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Public sentiment is a potent indicator of how people perceive and receive a topic. 

It has the power to make or break companies and people. Twitter is one of the best 

platforms in today’s generation to gauge public sentiment. [10] Utilizing the power 

and influence Twitter has we decided to create a service that would enable us to 

know how a trending topic is being viewed by the masses in real-time. The user 

gives the topic as input to the front-end graphical user interface that topic is then 

taken and fed to the Twitter streaming API. Tweets containing the hashtag of the 

topic mentioned by the user are returned and the sentiment of those tweets is 

predicted and sent to the front end where analysis prediction of the sentiment of 

the tweets is done dynamically as the tweets come in. By using our service for a 

few minutes the user will get to know what the overall outlook of a topic is and 

use that information as a guiding beacon for any future decisions regarding that 

topic. 

Index Terms : Twitter, Sentiment Analysis, Real-Time, Stream-ing Data, Topic 

Analysis, Model training, Prediction 
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I. INTRODUCTION 

 

The Goal we set out to achieve was to create a service 

that would enable the user to get a real-time sentiment 

analysis of the tweets that were coming from the 

Twitter streaming API based on the topic the user gave 

as input. Using the Service-oriented computing 

principles we came up with a service that provided a 

simple user interface that took input from the user as 

well as also displayed the tweets and charts that came 

from the back end. We made use of a large data set to 

train our model which was later employed to predict 

tweets as they came in real-time. The working 

prototype we were able to produce was quick and 

accurate in its predictions. We feel that this service 

would come in handy for anyone who is curious to 

know how a trending topic is performing amongst the 

masses. Emotions and feelings are two very strong 

influencing powers that dictate how people behave and 

they also have a huge impact on actions people take in 
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the real world. We strongly believe humans learn from 

their mistakes. Our service helps the user understand 

how some topics are perceived and based on that 

information the user can make changes so that the next 

time around the topic has an overwhelmingly positive 

sentiment around it. 

 

II. SERVICE OBJECTIVES 

 

The Objectives of our Service are as follows: 

 

• Obtain Sentiment of tweets produced by Twitter 

users on a specified topic in real-time. 

• Predict whether the tweet is positive negative or 

neutral in nature. 

• Perform analytics on the tweets that have been 

obtained and show those results in the form of 

pictorial charts to the user. 

 

III. IMPLEMENTATION PLAN 

 

The following steps are what we followed to 

implement the service: 

 

• Obtain topic input from the user through the front-

end user input page. 

• Obtaining real-time tweets from Twitter using 

Twitter streaming API for the topic given by the 

user. 

• Stream the topic using Apache Kafka. 

• Train a sentiment analysis model on static data. 

• Using the trained model, we predict the sentiments 

of the tweets that come in real-time. 

• Take predictions from the model to create pictorial 

charts that aid in the overall analysis of the topic. 

 

USERS AND CLIENTS 

Marketing and Executive teams of Companies that 

release products. Marketing teams in a company can 

use our service to see how their marketing strategies 

for products are playing out if they see that the product 

is being viewed negatively they can take necessary 

marketing steps and make necessary recommendations 

for the product teams for changes. Executive teams can 

see how their product performs when they release it 

and based on that they can make decisions on whether 

to fund or scrape the product because if a product 

brings the company’s reputation down there is no point 

in putting it out to the market. 

 

Stock, Crypto and NFT investors. Twitter is one first 

places that gets any news on Cryptos and NFTs and 

based on that its users react. If the sentiment about a 

stock is negative it’s better to sell it as that is an 

indication that the stock or Crypto or NFT is going to 

lose its value and market share. On the other hand, if 

the sentiment on a stock or Crypto or NFT is positive 

then it would be a good idea to invest in those things 

as people are more likely going to buy it more thus 

increasing its value. 

 

Famous People. When famous people tweet about 

things. They can use our service to see how what they 

said is being viewed by Twitters users. Based on that 

they can decide to continue on a said topic or avoid it. 

There are many instances where famous people have 

either gained or lost fans because of what they have 

tweeted. 

