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This study explores how QUIC and TCP manage network congestion and handle 

packet loss. Examining TCP's slow start, congestion avoidance, and loss detection, 

it compares them with QUIC's Cubic algorithm and proactive retransmission. 

Through meticulous experiments, we assess the performance of TCP and QUIC, 

revealing insights into their adaptability to dynamic network conditions. 

Challenges encountered inform potential improvements for both protocols, 

offering valuable insights for network optimization. 
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I. INTRODUCTION 

 

1.1 Background 

In the dynamic landscape of modern networking, the 

demand for rapid and reliable data transmission has 

never been more critical. As our digital ecosystem 

continues to evolve, with an increasing reliance on 

real-time communication, multimedia streaming, and 

cloud-based applications, the efficiency of data 

transport protocols becomes paramount. Two 

prominent protocols, Transmission Control Protocol 

(TCP) and Quick UDP Internet Connections (QUIC), 

play pivotal roles in shaping the dynamics of data 

transmission across the internet. 

1.1.2 Transmission Control Protocol (TCP): 

TCP, a cornerstone of internet communication, has 

long been synonymous with reliable and ordered data 

delivery. Its robust mechanisms for flow control, error 

recovery, and congestion control have enabled the 

seamless transfer of vast amounts of data across 

networks. However, the traditional TCP model, while 

reliable, is not immune to challenges, particularly in 

scenarios where latency and responsiveness are critical. 

The conventional three-way handshake, coupled with 

mechanisms such as slow start and congestion 

avoidance, has laid the foundation for the reliability of 

TCP. Yet, as the internet landscape has evolved, these 

mechanisms face scrutiny for potential bottlenecks and 

inefficiencies. 

1.1.3 Quick UDP Internet Connections (QUIC): 

Enter QUIC, a relatively recent addition to the 

networking scene, introduced to address the 

limitations of TCP. Developed by Google and 

subsequently standardized by the Internet Engineering 

Task Force (IETF), QUIC seeks to redefine data 

transmission by combining the reliability of TCP with 

the speed advantages of User Datagram Protocol (UDP). 

By integrating key features like encryption, 

multiplexing, and improved loss recovery mechanisms 

directly into the transport layer, QUIC aims to reduce 
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latency and enhance overall performance, especially in 

scenarios involving real-time applications and mobile 

networks. 

1.1.4 The Growing Imperative: 

In an era dominated by cloud computing, mobile 

applications, and streaming services, the efficiency and 

reliability of data transmission protocols directly 

impact user experiences. Delays, packet loss, and 

network congestion can translate into diminished 

performance, affecting everything from web browsing 

to video conferencing. As the digital landscape 

continues to expand, the need for protocols that can 

adapt to diverse networking conditions and provide 

both reliability and speed becomes increasingly 

pronounced. 

 

This research delves into the intricate workings of 

congestion control and loss detection in TCP and QUIC, 

shedding light on how these protocols address the 

challenges posed by modern networking demands. By 

examining their strengths, weaknesses, and the 

implications of their respective approaches, this study 

contributes to the ongoing discourse on optimizing 

data transmission for the ever-evolving digital age. 

1.2 Importance of Congestion Control 

The significance of congestion control in maintaining 

network stability and preventing packet loss is crucial 

for the efficient and reliable operation of networked 

systems, including TCP and QUIC protocols. Let's 

explore the importance of congestion control in both 

TCP and QUIC: 

TCP: 

(i) Stability: 

a) Optimizing Resource Utilization: 

Congestion control in TCP helps ensure that network 

resources, such as bandwidth, are utilized optimally. 

By preventing the network from becoming 

oversaturated, TCP helps maintain a stable and 

predictable network environment. 

b) Preventing Congestion Collapse: 

TCP's congestion control mechanisms are designed to 

prevent congestion collapse, a situation where the 

network becomes overwhelmed with traffic, leading to 

severe degradation of performance or even a complete 

breakdown. Congestion control ensures fair resource 

allocation among competing flows. 

(ii) Packet Loss Prevention: 

a) Retransmission and Recovery: 

When congestion leads to packet loss, TCP employs 

retransmission mechanisms to recover lost packets. 

This prevents data loss and ensures the reliable 

delivery of information. 

b) Adaptation to Network Conditions: 

TCP dynamically adjusts its transmission rate based on 

feedback from the network, including 

acknowledgment delays and packet loss indications. 

This adaptability helps prevent excessive congestion 

and minimizes the chances of packet loss. 

