text input and a decoder that generates a

job prediction. Only the encoder mechanism is

required because BERT’s aim is to produce a language

model. The architecture of BERT is shown in Figure 2.

We have taken the architecture diagram from one of

the websites which has been cited in the reference

section. [5]

Volume 10, Issue 1, January-February-2024 | http://ijsrcseit.com

Samit Shivadekar et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., January-February-2024, 10 (1) : 60-70

64

Fig. 2. BERT Architecture

In the BERT training phase, the model learns to predict

whether the second sentence in a pair will come after

another in the original document by receiving pairs of

sentences as input. During training, 50% of the inputs

are pairs in which the second sentence is the next one

in the original text, and in the remaining 50%, the

second sentence is a randomly selected sentence from

the corpus. The underlying presumption is that the

second phrase will not be connected to the first. This

working is used by BERT to predict the next word in a

sentence. It can be modified for a classification task as

well. To train the BERT model, the sentences first have

to be converted into a format that the model can

understand. Here, we cannot use the TF-IDF vectorizer

since the BERT model has its own way of encoding the

texts. [5]BERT first uses some tokens to differentiate

between the sentences. The first sentence has a [CLS]

token at the start, and each subsequent sentence has a

[SEP] token at the end. The unknown words are

replaced by [UNK] tokens since they are not in the

dictionary of the words. The rest of the words which

are already known are replaced by a numeric number

which is already defined by BERT where it has a

dictionary of words which has a numeric number for

most of the words.

The entire dataset is divided into training, testing and

validation dataset where 70% of the data is used for

training, 20% of data is used for validation and 10% of

the data is used for testing. The training dataset is

trained and model obtained is used as an API for

predicting the sentiments of the tweets in real-time

and prediction is sent to the front-end.

VII. RESULTS OF MODEL TRAINING

The dataset is trained on both the Baseline model and

the BERT model and the accuracies are obtained. For

baseline model training, the dataset is divided into 80%

training and 20% testing. We calculated only the

accuracy where we obtained an accuracy of 78.4% on

training and 78.8% on the testing dataset. The logistic

regression model was trained very fast because we did

not do any hyperparameter tuning on that.

For training the BERT model, 70% of the dataset was

used for training. The total size of the dataset was 1.6M

tweets. Since the dataset was balanced, the accuracy,

precision and recall obtained were almost the same.

The accuracy on the test dataset which is around 10%

of the entire dataset size obtained had an accuracy of

85.23%, precision was 85.86% and recall was 84.15%.

The BERT model was trained for 4 epochs in Google

Colab with a GPU instance. It took around 8hrs where

each epoch took around 2hrs to train. This trained

model was saved and is used in the prediction.

VIII. FRONT END

For the front end we kept it very simple we only made

two pages. One page takes the user’s input and the

second page displays the tweets along with the

prediction accompanied by the prediction analysis

charts. To show the continuous stream of tweets we

WebSockets and for the charts, we used the javascript

library chart.js, this library helped us plot dynamic

charts that kept changing as new tweets were sent to

the front end.

IX. BACKEND FRAMEWORK COMPONENTS

The backend framework is built on python

programming language. Flask, web framework, has

been used as a backbone for the backend. we chose the

flask because of its WSGI nature. [8]A WSGI is nothing

but a server which implements the web server side of

the python applications.

Importance of WSGI, the traditional web servers we

have doesn’t know how to run these python

Volume 10, Issue 1, January-February-2024 | http://ijsrcseit.com

Samit Shivadekar et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., January-February-2024, 10 (1) : 60-70

65

applications. So we are in need of a web server which

handles this region and runs these arbitrary python

codes. WSGI is the most acclaimed and recognized

approach all over the community.