IV. SERVICE ARCHITECTURE 

 

The service architecture diagram of our service is 

shown in Figure 1. which shows all the components 

involved in the system. 

 
Fig. 1.  Service architecture of Real-time Sentiment 

analysis 
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As shown in Figure 1, there are mainly 3 components 

in the system. The front end, Machine Learning model 

and the backend. Each of these components and their 

working is explained in much detail in the coming 

sections. All the components are connected to each 

other and all of them will be communicating with the 

help of REST APIs, sockets and Web Sockets. 

 

It is a kind of Microservice architecture [9] where all 

the components work independently of each other. In 

general monolithic architectures, all the components 

of software lie in the same machine and if one of the 

services breaks, it results in breaking the entire 

codebase and none of the components will be usable. 

This similar strategy is extended by a microservices 

architecture to loosely connected services that may be 

created, deployed, and maintained separately. Each of 

these services is in charge of a certain task and can 

interact with other services via straightforward APIs to 

resolve more complicated business problems. Instead 

of being forced to adopt a more uniform, one-size-fits-

all approach, the microservices architecture makes it 

simpler to select the technological stack (programming 

languages, communication protocols, etc.) that is most 

suited for the desired functionality (service). 

 

Our system is also an application of micro-service 

architec-ture. Because we have separated the Machine 

Learning com-ponent and streaming component from 

the front-end serving component. The streaming and 

model prediction service works independently and 

even if something in the front end fails, we still can get 

a stream of messages with the prediction for a specific 

topic if the prediction or the streaming service fails, the 

front end service which is powered by Flask will still 

be working although there will be no use of it since we 

need to get streams of text from the backend for real-

time updates. The main work and flow of the project 

are explained in this section as follows. 

 

When the user enters our website, he is prompted with 

a Front-end UI which contains a text box where he can 

enter the topic. The topic can be anything for which 

the user needs to get real-time tweets and get 

sentiment analysis from it. Once the topic is entered, 

the topic is sent to the Flask backend. Flask receives 

this request and it is sent to the backend web server 

which hosts Kafka server and the Machine Learning 

model with the help of sockets. Once the backend 

server receives the topic, the Twitter streaming API is 

called and we start getting tweets from the Twitter 

server. The tweets are obtained from the Twitter server 

and are fed to the Deep Learning model which is 

residing in the backend and the sentiment predictions 

are obtained. This Deep learning model is a 

transformer model which is already trained on a static 

twitter dataset where the trained model is saved and is 

used for prediction. Since we are using a separate server 

for the Kafka and Machine Learning model, we can 

customize this server by adding GPU capability or 

scaling it up. This further proves that Machine 

Learning and Kafka components are isolated from the 

Flask which serves the front end and hence 

Microservice architecture is achieved. 

 

The prediction and the tweets are sent to the Flask 

which acts as a consumer of Kafka. With the help of 

WebSockets, a bi-direction connection is made 

between the front end and the back end and the tweets 

are sent to the front end in real time. 

 

These tweets are organized using front-end 

frameworks and are displayed. The number and 

percentage of positive and negative sentiments are 

displayed using a Bar graph and Pie chart respectively 

in the front end which updates dynamically. 

 

 

V. DATASET OVERVIEW 

 

In order to predict the sentiments of the tweets in real-

time, we need a Machine Learning or Deep Learning 

model in predicting the sentiments. So, to get a 

sentiment analysis model, we need to train it before, 
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save it, and use it later. We can also use models which 

are already pretrained and can be used as an API. We 

used a Twitter dataset which is available in Kaggle. The 

dataset contains 1.6M rows of data. The dataset consists 

of features such as, ‘ids’ where each entry in the dataset 

has a unique ID, ‘date’ which has the date when the 

tweet is posted, ‘user’ the user that tweeted, ‘text’ has 

the text of the tweet. Out of all these attributes in the 

dataset, our main focus is on using text field. This text 

field is processed and then used in the model for 

training. The sentiment of the text is the target variable. 

