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 The document discusses the development of a compiler called SyNAPSE, which 

aims to address the challenge of programming for multiple hardware targets in 

networked systems. It focuses on optimising the performance, efficiency, and 

resource consumption of networked systems by dividing packet processing 

across multiple hardware platforms. The key problem it is solving is the difficulty 

in developing high-performance network functions for multiple platforms, each 

with its own programming language and hardware features. SyNAPSE aims to 

provide a solution that allows for 'write once, run anywhere' code that is portable 

across different platforms and automatically provisioned on the hardware best- 

suited for the task. It explores a large search space of different mappings of 

functionality to hardware, allowing for optimization based on programmer- 

specified objectives such as minimising memory consumption or maximising 

network throughput. 
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I. INTRODUCTION 

 

The networking community is trying to make 

networks better by using special hardware and 

software that can be customized and upgraded. They 

are debating which type of hardware is the best for this, 

such as special switches, network processing units, 

programmable chips, or regular computer software. 

Each type of hardware has its own strengths. Some are 

good at certain tasks, like matching information in 

packets, while others are better at analyzing the 

content of the packets. Some people think that using a 

combination of different types of hardware is the best 

solution because it can make the network faster, more 

efficient, and cheaper. For example, some systems 

divide the work between different types of hardware 

to make it more efficient, like using a special chip to 

search for specific information and a regular computer 

to analyze the rest of the data. 

Hybrid designs are very difficult to create because each 

platform they use has its own programming language, 

hardware features, and debugging challenges. It's 
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already hard to create high- performance designs for 

just one platform, so asking developers to learn how to 

create them for multiple platforms is a big challenge. 

What developers really need is the ability to write code 

that can work on any platform and automatically adapt 

to the best hardware for the job. Some new tools have 

shown that it is possible to write code that can work on 

multiple platforms. 

 

The problem of developing high-performance network 

functions for multiple hardware platforms is important 

due to the increasing adoption of programmable data 

planes in networking. As the networking community 

embraces programmable data planes to implement 

network functions, the debate over which 

programmable hardware is best suited for these 

capabilities remains active. The challenge lies in the 

diverse strengths of different platforms and the 

difficulty in developing high- performance network 

functions for each. This problem is crucial as it hinders 

the seamless deployment of network functions across 

heterogeneous hardware platforms, impacting 

performance, efficiency, and resource utilisation. 

Addressing this challenge is essential for achieving 

upgradeability, customizability, and innovation in 

networked systems. 

 

II. BACKGROUND 

 

2.1 Introduction to Synapse: 

SyNAPSE Approach: The prototype compiler, 

SyNAPSE, employs a methodology known as 

component-based synthesis. It recognizes that expert 

developers invest significant effort in tuning common 

algorithms and data structures.SyNAPSE provides a 

library of abstract data types and algorithms, referred 

to as "components," which can be implemented in 

various ways across different hardware platforms. This 

allows developers to choose implementations that suit 

their goals without needing to delve into the internal 

details of each component. 

 

2.1.1 Abstracting NF Development with 

SyNAPSE: 

Simplified Development for NF Developers: 

SyNAPSE simplifies the development process for 

Network Function (NF) developers. They only need to 

focus on the control flow and networking logic of their 

application, programming against the abstract 

SyNAPSE component APIs. The compiler takes care of 

selecting the appropriate implementations based on 

the specified hardware platform and performance 

objectives.This separation of concerns enables the use 

of advanced symbolic execution techniques during 

compilation, leading to optimized deployments based 

on hardware capabilities and specified goals. 

 

2.1.2. Working of SyNAPSE 

Automatic Generation of Network Function 

Accelerators Using Component-Based Synthesis : 

SyNAPSE is a prototype compiler designed to 

automatically generate network function accelerators 

using a component-based synthesis methodology. It 

explores a large search space of different mappings of 

functionality to hardware, allowing programmers to 

specify performance objectives such as minimising 

memory consumption or maximising network 

throughput. The SyNAPSE prototype supports 

deployments across x86 and Tofino platforms, 

uncovering thousands of deployment options. By using 

components as the key abstraction for space 

exploration, SyNAPSE constrains the search space 

while considering trade-offs and performance 

predictions for different tasks on various hardware 

platforms. This approach enables the automatic 

provisioning of code paths on the hardware best-suited 

for specific tasks, advancing the state of the art in 

network function accelerator generation. 

 

2.2 : KEY WORDS: 

In-network compute, Network function virtualization, 

Programming abstraction 

 

III.  Previous State of Art 
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The previous state of the art in network function 

deployment involved the use of programmable data 

planes to implement network functions (NFs), such as 

deep packet inspection, filtering, and WAN 

optimization. The debate centred around which 

programmable hardware platform was best suited for 

these capabilities, with options including Protocol 

Independent Switch Architecture (PISA) switches, 

Network Processing Units, FPGAs, and x86 software. 

