
Copyright © 2023 The Author(s): This is an open-access article distributed under the terms of the Creative

Commons Attribution 4.0 International License (CC BY-NC 4.0) which permits unrestricted use, distribution, and

reproduction in any medium for non-commercial use provided the original author and source are credited.

International Journal of Scientific Research in Computer Science, Engineering and

Information Technology

ISSN : 2456-3307

Available Online at : www.ijsrcseit.com

doi : https://doi.org/10.32628/CSEIT2390655

297

Automatic Generation of Network Function Accelerators Using

Component-Based Synthesis
Sai Teja Nagapuri, Rajasree Tella, Meghana Reddy Guntireddygari

New Jersey Institute of Technology, Newark, New Jersey, USA

A R T I C L E I N F O

A B S T R A C T

Article History:

Accepted: 10 Dec 2023

Published: 26 Dec 2023

 The document discusses the development of a compiler called SyNAPSE, which

aims to address the challenge of programming for multiple hardware targets in

networked systems. It focuses on optimising the performance, efficiency, and

resource consumption of networked systems by dividing packet processing

across multiple hardware platforms. The key problem it is solving is the difficulty

in developing high-performance network functions for multiple platforms, each

with its own programming language and hardware features. SyNAPSE aims to

provide a solution that allows for 'write once, run anywhere' code that is portable

across different platforms and automatically provisioned on the hardware best-

suited for the task. It explores a large search space of different mappings of

functionality to hardware, allowing for optimization based on programmer-

specified objectives such as minimising memory consumption or maximising

network throughput.

Keywords: Synapse, Network Function, Component-Based Synthesis, Tofino-

Based Switch.

Publication Issue

Volume 9, Issue 6

November-December-2023

Page Number

297-302

I. INTRODUCTION

The networking community is trying to make

networks better by using special hardware and

software that can be customized and upgraded. They

are debating which type of hardware is the best for this,

such as special switches, network processing units,

programmable chips, or regular computer software.

Each type of hardware has its own strengths. Some are

good at certain tasks, like matching information in

packets, while others are better at analyzing the

content of the packets. Some people think that using a

combination of different types of hardware is the best

solution because it can make the network faster, more

efficient, and cheaper. For example, some systems

divide the work between different types of hardware

to make it more efficient, like using a special chip to

search for specific information and a regular computer

to analyze the rest of the data.

Hybrid designs are very difficult to create because each

platform they use has its own programming language,

hardware features, and debugging challenges. It's

Volume 9, Issue 6, November-December-2023 | http://ijsrcseit.com

Sai Teja Nagapuri et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., November-December-2023, 9 (6) : 297-302

298

already hard to create high- performance designs for

just one platform, so asking developers to learn how to

create them for multiple platforms is a big challenge.

What developers really need is the ability to write code

that can work on any platform and automatically adapt

to the best hardware for the job. Some new tools have

shown that it is possible to write code that can work on

multiple platforms.

The problem of developing high-performance network

functions for multiple hardware platforms is important

due to the increasing adoption of programmable data

planes in networking. As the networking community

embraces programmable data planes to implement

network functions, the debate over which

programmable hardware is best suited for these

capabilities remains active. The challenge lies in the

diverse strengths of different platforms and the

difficulty in developing high- performance network

functions for each. This problem is crucial as it hinders

the seamless deployment of network functions across

heterogeneous hardware platforms, impacting

performance, efficiency, and resource utilisation.

Addressing this challenge is essential for achieving

upgradeability, customizability, and innovation in

networked systems.

II. BACKGROUND

2.1 Introduction to Synapse:

SyNAPSE Approach: The prototype compiler,

SyNAPSE, employs a methodology known as

component-based synthesis. It recognizes that expert

developers invest significant effort in tuning common

algorithms and data structures.SyNAPSE provides a

library of abstract data types and algorithms, referred

to as "components," which can be implemented in

various ways across different hardware platforms. This

allows developers to choose implementations that suit

their goals without needing to delve into the internal

details of each component.