The dataset contains 3 sentiments which are Positive, 

Negative and Neutral sentences. Positive sentences are 

indicated by 0, 1 for Neutral sentences and 2 for 

Negative sentences. 

 

VI. MACHINE LEARNING MODEL 

 

Machine Learning and Deep Learning models are 

trained to predict the sentiments of the text in the 

dataset. Out of all these attributes in the dataset, our 

main focus is on using text fields. This text field is 

processed and then used in the model for training. 

 

To train the sentiment analysis model, we created a 

baseline model and a final model for completing the 

model training cycle. We need a baseline Machine 

Learning model using which we can determine the 

minimum accuracy which can be obtained. This 

baseline model must be very simple without 

performing hyperparameter tunings and also basic 

default configurations. The baseline model which we 

decided to use is the Logistic Regression model. The 

model was trained on the text data in the dataset and 

the labels. 

 

To train the model on the text data, the data must be 

processed and cleaned before feeding to the model. For 

data cleaning, we removed all the rows which do not 

have any text but have sentiments. The text data is 

cleaned by removing all the HTML tags, and 

punctuations and converting all the sentences to 

lowercase. Also, all the words are lemmatized so that 

all the differences between similar words are 

eliminated. Stemming is a method by which a portion 

of the word is simply sliced off at the end. While 

several algorithms are employed to determine how 

many letters must be removed, none of them genuinely 

understand the meaning of the word in the language to 

which it belongs. On the other hand, the algorithms in 

lemmatization are aware of this. In fact, you could 

argue that these algorithms use dictionaries to 

comprehend the meaning of the word before distilling 

it to its lemma, or fundamental term. Once we clean 

the text data, we have to process the data in order to 

convert the text into numerical format since the model 

cannot understand characters in the text. We used Tf-

IDF vectorizer to convert the text data into its 

numerical format. TF-IDF can be broken down into 

term frequency and inverse document frequency. 

Term frequency is the frequency of a word with 

respect to a document. Inverse document helps in 

getting a number for how frequent the word is in the 

overall corpus. This helps in reducing the final weight 

on common words like articles, etc. The results of the 

logistic regression model are shown in the results 

section. 

 

Since we have a big dataset having we can use Deep 

Learning models to train the sentiment analysis task. 

For the same reason, we have used BERT [5]model 

which is a transformer model. Transformer is an 

attention mechanism that learns the contextual 

relationships between words (or subwords) in a text 

and is used by BERT. Transformer’s basic design 

consists of two independent mechanisms: an encoder 

that reads the text input and a decoder that generates a 

job prediction. Only the encoder mechanism is 

required because BERT’s aim is to produce a language 

model. The architecture of BERT is shown in Figure 2. 

We have taken the architecture diagram from one of 

the websites which has been cited in the reference 

section. [5] 
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Fig. 2.  BERT Architecture 

 

 

In the BERT training phase, the model learns to predict 

whether the second sentence in a pair will come after 

another in the original document by receiving pairs of 

sentences as input. During training, 50% of the inputs 

are pairs in which the second sentence is the next one 

in the original text, and in the remaining 50%, the 

second sentence is a randomly selected sentence from 

the corpus. The underlying presumption is that the 

second phrase will not be connected to the first. This 

working is used by BERT to predict the next word in a 

sentence. It can be modified for a classification task as 

well. To train the BERT model, the sentences first have 

to be converted into a format that the model can 

understand. Here, we cannot use the TF-IDF vectorizer 

since the BERT model has its own way of encoding the 

texts. [5]BERT first uses some tokens to differentiate 

between the sentences. The first sentence has a [CLS] 

token at the start, and each subsequent sentence has a 

[SEP] token at the end. The unknown words are 

replaced by [UNK] tokens since they are not in the 

dictionary of the words. The rest of the words which 

are already known are replaced by a numeric number 

which is already defined by BERT where it has a 

dictionary of words which has a numeric number for 

most of the words. 