[7] Twitter developer account, this account plays a key

role in our service. With the help of this account, we

are able to use the Twitter APIs. So it allows you to

manage and set up your applications and project. But

the projects within this scope can be enabled to

connect to Twitter and access its API. Here project in

the sense which allows or gives you to set up your

environment or your work based on your goals, and use

cases, with the Twitter developer platform’s APIs,

which requires making asynchronous or synchronous

requests to the Twitter developer APIs. But here the

APIs calls are limited, so it basically restricts to certain

calls of retrieving tweets per month from specific

endpoints at the project level.

From the Twitter developer account, you get access to

a lot of endpoints. But for the project goal, we are

mostly dependent on streaming API, because of the

scope to get real-time data, in our case series of tweets.

There are several advantages to using a REST streaming

API in real-time use cases [7]:

Low latency: REST streaming APIs allow for low

latency communication between the client and the

server, as data can be streamed continuously without

the need for the client to send requests and wait for a

response. This is important for applications that require

real-time data transfer, such as online games and

collaborative tools.

High throughput: REST streaming APIs can handle

high volumes of data with minimal overhead, making

them well-suited for applications that require high

throughputs, such as financial trading systems and

real-time analytics.

Efficient use of resources: REST streaming APIs can be

more efficient than traditional REST APIs in terms of

resource utilization, as they allow for continuous

communication rather than the request-response cycle

of traditional REST APIs. This can be important for

applications that handle large amounts of data or have

a high volume of requests.

Easy to implement: REST streaming APIs can be imple-

mented using standard HTTP techniques, such as

chunked transfer encoding, making them easy to

integrate with existing systems and infrastructure.

Flexibility: REST streaming APIs can be used in a

variety of real-time use cases, such as real-time data

processing, event-driven architectures, and real-time

messaging. They can be implemented using a variety of

technologies, such as WebSockets, Server-Sent Events,

and long polling.

[6] Kafka is a publish-subscribe messaging system that

allows for the transfer of large volumes of data between

differ-ent systems, enabling real-time data processing

and analysis. Kafka is designed to be fault-tolerant,

scalable, and fast, and it can handle high volumes of

data with low latency. It is often used in conjunction

with other technologies such as Apache Hadoop, Spark,

and Flink for big data processing and analysis. Kafka is

widely adopted in a variety of industries, including

finance, healthcare, and e-commerce, for a variety of

purposes such as real-time analytics, event sourcing,

and data integration.

There are several ways in which Kafka can be used

with

Python [6]:

As a producer: You can use Kafka’s Python client

library to publish data to a Kafka cluster. This is useful

Volume 10, Issue 1, January-February-2024 | http://ijsrcseit.com

Samit Shivadekar et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., January-February-2024, 10 (1) : 60-70

66

for streaming data from a Python application to other

systems or storing it in a distributed manner.

As a consumer: You can use Kafka’s Python client

library to consume data from a Kafka cluster. This is

useful for processing data in real-time as it is produced,

or for creating a data pipeline between different

systems.

With a Kafka Connector: You can use a Kafka

Connector, such as the one provided by Confluent, to

integrate Kafka with other systems that have a

connector available. For example, you can use a

connector to stream data from a database like MySQL

or a file system like HDFS into Kafka, or stream data

from Kafka into a database or file system.

With a stream processing library: You can use a stream

processing library like Apache Flink or Apache Spark

Stream-ing to process data from Kafka in real-time.

These libraries provide higher-level abstractions for

working with streaming data and allow you to perform

transformations, aggregations, and other operations on

the data.

With a messaging library: You can use a messaging

library like PyKafka or confluent-kafka-python to

interact with Kafka in a more low-level way. These

libraries provide APIs for producing and consuming

messages, as well as for managing topics and consumer

groups.

Flask is a lightweight Python web framework that

allows you to build web applications quickly. It is easy

to set up and requires minimal boilerplate code.

[6]Kafka is a publish-subscribe messaging system that

allows for the transfer of large volumes of data between

different systems. You can use Kafka with Flask by

using a Kafka library or connector to publish data from

your Flask application to a Kafka cluster or to consume

data from a Kafka cluster and use it in your Flask

application. This can be useful for creating real-time

data pipelines, streaming data to and from web

applications, and performing real-time processing and

analysis of data.