2.1.1 Abstracting NF Development with

SyNAPSE:

Simplified Development for NF Developers:

SyNAPSE simplifies the development process for

Network Function (NF) developers. They only need to

focus on the control flow and networking logic of their

application, programming against the abstract

SyNAPSE component APIs. The compiler takes care of

selecting the appropriate implementations based on

the specified hardware platform and performance

objectives.This separation of concerns enables the use

of advanced symbolic execution techniques during

compilation, leading to optimized deployments based

on hardware capabilities and specified goals.

2.1.2. Working of SyNAPSE

Automatic Generation of Network Function

Accelerators Using Component-Based Synthesis :

SyNAPSE is a prototype compiler designed to

automatically generate network function accelerators

using a component-based synthesis methodology. It

explores a large search space of different mappings of

functionality to hardware, allowing programmers to

specify performance objectives such as minimising

memory consumption or maximising network

throughput. The SyNAPSE prototype supports

deployments across x86 and Tofino platforms,

uncovering thousands of deployment options. By using

components as the key abstraction for space

exploration, SyNAPSE constrains the search space

while considering trade-offs and performance

predictions for different tasks on various hardware

platforms. This approach enables the automatic

provisioning of code paths on the hardware best-suited

for specific tasks, advancing the state of the art in

network function accelerator generation.

2.2 : KEY WORDS:

In-network compute, Network function virtualization,

Programming abstraction

III. Previous State of Art

Volume 9, Issue 6, November-December-2023 | http://ijsrcseit.com

Sai Teja Nagapuri et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., November-December-2023, 9 (6) : 297-302

299

The previous state of the art in network function

deployment involved the use of programmable data

planes to implement network functions (NFs), such as

deep packet inspection, filtering, and WAN

optimization. The debate centred around which

programmable hardware platform was best suited for

these capabilities, with options including Protocol

Independent Switch Architecture (PISA) switches,

Network Processing Units, FPGAs, and x86 software.

Hybrid dataplane designs, which use an ensemble of

platforms, were found to offer higher throughput,

lower latency, better energy efficiency, and lower cost

than single-platform approaches. However, developing

high- performance NFs for multiple platforms was

challenging, and there was a need for a "write once, run

anywhere" approach to code deployment.

IV. METHODOLOGY

To improve the methodology, the following steps can

be considered:

1. Refinement of Heuristics: The document mentions

that the work on developing heuristics is still at an

early stage. Further research and development can

focus on refining and expanding the set of heuristics

used by SyNAPSE. This could involve exploring more

elaborate heuristics to outperform the simple ones that

have been tried so far.

2. Performance Prediction Model: Incorporating a

more advanced performance prediction model into the

heuristics can enhance the decision-making process

during the search for optimal deployment options. This

model should account for predicted performance of

different tasks on different hardware platforms and

predict the transition cost of transferring packets from

one platform to another.

3. Support for Additional Platforms: The document

mentions the support for deployments across x86 and

Tofino platforms. Future work can focus on expanding

the platforms supported by SyNAPSE, such as FPGAs,

Network Processing Units (NPUs), or

Infrastructure/Data Processing Units (IPUs/DPUs).

4. Automated Search Process: Developing an

automated search process that can efficiently explore

the space of possible deployments and select the best

solution based on specific performance objectives. This

could involve the use of machine learning algorithms

or optimization techniques to guide the exploration of

the deployment options.

5. Integration of Real-world Workloads: Incorporating

real-world workloads and traffic patterns into the

evaluation process can provide more realistic insights

into the performance of different deployment options.

By focusing on these improvements, the methodology

of SyNAPSE can be enhanced to better address the

challenges of programming for multiple hardware

targets and optimise network function performance

and resource consumption.

6. Advancements in Network Function Accelerators

Using Component-Based Synthesis:

The paper significantly advances the state of the art by

introducing SyNAPSE, a prototype compiler that

explores a wide range of mappings of functionality to

hardware platforms to optimise network function (NF)

deployment based on performance objectives. This

approach addresses the challenge of programming for

multiple hardware targets by enabling a "write once,

run anywhere" capability, allowing code to be portable

across different platforms and automatically

provisioned on the hardware best-suited for specific

tasks. SyNAPSE's component-based synthesis

methodology supports deployments across x86 and

Tofino platforms, uncovering thousands of deployment

options and demonstrating substantial improvements,

such as reducing controller traffic by an order of

magnitude and halving memory usage. These

advancements represent a significant leap forward in

the development of network function accelerators and

their deployment optimization.