 

The entire dataset is divided into training, testing and 

validation dataset where 70% of the data is used for 

training, 20% of data is used for validation and 10% of 

the data is used for testing. The training dataset is 

trained and model obtained is used as an API for 

predicting the sentiments of the tweets in real-time 

and prediction is sent to the front-end. 

 

VII. RESULTS OF MODEL TRAINING 

 

The dataset is trained on both the Baseline model and 

the BERT model and the accuracies are obtained. For 

baseline model training, the dataset is divided into 80% 

training and 20% testing. We calculated only the 

accuracy where we obtained an accuracy of 78.4% on 

training and 78.8% on the testing dataset. The logistic 

regression model was trained very fast because we did 

not do any hyperparameter tuning on that. 

 

For training the BERT model, 70% of the dataset was 

used for training. The total size of the dataset was 1.6M 

tweets. Since the dataset was balanced, the accuracy, 

precision and recall obtained were almost the same. 

The accuracy on the test dataset which is around 10% 

of the entire dataset size obtained had an accuracy of 

85.23%, precision was 85.86% and recall was 84.15%. 

The BERT model was trained for 4 epochs in Google 

Colab with a GPU instance. It took around 8hrs where 

each epoch took around 2hrs to train. This trained 

model was saved and is used in the prediction. 

 

VIII. FRONT END 

 

For the front end we kept it very simple we only made 

two pages. One page takes the user’s input and the 

second page displays the tweets along with the 

prediction accompanied by the prediction analysis 

charts. To show the continuous stream of tweets we 

WebSockets and for the charts, we used the javascript 

library chart.js, this library helped us plot dynamic 

charts that kept changing as new tweets were sent to 

the front end. 

 

IX.  BACKEND FRAMEWORK COMPONENTS 

 

The backend framework is built on python 

programming language. Flask, web framework, has 

been used as a backbone for the backend. we chose the 

flask because of its WSGI nature. [8]A WSGI is nothing 

but a server which implements the web server side of 

the python applications. 

 

Importance of WSGI, the traditional web servers we 

have doesn’t know how to run these python 
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applications. So we are in need of a web server which 

handles this region and runs these arbitrary python 

codes. WSGI is the most acclaimed and recognized 

approach all over the community. 

 

[7] Twitter developer account, this account plays a key 

role in our service. With the help of this account, we 

are able to use the Twitter APIs. So it allows you to 

manage and set up your applications and project. But 

the projects within this scope can be enabled to 

connect to Twitter and access its API. Here project in 

the sense which allows or gives you to set up your 

environment or your work based on your goals, and use 

cases, with the Twitter developer platform’s APIs, 

which requires making asynchronous or synchronous 

requests to the Twitter developer APIs. But here the 

APIs calls are limited, so it basically restricts to certain 

calls of retrieving tweets per month from specific 

endpoints at the project level. 

 

From the Twitter developer account, you get access to 

a lot of endpoints. But for the project goal, we are 

mostly dependent on streaming API, because of the 

scope to get real-time data, in our case series of tweets. 

 

There are several advantages to using a REST streaming 

 

API in real-time use cases [7]: 

 

Low latency: REST streaming APIs allow for low 

latency communication between the client and the 

server, as data can be streamed continuously without 

the need for the client to send requests and wait for a 

response. This is important for applications that require 

real-time data transfer, such as online games and 

collaborative tools. 

 

High throughput: REST streaming APIs can handle 

high volumes of data with minimal overhead, making 

them well-suited for applications that require high 

throughputs, such as financial trading systems and 

real-time analytics. 

 

Efficient use of resources: REST streaming APIs can be 

more efficient than traditional REST APIs in terms of 

resource utilization, as they allow for continuous 

communication rather than the request-response cycle 

of traditional REST APIs. This can be important for 

applications that handle large amounts of data or have 

a high volume of requests. 

 

Easy to implement: REST streaming APIs can be imple-

mented using standard HTTP techniques, such as 

chunked transfer encoding, making them easy to 

integrate with existing systems and infrastructure. 

 

Flexibility: REST streaming APIs can be used in a 

variety of real-time use cases, such as real-time data 

processing, event-driven architectures, and real-time 

messaging. They can be implemented using a variety of 

technologies, such as WebSockets, Server-Sent Events, 

and long polling. 