Flask-Kafka is a Flask extension that provides easy inte-

gration with Apache Kafka. It allows you to use Kafka

in your Flask application by providing a simple Flask-

Kafka client, as well as decorators for producing and

consuming messages. Flask-Kafka is built on top of the

Kafka Python client, and it provides a simple, high-

level API for working with Kafka in a Flask application.

With Flask-Kafka, you can publish messages to Kafka

topics and consume messages from Kafka topics, as well

as manage consumer groups and topics. Flask-Kafka is

useful for building real-time data pipelines and

streaming applications, and it can be used in

conjunction with other technologies like Apache Flink

and Apache Spark for big data processing and analysis.

An event-driven approach to building REST APIs

involves designing the API in such a way that it sends

out notifications, or ”events,” when certain actions

occur. For example, when a new user is created in the

system, an event could be sent out to notify other parts

of the system that a new user has been created. This

allows for real-time, asynchronous communication

between different parts of the system, rather than

relying on polling to check for updates.

An event-driven approach can be implemented using

web-hooks, which are HTTP callbacks that are

triggered by an event. When an event occurs, the

system sends an HTTP POST request to the URL

specified in the webhook, along with a payload of data

related to the event. The receiving system can then

process the event and take any necessary actions.

Event-driven approaches are useful for building highly

scalable and responsive systems, as they allow for

decoupled, asynchronous communication between

different parts of the system. They are particularly

useful for building microservice architectures, where

Volume 10, Issue 1, January-February-2024 | http://ijsrcseit.com

Samit Shivadekar et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., January-February-2024, 10 (1) : 60-70

67

different services need to communicate with each

other in real-time.

[4] In our use case we followed WebSockets.

WebSockets is a protocol that allows for the creation of

a full-duplex communication channel between a client

and a server. It allows for real-time communication

between the two parties, allowing for the exchange of

data without the need for the client to con-tinuously

poll the server for updates. This makes WebSockets

well-suited for applications that require real-time data

transfer, such as chat apps, online games, and

collaborative tools.

[4] To establish a WebSocket connection, the client

sends a request to the server with an ”Upgrade” header,

asking the server to switch to the WebSocket protocol.

If the server agrees, it sends back a response with a ”101

Switching Protocols” status code, and the two parties

can then commu-nicate over the WebSocket

connection. Once established, the WebSocket

connection remains open until one of the parties closes

it.

WebSockets are implemented using a combination of

JavaScript and HTML on the client side, and a

WebSocket server on the server side. The WebSocket

protocol is supported by most modern web browsers,

and there are libraries and frameworks available for

building WebSocket-based applica-tions in a variety of

programming languages.

But there are challenges in integrating these

technologies for our cases and making use of good data

flow design matters a lot. System integration refers to

the process of combining multiple systems and

technologies in order to achieve a desired goal. It

involves the integration of hardware, software, and

data from different systems, as well as the integration

of business processes and organizational structures.

System integration can be achieved through a variety

of methods, such as using APIs, message brokers, and

integration platforms. The goal of system integration is

to enable the seamless exchange of data and

functionality between different systems, leading to

improved efficiency, productivity, and agility. System

integration is often used in a variety of contexts,

including IT infrastructure, business processes, and

supply chain management.

But after integrating these various technologies

according to our use case. we need to test it regressively.

So below are the touchdown points to be noted.