7. Key insights in the Design:

Volume 9, Issue 6, November-December-2023 | http://ijsrcseit.com

Sai Teja Nagapuri et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., November-December-2023, 9 (6) : 297-302

300

The key insights in the design of SyNAPSE that

enabled it to advance the state of the art include the

use of component-based synthesis, which allows for

the exploration of a large search space of different

mappings of functionality to hardware. This approach

enables the compiler to consider a wide range of

implementation options to tune network functions

(NFs) to meet specific performance objectives, such as

minimising memory consumption or maximising

network throughput. Additionally, SyNAPSE's ability

to explore different deployment options and consider

trade- offs sets it apart from rule-based translation

approaches, allowing for more flexible and optimised

solutions. The incorporation of heuristics and

performance prediction models further enhances its

capabilities, making it a significant advancement in the

field of network function accelerators..

V. CONCLUSION

The design is evaluated through experiments to

understand the impact of different performance targets

on the systems generated by SyNAPSE. The prototype

of SyNAPSE is implemented and run using a running

example of a NAT, and the performance of different

solutions is evaluated by examining the fraction of

packets sent to the controller, CPU load on the

controller, and switch resource utilisation. The

evaluation involves exploring the search space to find

distinct solutions targeting different performance

objectives, such as CPU load, resource utilisation, and

throughput. The key results include the identification

of multiple valid solutions with different trade-offs,

demonstrating the flexibility and optimization

capabilities of SyNAPSE in generating network

function accelerators. Additionally, the evaluation

highlights the potential of SyNAPSE to reduce

controller traffic and memory usage, showcasing its

effectiveness in optimising NF deployment for various

performance objectives.

VI. REFERENCES

[1]. Theophilus Benson, Aditya Akella, and David A

Maltz. 2010. Network traffic characteristics of

data centers in the wild. In Proceedings of the

10th ACM SIGCOMM conference on Internet

measurement. 267–280.

[2]. Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard,

Nick McKeown, Jennifer Rexford, Cole

Schlesinger, Dan Talayco, Amin Vahdat, George

Varghese, and David Walker. 2014. P4:

Programming ProtocolIndependent Packet

Processors. SIGCOMM Comput. Commun. Rev.

(jul 2014).

[3]. Pat Bosshart, Glen Gibb, Hun-Seok Kim, George

Varghese, Nick McKeown, Martin Izzard,

Fernando Mujica, and Mark Horowitz. 2013.

Forwarding Metamorphosis: Fast Programmable

Match-Action Processing in Hardware for SDN.

In Proceedings of the ACM SIGCOMM 2013

Conference on SIGCOMM (SIGCOMM ’13).

[4]. Cristian Cadar, Daniel Dunbar, and Dawson R.

Engler. 2008. KLEE: Unassisted and Automatic

Generation of High-Coverage Tests for Complex

Systems Programs. In 8th USENIX Symposium on

Operating Systems Design and Implementation,

OSDI 2008, December 8-10, 2008, San Diego,

California, USA, Proceedings, Richard Draves and

Robbert van Renesse (Eds.). USENIX Association,

209–224.

http://www.usenix.org/events/osdi08/tech/full_p

ape rs/cadar/cadar.pdf

[5]. Jian Chen, Xiaoyu Zhang, Tao Wang, Ying Zhang,

Tao Chen, Jiajun Chen, Mingxu Xie, and Qiang

Liu. 2022. Fidas: Fortifying the Cloud via

Comprehensive FPGA-Based Offloading for

Intrusion Detection: Industrial Product. In

Proceedings of the 49th Annual International

Symposium on Computer Architecture (ISCA ’22).

[6] Xiang Chen, Hongyan Liu, Dong Zhang, Zili

Meng, Qun Huang, Haifeng Zhou, Chunming Wu,

Xuan Liu, and Qiang Yang. 2022. Automatic

performance-optimal offloading of network

Volume 9, Issue 6, November-December-2023 | http://ijsrcseit.com

Sai Teja Nagapuri et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., November-December-2023, 9 (6) : 297-302

301

functions on programmable switches. IEEE

Transactions on Cloud Computing (2022).