 

[6] Kafka is a publish-subscribe messaging system that 

allows for the transfer of large volumes of data between 

differ-ent systems, enabling real-time data processing 

and analysis. Kafka is designed to be fault-tolerant, 

scalable, and fast, and it can handle high volumes of 

data with low latency. It is often used in conjunction 

with other technologies such as Apache Hadoop, Spark, 

and Flink for big data processing and analysis. Kafka is 

widely adopted in a variety of industries, including 

finance, healthcare, and e-commerce, for a variety of 

purposes such as real-time analytics, event sourcing, 

and data integration. 

 

There are several ways in which Kafka can be used 

with 

 

Python [6]: 

 

As a producer: You can use Kafka’s Python client 

library to publish data to a Kafka cluster. This is useful 
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for streaming data from a Python application to other 

systems or storing it in a distributed manner. 

 

As a consumer: You can use Kafka’s Python client 

library to consume data from a Kafka cluster. This is 

useful for processing data in real-time as it is produced, 

or for creating a data pipeline between different 

systems. 

 

With a Kafka Connector: You can use a Kafka 

Connector, such as the one provided by Confluent, to 

integrate Kafka with other systems that have a 

connector available. For example, you can use a 

connector to stream data from a database like MySQL 

or a file system like HDFS into Kafka, or stream data 

from Kafka into a database or file system. 

 

With a stream processing library: You can use a stream 

processing library like Apache Flink or Apache Spark 

Stream-ing to process data from Kafka in real-time. 

These libraries provide higher-level abstractions for 

working with streaming data and allow you to perform 

transformations, aggregations, and other operations on 

the data. 

 

With a messaging library: You can use a messaging 

library like PyKafka or confluent-kafka-python to 

interact with Kafka in a more low-level way. These 

libraries provide APIs for producing and consuming 

messages, as well as for managing topics and consumer 

groups. 

 

Flask is a lightweight Python web framework that 

allows you to build web applications quickly. It is easy 

to set up and requires minimal boilerplate code. 

[6]Kafka is a publish-subscribe messaging system that 

allows for the transfer of large volumes of data between 

different systems. You can use Kafka with Flask by 

using a Kafka library or connector to publish data from 

your Flask application to a Kafka cluster or to consume 

data from a Kafka cluster and use it in your Flask 

application. This can be useful for creating real-time 

data pipelines, streaming data to and from web 

applications, and performing real-time processing and 

analysis of data. 

 

Flask-Kafka is a Flask extension that provides easy inte-

gration with Apache Kafka. It allows you to use Kafka 

in your Flask application by providing a simple Flask-

Kafka client, as well as decorators for producing and 

consuming messages. Flask-Kafka is built on top of the 

Kafka Python client, and it provides a simple, high-

level API for working with Kafka in a Flask application. 

With Flask-Kafka, you can publish messages to Kafka 

topics and consume messages from Kafka topics, as well 

as manage consumer groups and topics. Flask-Kafka is 

useful for building real-time data pipelines and 

streaming applications, and it can be used in 

conjunction with other technologies like Apache Flink 

and Apache Spark for big data processing and analysis. 

An event-driven approach to building REST APIs 

involves designing the API in such a way that it sends 

out notifications, or ”events,” when certain actions 

occur. For example, when a new user is created in the 

system, an event could be sent out to notify other parts 

of the system that a new user has been created. This 

allows for real-time, asynchronous communication 

between different parts of the system, rather than 

relying on polling to check for updates. 

 

An event-driven approach can be implemented using 

web-hooks, which are HTTP callbacks that are 

triggered by an event. When an event occurs, the 

system sends an HTTP POST request to the URL 

specified in the webhook, along with a payload of data 

related to the event. The receiving system can then 

process the event and take any necessary actions. 

 

Event-driven approaches are useful for building highly 

scalable and responsive systems, as they allow for 

decoupled, asynchronous communication between 

different parts of the system. They are particularly 

useful for building microservice architectures, where 
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different services need to communicate with each 

other in real-time. 