Hybrid dataplane designs, which use an ensemble of 

platforms, were found to offer higher throughput, 

lower latency, better energy efficiency, and lower cost 

than single-platform approaches. However, developing 

high- performance NFs for multiple platforms was 

challenging, and there was a need for a "write once, run 

anywhere" approach to code deployment. 

 

IV.  METHODOLOGY 

 

To improve the methodology, the following steps can 

be considered: 

 

1. Refinement of Heuristics: The document mentions 

that the work on developing heuristics is still at an 

early stage. Further research and development can 

focus on refining and expanding the set of heuristics 

used by SyNAPSE. This could involve exploring more 

elaborate heuristics to outperform the simple ones that 

have been tried so far. 

2. Performance Prediction Model: Incorporating a 

more advanced performance prediction model into the 

heuristics can enhance the decision-making process 

during the search for optimal deployment options. This 

model should account for predicted performance of 

different tasks on different  hardware platforms and 

predict the transition cost of transferring packets from 

one platform to another. 

3. Support for Additional Platforms: The document 

mentions the support for deployments across x86 and 

Tofino platforms. Future work can focus on expanding 

the platforms supported by SyNAPSE, such as FPGAs, 

Network Processing Units (NPUs), or 

Infrastructure/Data Processing Units (IPUs/DPUs). 

4. Automated Search Process: Developing an 

automated search process that can efficiently explore 

the space of possible deployments and select the best 

solution based on specific performance objectives. This 

could involve the use of machine learning algorithms 

or optimization techniques to guide the exploration of 

the deployment options. 

5. Integration of Real-world Workloads: Incorporating 

real-world workloads and traffic patterns into the 

evaluation process can provide more realistic insights 

into the performance of different deployment options. 

By focusing on these improvements, the methodology 

of SyNAPSE can be enhanced to better address the 

challenges of programming for multiple hardware 

targets and optimise network function performance 

and resource consumption. 

6. Advancements in Network Function Accelerators  

 

Using Component-Based Synthesis: 

The paper significantly advances the state of the art by 

introducing SyNAPSE, a prototype compiler that 

explores a wide range of mappings of functionality to 

hardware platforms to optimise network function (NF) 

deployment based on performance objectives. This 

approach addresses the challenge of programming for 

multiple hardware targets by enabling a "write once, 

run anywhere" capability, allowing code to be portable 

across different platforms and automatically 

provisioned on the hardware best-suited for specific 

tasks. SyNAPSE's component-based synthesis 

methodology supports deployments across x86 and 

Tofino platforms, uncovering thousands of deployment 

options and demonstrating substantial improvements, 

such as reducing controller traffic by an order of 

magnitude and halving memory usage. These 

advancements represent a significant leap forward in 

the development of network function accelerators and 

their deployment optimization. 

 

7. Key insights in the Design: 



Volume 9, Issue 6, November-December-2023 | http://ijsrcseit.com 

Sai Teja Nagapuri et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., November-December-2023, 9 (6) : 297-302 

 

 

 

 
300 

 

The key insights in the design of SyNAPSE that 

enabled it to advance the state of the art include the 

use of component-based synthesis, which allows for 

the exploration of a large search space of different 

mappings of functionality to hardware. This approach 

enables the compiler to consider a wide range of 

implementation options to tune network functions 

(NFs) to meet specific performance objectives, such as 

minimising memory consumption or maximising 

network throughput. Additionally, SyNAPSE's ability 

to explore different deployment options and consider 

trade- offs sets it apart from rule-based translation 

approaches, allowing for more flexible and optimised 

solutions. The incorporation of heuristics and 

performance prediction models further enhances its 

capabilities, making it a significant advancement in the 

field of network function accelerators.. 

 

V. CONCLUSION 

 

The design is evaluated through experiments to 

understand the impact of different performance targets 

on the systems generated by SyNAPSE. The prototype 

of SyNAPSE is implemented and run using a running 

example of a NAT, and the performance of different 

solutions is evaluated by examining the fraction of 

packets sent to the controller, CPU load on the 

controller, and switch resource utilisation. The 

evaluation involves exploring the search space to find 

distinct solutions targeting different performance 

objectives, such as CPU load, resource utilisation, and 

throughput. The key results include the identification 

of multiple valid solutions with different trade-offs,  

demonstrating the flexibility and optimization 

capabilities of SyNAPSE in generating network 

function accelerators. Additionally, the evaluation 

highlights the potential of SyNAPSE to reduce 

controller traffic and memory usage, showcasing its 

effectiveness in optimising NF deployment for various 

performance objectives. 
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