[6]. Sharad Chole, Andy Fingerhut, Sha Ma, Anirudh

Sivaraman, Shay Vargaftik, Alon Berger, Gal

Mendelson, Mohammad Alizadeh, Shang-Tse

Chuang, Isaac Keslassy, Ariel Orda, and Tom

Edsall. 2017. DRMT: Disaggregated

Programmable Switching. In Proceedings of the

Conference of the ACM Special Interest Group on

Data Communication (SIGCOMM ’17).

[7]. Intel Corporation. 2022. Intel Tofino 3.

https://www.intel.com/content/www/us/en/prod

ucts/network- io/programmable-

ethernetswitch.html

[8]. ETSI. 2012. Network Functions Virtualisation -

White Paper.

http://portal.etsi.org/NFV/NFV_White_Paper.pdf

[9]. Jiaqi Gao, Ennan Zhai, Hongqiang Harry Liu, Rui

Miao, Yu Zhou, Bingchuan Tian, Chen Sun,

Dennis Cai, Ming Zhang, and Minlan Yu. 2020.

Lyra: A cross-platform language and compiler for

data plane programming on heterogeneous asics.

In Proceedings of the Annual conference of the

ACM Special Interest Group on Data

Communication on the applications, technologies,

architectures, and protocols for computer

communication. 435–450.

[10]. Arpit Gupta, Rob Harrison, Marco Canini, Nick

Feamster, Jennifer Rexford, and Walter Willinger.

2018. Sonata: Query-driven streaming network

telemetry. In Proceedings of the 2018 conference

of the ACM special interest group on data

communication. 357–371.

[11]. Rishabh Iyer, Luis Pedrosa, Arseniy

Zaostrovnykh, Solal Pirelli, Katerina Argyraki,

and George Candea. 2019. Performance Contracts

for Software Network Functions. In 16th USENIX

Symposium on Networked Systems Design and

Implementation (NSDI 19). USENIX Association,

Boston,

MA,517530.https://www.usenix.org/conference/n

sd i19/presentation/iyer

[12]. Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and

Ashish Tiwari. 2010. Oracle-Guided Component-

Based Program Synthesis. In Proceedings of the

32nd ACM/IEEE International Conference on

Software Engineering - Volume 1 (Cape Town,

South Africa) (ICSE ’10). Association for

Computing Machinery, New York, NY, USA, 215–

224. https://doi.org/10.1145/1806799.1806833

[13]. Eddie Kohler, Robert Morris, Benjie Chen, John

Jannotti, and M Frans Kaashoek. 2000. The Click

modular router. ACM Transactions on Computer

Systems (TOCS) 18, 3 (2000), 263–297.

[14]. Hongqiang Harry Liu, Xin Wu, Ming Zhang,

Lihua Yuan, Roger Wattenhofer, and David

Maltz. 2013. ZUpdate: Updating Data Center

Networks with Zero Loss. SIGCOMM Comput.

Commun. Rev. 43, 4 (aug 2013), 411–422.

https://doi.org/10.1145/2534169.2486005

[15]. Zaoxing Liu, Antonis Manousis, Gregory

Vorsanger, Vyas Sekar, and Vladimir Braverman.

2016. One Sketch to Rule Them All: Rethinking

Network Flow Monitoring with UnivMon. In

Proceedings of the 2016 ACM SIGCOMM

Conference (SIGCOMM ’16).

[16]. Jedidiah McClurg, Hossein Hojjat, Pavol Černý,

and Nate Foster. 2015. Efficient Synthesis of

Network Updates. SIGPLAN Not. 50, 6 (jun 2015),

196–207.

https://doi.org/10.1145/2813885.2737980

[17]. Rui Miao, Hongyi Zeng, Changhoon Kim,

Jeongkeun Lee, and Minlan Yu. 2017. Silkroad:

Making stateful layer-4 load balancing fast and

cheap using switching asics. In Proceedings of the

Conference of the ACM Special Interest Group on

Data Communication. 15–28.