 

[4] In our use case we followed WebSockets. 

WebSockets is a protocol that allows for the creation of 

a full-duplex communication channel between a client 

and a server. It allows for real-time communication 

between the two parties, allowing for the exchange of 

data without the need for the client to con-tinuously 

poll the server for updates. This makes WebSockets 

well-suited for applications that require real-time data 

transfer, such as chat apps, online games, and 

collaborative tools. 

 

[4] To establish a WebSocket connection, the client 

sends a request to the server with an ”Upgrade” header, 

asking the server to switch to the WebSocket protocol. 

If the server agrees, it sends back a response with a ”101 

Switching Protocols” status code, and the two parties 

can then commu-nicate over the WebSocket 

connection. Once established, the WebSocket 

connection remains open until one of the parties closes 

it. 

 

WebSockets are implemented using a combination of 

JavaScript and HTML on the client side, and a 

WebSocket server on the server side. The WebSocket 

protocol is supported by most modern web browsers, 

and there are libraries and frameworks available for 

building WebSocket-based applica-tions in a variety of 

programming languages. 

 

But there are challenges in integrating these 

technologies for our cases and making use of good data 

flow design matters a lot. System integration refers to 

the process of combining multiple systems and 

technologies in order to achieve a desired goal. It 

involves the integration of hardware, software, and 

data from different systems, as well as the integration 

of business processes and organizational structures. 

System integration can be achieved through a variety 

of methods, such as using APIs, message brokers, and 

integration platforms. The goal of system integration is 

to enable the seamless exchange of data and 

functionality between different systems, leading to 

improved efficiency, productivity, and agility. System 

integration is often used in a variety of contexts, 

including IT infrastructure, business processes, and 

supply chain management. 

 

But after integrating these various technologies 

according to our use case. we need to test it regressively. 

So below are the touchdown points to be noted. 

 

Here is a more detailed test plan for a streaming API 

with Kafka and Python: 

 

Set up the testing environment: Install and configure 

Kafka, Python, and any required libraries or 

frameworks. Set up a test Kafka cluster and create test 

topics. Set up a test database or other system for storing 

test data. Define the test cases: Test the ability to 

produce and consume messages to and from Kafka. Test 

error handling scenarios, such as when the Kafka 

cluster is unavailable or when there are issues with the 

test data. Test the ability to scale the system under load, 

such as by increasing the volume of messages being 

produced or consumed. Test the ability to process and 

transform data in real-time, such as by using a stream 

processing library like Apache Flink or Apache Spark 

Streaming. Prepare the test data: Set up the test data 

that will be used in the test cases. This may involve 

creating test messages to publish to Kafka or setting up 

test data in a database or other system. Run the test 

cases: Execute the test cases and verify that the 

streaming API is functioning correctly. Monitor the 

performance of the system, including latency and 

throughput, to ensure that it is meeting the desired 

requirements. Check the output of the test cases to 

ensure that the expected results are being produced. 

Analyze the test results: Review the test results to 

identify any issues or areas for improvement. 

Document any issues that were found and the steps 

taken to resolve them. Repeat the testing process: After 
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making any necessary changes, repeat the testing 

process to ensure that the streaming API is functioning 

correctly. Document the test plan: Document the test 

plan and the results of the testing process, including 

any issues that were identified and the steps taken to 

resolve them. Include details on the test environment, 

the test cases that were run, and the results of the tests. 

Include any performance metrics that were measured, 

such as latency and throughput. 

 

X. RELATED SERVICES 

 

[1] MonkeyLearn, this service provides Customized 

sen-timent analysis models. They train the models 

with the user’s own data. [2] Repustate, this service 

supports text in 24 different languages and also has the 

capability to Detect the emotions expressed in emojis, 

slang, abbreviations, and hashtags. [3] Lexalytics, this 

service enables the creation of dashboards and 

visualizations from the user’s data and this helps in 

gaining deeper insights into the customer emotions. 