Here is a more detailed test plan for a streaming API

with Kafka and Python:

Set up the testing environment: Install and configure

Kafka, Python, and any required libraries or

frameworks. Set up a test Kafka cluster and create test

topics. Set up a test database or other system for storing

test data. Define the test cases: Test the ability to

produce and consume messages to and from Kafka. Test

error handling scenarios, such as when the Kafka

cluster is unavailable or when there are issues with the

test data. Test the ability to scale the system under load,

such as by increasing the volume of messages being

produced or consumed. Test the ability to process and

transform data in real-time, such as by using a stream

processing library like Apache Flink or Apache Spark

Streaming. Prepare the test data: Set up the test data

that will be used in the test cases. This may involve

creating test messages to publish to Kafka or setting up

test data in a database or other system. Run the test

cases: Execute the test cases and verify that the

streaming API is functioning correctly. Monitor the

performance of the system, including latency and

throughput, to ensure that it is meeting the desired

requirements. Check the output of the test cases to

ensure that the expected results are being produced.

Analyze the test results: Review the test results to

identify any issues or areas for improvement.

Document any issues that were found and the steps

taken to resolve them. Repeat the testing process: After

Volume 10, Issue 1, January-February-2024 | http://ijsrcseit.com

Samit Shivadekar et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., January-February-2024, 10 (1) : 60-70

68

making any necessary changes, repeat the testing

process to ensure that the streaming API is functioning

correctly. Document the test plan: Document the test

plan and the results of the testing process, including

any issues that were identified and the steps taken to

resolve them. Include details on the test environment,

the test cases that were run, and the results of the tests.

Include any performance metrics that were measured,

such as latency and throughput.

X. RELATED SERVICES

[1] MonkeyLearn, this service provides Customized

sen-timent analysis models. They train the models

with the user’s own data. [2] Repustate, this service

supports text in 24 different languages and also has the

capability to Detect the emotions expressed in emojis,

slang, abbreviations, and hashtags. [3] Lexalytics, this

service enables the creation of dashboards and

visualizations from the user’s data and this helps in

gaining deeper insights into the customer emotions.

All the above services predict the sentiment using data

that has already been collected and pre-processed.

That’s where our service stands out we provide the

sentiment and analysis of tweets/data that come in

real-time and we do it fairly quickly and accurately.

XI. RESULTS

Once the model training is done and the model is saved,

we integrate it with the Backend where when we get

the tweets from the Twitter API, the BERT model is

used for prediction where we predict positive, negative

and neutral sentiments. All the components are further

integrated with the front-end where we can provide a

user with a text box to enter the topic which he wants

to get sentiment analysis. We have considered TESLA

as an example where we get tweets related to Tesla and

we predict the sentiment of the tweets in real-time.

Figure 3 shows the front end. Once we enter the topic,

we will start to get the tweets in the backend. Figure 4

shows the stream of tweets which we obtain from

Twitter API when we hit the API.

Fig. 3. Front-end to enter topic

As shown in figure 4, the format of tweets is JSON and

there will be a lot of unwanted text. The pre-processing

of it is performed in the model cleaning section which

is discussed in the above sections. Then the BERT

model processes the text and converts it into a format

that it can understand.

Fig. 4. Stream of tweets in the Backend

Once we get the tweets and predictions, it is sent to the

front-end page we used ChartJS to render analytics and

the resulting webpage is shown in Figure 5.

Fig. 5. Front end result with Tweets and Charts

Volume 10, Issue 1, January-February-2024 | http://ijsrcseit.com

Samit Shivadekar et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., January-February-2024, 10 (1) : 60-70

69

Fig. 6. Correct and Failed Predictions

Fig. 7. Analytical Charts

To explain the final output webpage in detail, it

displays all the tweets with colours where green

indicates positive, red is negative and yellow is a

neutral tweet. Figure 6 shows the situations where the

model might succeed and fail. The blue box shows a

failed scenario where the model predicts a negative

when the sentence is neutral. The blue box shows a

scenario where the prediction was accurate. In Figure

7, I hovered the mouse over the graph to indicate the

number of negative tweets streamed so far. The same

applies to other columns in the bar chart. The Pie chart

shows the percentage of positive, negative and neutral

tweets updated in real-time.