[18]. Srinivas Narayana, Anirudh Sivaraman, Vikram

Nathan, Prateesh Goyal, Venkat Arun,

Mohammad Alizadeh, Vimalkumar Jeyakumar,

and Changhoon Kim. 2017. Language-directed

hardware design for network performance

monitoring. In Proceedings of the Conference of

Volume 9, Issue 6, November-December-2023 | http://ijsrcseit.com

Sai Teja Nagapuri et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., November-December-2023, 9 (6) : 297-302

302

the ACM Special Interest Group on Data

Communication. 85–98.

[19]. Netronome. 2022. Agilio LX SmartNICs.

https://www.netronome. com/products/agilio-lx/

[20]. R. Pagh and F. F. Rodler. 2004. Cuckoo hashing.

Journal of Algorithms (feb 2004). Issue 51. [22]

Shoumik Palkar, Chang Lan, Sangjin Han, Keon

Jang, Aurojit Panda, Sylvia Ratnasamy, Luigi

Rizzo, and Scott Shenker. 2015. E2: A Framework

for NFV Applications. In Proceedings of the 25th

Symposium on Operating Systems Principles

(SOSP ’15).

[21]. Yiming Qiu, Jiarong Xing, Kuo-Feng Hsu, Qiao

Kang, Ming Liu, Srinivas Narayana, and Ang

Chen. 2021. Automated SmartNIC Offloading

Insights for Network Functions. In Proceedings of

the ACM SIGOPS 28th Symposium on Operating

Systems Principles. 772–787.

[22]. Vyas Sekar, Norbert Egi, Sylvia Ratnasamy,

Michael K. Reiter, and Guangyu Shi. 2012. Design

and Implementation of a Consolidated Middlebox

Architecture. In 9th USENIX Symposium on

Networked Systems Design and Implementation

(NSDI 12).

[23]. Justine Sherry, Shaddi Hasan, Colin Scott, Arvind

Krishnamurthy, Sylvia Ratnasamy, and Vyas

Sekar. 2012. Making Middleboxes Someone Else’s

Problem: Network Processing as a Cloud Service.

In Proceedings of the ACM SIGCOMM 2012

Conference on Applications, Technologies,

Architectures, and Protocols for Computer

Communication (SIGCOMM ’12).

[24]. Armando Solar-Lezama, Rodric Rabbah, Rastislav

Bodík, and Kemal Ebcioğlu. 2005. Programming

by Sketching for Bit-Streaming Programs. In

Proceedings of the 2005 ACM SIGPLAN

Conference on Programming Language Design

and Implementation (Chicago, IL, USA) (PLDI

’05). Association for Computing Machinery, New

York, NY, USA, 281–294.

https://doi.org/10.1145/1065010.1065045

[25]. Nik Sultana, John Sonchack, Hans Giesen, Isaac

Pedisich, Zhaoyang Han, Nishanth Shyamkumar,

Shivani Burad, André DeHon, and Boon Thau

Loo. 2021. Flightplan: Dataplane disaggregation

and placement for p4 programs. In 18th USENIX

Symposium on Networked Systems Design and

Implementation (NSDI 21). 571–592. [28] Balajee

Vamanan, Jahangir Hasan, and T.N. Vijaykumar.

2012. Deadline-Aware Datacenter Tcp (D2TCP).

In Proceedings of the ACM SIGCOMM

[26]. 2012 Conference on Applications, Technologies,

Architectures, and Protocols for Computer

Communication (Helsinki, Finland) (SIGCOMM

’12). Association for Computing Machinery, New

York, NY

Cite this article as :

Sai Teja Nagapuri, Rajasree Tella, Meghana Reddy

Guntireddygari, "Automatic Generation of Network

Function Accelerators Using Component-Based

Synthesis", International Journal of Scientific Research

in Computer Science, Engineering and Information

Technology (IJSRCSEIT), ISSN : 2456-3307, Volume 9,

Issue 6, pp.297-302, November-December-2023.

Available at doi :

https://doi.org/10.32628/CSEIT2390655

Journal URL : https://ijsrcseit.com/CSEIT2390655