 

All the above services predict the sentiment using data 

that has already been collected and pre-processed. 

That’s where our service stands out we provide the 

sentiment and analysis of tweets/data that come in 

real-time and we do it fairly quickly and accurately. 

 

XI. RESULTS 

 

Once the model training is done and the model is saved, 

we integrate it with the Backend where when we get 

the tweets from the Twitter API, the BERT model is 

used for prediction where we predict positive, negative 

and neutral sentiments. All the components are further 

integrated with the front-end where we can provide a 

user with a text box to enter the topic which he wants 

to get sentiment analysis. We have considered TESLA 

as an example where we get tweets related to Tesla and 

we predict the sentiment of the tweets in real-time. 

Figure 3 shows the front end. Once we enter the topic, 

we will start to get the tweets in the backend. Figure 4 

shows the stream of tweets which we obtain from 

Twitter API when we hit the API. 

 
Fig. 3.  Front-end to enter topic 

 

As shown in figure 4, the format of tweets is JSON and 

there will be a lot of unwanted text. The pre-processing 

of it is performed in the model cleaning section which 

is discussed in the above sections. Then the BERT 

model processes the text and converts it into a format 

that it can understand. 

 
Fig. 4.  Stream of tweets in the Backend 

 

Once we get the tweets and predictions, it is sent to the 

front-end page we used ChartJS to render analytics and 

the resulting webpage is shown in Figure 5. 

 
Fig. 5.  Front end result with Tweets and Charts 
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Fig. 6.  Correct and Failed Predictions 

 
Fig. 7.  Analytical Charts 

 

To explain the final output webpage in detail, it 

displays all the tweets with colours where green 

indicates positive, red is negative and yellow is a 

neutral tweet. Figure 6 shows the situations where the 

model might succeed and fail. The blue box shows a 

failed scenario where the model predicts a negative 

when the sentence is neutral. The blue box shows a 

scenario where the prediction was accurate. In Figure 

7, I hovered the mouse over the graph to indicate the 

number of negative tweets streamed so far. The same 

applies to other columns in the bar chart. The Pie chart 

shows the percentage of positive, negative and neutral 

tweets updated in real-time. 

 

XII. FUTURE SCOPE 

 

There are multiple areas where our project can be 

improved. The BERT model which is used in the 

project can be further improved by training on more 

data and longer. Since we had a limited GPU, we could 

not train it for more epochs. We can experiment with 

other transformer models since there are other state-

of-the-art models better than BERT. Here, we are using 

just one stream of data to get the public sentiment. 

However, we can use multiple streams which can be 

easily integrated since we are using Kafka. We can add 

more metadata along with sentiment and display to the 

front-end rather than only sentiment results. 

 

XIII. CHALLENGES 

 

Training the BERT model was not an easy task since it 

involves a lot of components along with training. It 

took us some time to integrate WebSockets with Flask 

where sending the real-time data from Flask to the 

front end did not work and we had to spawn separate 

threads to achieve real-time communication. Normal 

HTTP communications did not work and had to find 

ways to tackle the problem of sending data in real-time 

to the front end. Faced difficulty in reducing latency 

and we tackled this problem by creating a separate 

server for hosting Kafka and Deep Learning model. 

 

XIV. CONCLUSION 

 

To conclude our project, we aimed in targeting 

customers who are looking for getting the sentiment of 

public opinion on a specific topic in real-time. We have 

utilized the power of Deep Learning to get accurate 

predictions and WebSockets technology to stream the 

topics to the front end in real-time. 

 



Volume 10, Issue 1, January-February-2024 | http://ijsrcseit.com 

Samit Shivadekar et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., January-February-2024, 10 (1) : 60-70 

 

 

 

 
70 

The success of the project also leverages the Twitter 

streaming API to pull and filter the streams in real time. 

Analytics were generated in the front end to display 

the numbers and percentages of various sentiments of 

tweets. We were able to achieve the expected real-time 

experience for the user with very minimum latency 

even though a lot of things are happening in the 

background and a big Machine Learning model. 
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