XII. FUTURE SCOPE

There are multiple areas where our project can be

improved. The BERT model which is used in the

project can be further improved by training on more

data and longer. Since we had a limited GPU, we could

not train it for more epochs. We can experiment with

other transformer models since there are other state-

of-the-art models better than BERT. Here, we are using

just one stream of data to get the public sentiment.

However, we can use multiple streams which can be

easily integrated since we are using Kafka. We can add

more metadata along with sentiment and display to the

front-end rather than only sentiment results.

XIII. CHALLENGES

Training the BERT model was not an easy task since it

involves a lot of components along with training. It

took us some time to integrate WebSockets with Flask

where sending the real-time data from Flask to the

front end did not work and we had to spawn separate

threads to achieve real-time communication. Normal

HTTP communications did not work and had to find

ways to tackle the problem of sending data in real-time

to the front end. Faced difficulty in reducing latency

and we tackled this problem by creating a separate

server for hosting Kafka and Deep Learning model.

XIV. CONCLUSION

To conclude our project, we aimed in targeting

customers who are looking for getting the sentiment of

public opinion on a specific topic in real-time. We have

utilized the power of Deep Learning to get accurate

predictions and WebSockets technology to stream the

topics to the front end in real-time.

Volume 10, Issue 1, January-February-2024 | http://ijsrcseit.com

Samit Shivadekar et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., January-February-2024, 10 (1) : 60-70

70

The success of the project also leverages the Twitter

streaming API to pull and filter the streams in real time.

Analytics were generated in the front end to display

the numbers and percentages of various sentiments of

tweets. We were able to achieve the expected real-time

experience for the user with very minimum latency

even though a lot of things are happening in the

background and a big Machine Learning model.

XV. REFERENCES

[1]. 'Text Analysis,' MonkeyLearn.

https://monkeylearn.com

[2]. 'Unlock the hidden emotion with the best

sentiment analysis tool,' www.repustate.com.

https://www.repustate.com/sentiment-analysis/

[3]. 'Sentiment Analysis - Lexalytics,'

www.lexalytics.com, May 16, 2022.

https://www.lexalytics.com/technology/sentime

nt-analysis/

[4]. G. L. Muller, 'HTML5 WebSocket protocol and

its application to distributed computing,'

arXiv:1409.3367 [cs], Sep. 2014, Accessed: Dec.

22, 2022. [Online]. Available:

https://arxiv.org/abs/1409.3367

[5]. J. Devlin, M.-W. Chang, K. Lee, and K.

Toutanova, 'BERT: Pre-training of Deep

Bidirectional Transformers for Language

Understand-ing,' arXiv.org, Oct. 11, 2018.

https://arxiv.org/abs/1810.04805

[6]. 'Apache Kafka,' Apache Kafka.

https://kafka.apache.org/documentation/

[7]. 'Filtered stream introduction,'

developer.twitter.com.

https://developer.twitter.com/en/docs/twitter-

api/tweets/filtered-stream/introduction

[8]. 'Welcome to Flask Flask Documentation (2.2.x),'

flask.palletsprojects.com.

https://flask.palletsprojects.com/en/2.2.x/

[9]. C. Richardson, 'Microservices.io,'

microservices.io, 2017.

https://microservices.io/patterns/microservices.

html

[10]. Sarlan, Aliza & Nadam, Chayanit & Basri, Shuib.

(2014). Twitter sentiment analysis. 212-216.

10.1109/ICIMU.2014.7066632.

Cite this article as :

Samit Shivadekar, Ketan Shahapure, Shivam Vibhute,

Milton Halem, "Real-time Sentiment Analysis from

Data Streaming", International Journal of Scientific

Research in Computer Science, Engineering and

Information Technology (IJSRCSEIT), ISSN : 2456-

3307, Volume 10, Issue 1, pp.60-70, January-February-

2024. Available at doi :

https://doi.org/10.32628/CSEIT2390646

Journal URL : https://ijsrcseit.com/CSEIT2390646