QUIC: 

(i) Stability: 

a) Reducing Head-of-Line Blocking: 

QUIC, being a multiplexed and stream-oriented 

protocol, faces challenges related to head-of-line 

blocking. Congestion control in QUIC helps mitigate 

this issue by regulating the flow of data, ensuring that 

the loss of one packet does not affect the transmission 

of other, unrelated streams. 

b) Enhancing Performance in Real-Time 

Communication: 

For applications such as video conferencing and online 

gaming, maintaining low latency is crucial. Congestion 

control in QUIC contributes to stable and low-latency 

connections, enhancing the overall performance of 

real-time communication. 

(ii) Packet Loss Prevention: 

a) Proactive Retransmission: 

QUIC employs proactive retransmission mechanisms, 

allowing it to retransmit lost packets more quickly than 

traditional TCP. This reduces the impact of packet loss 

on the end-to-end latency and enhances the protocol's 

responsiveness. 

b) Cubic Congestion Control: 

QUIC's use of the Cubic congestion control algorithm 

further contributes to packet loss prevention. Cubic is 
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designed to be more adaptive to changing network 

conditions, leading to a more stable and efficient 

congestion control mechanism. 

(iii) Common Ground: 

a) Adaptability to Network Dynamics: 

Both TCP and QUIC aim to adapt to the varying 

conditions of the network. Their congestion control 

mechanisms dynamically respond to changes in 

bandwidth, latency, and other factors, ensuring that 

the network remains stable and efficient under 

different scenarios. 

b) Fairness and Efficiency: 

Both protocols strive to achieve fairness in resource 

allocation among competing flows while maximizing 

overall network efficiency. Congestion control is 

instrumental in achieving a balance that benefits all 

users sharing the network. 

 

1.3 Overview of QUIC and TCP 

QUIC Protocol: 

Multiplexing: QUIC supports multiplexing, allowing 

multiple streams of data to be transmitted concurrently 

over a single connection. This is in contrast to TCP, 

where each stream requires a separate connection. 

Low Latency: QUIC is designed to reduce latency by 

minimizing connection establishment time. It achieves 

this by using a handshake that combines the initial 

connection setup and cryptographic negotiation. 

Adaptive Congestion Control: QUIC employs a 

sophisticated congestion control mechanism, often 

using the Cubic congestion control algorithm. This 

allows it to dynamically adjust the sending rate based 

on network conditions. 

Forward Error Correction (FEC): QUIC includes 

forward error correction to recover lost packets 

without the need for retransmission, improving 

reliability and performance. 

Improved Handshake: QUIC's handshake is optimized 

for faster establishment of secure connections, utilizing 

features such as 0-RTT (zero round-trip time) for 

resuming previous connections. 

Role in Data Transmission: 

QUIC is designed to optimize data transmission for 

modern internet applications, particularly in scenarios 

with high latency or packet loss. Its multiplexing, low-

latency features, and adaptive congestion control make 

it well-suited for applications like web browsing, video 

streaming, and real-time communication. 

 

TCP Protocol: 

Connection-Oriented: TCP establishes a connection 

before data transfer, ensuring reliable and ordered data 

delivery. 

Reliability: TCP guarantees reliable delivery by using 

mechanisms like acknowledgments and 

retransmissions. It ensures that data is received 

correctly and in the correct order. 

Flow Control: TCP includes flow control mechanisms 

to prevent a fast sender from overwhelming a slow 

receiver. It dynamically adjusts the amount of data in 

transit based on the receiver's capacity. 

Congestion Control: TCP uses congestion control 

algorithms to manage the flow of data and prevent 

network congestion. It adjusts the sending rate based 

on network conditions and feedback from the receiver. 

 

Role in Data Transmission: 

TCP plays a crucial role in ensuring reliable and 

ordered communication between devices on the 

Internet. It is widely used for applications that require 

guaranteed delivery of data, such as file transfers, email, 

and traditional web browsing. While TCP provides a 

robust and reliable connection, its design can lead to 

higher latency in certain scenarios, motivating the 

development of protocols like QUIC to address these 

limitations in specific use cases. 

 

 

 

II. Congestion Control in TCP  
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Initialization: congestion_window Starts with an 

initial value of 4, representing the size of the 

congestion window.  

ssthresh: Set to infinity for the initial slow start phase.  

rtt: Represents the initial round-trip time, and alpha is 

the weight factor for Exponentially Weighted Moving 

Average (EWMA).  

Sending Packets: When a packet is sent, it is added to 

the unacked_packets list, and the transmission time is 

simulated.  

Receiving ACKs: Simulates network delay and checks 

if an acknowledgment is received (simulated with a 70% 

ACK rate).  

If ACK is received: Updates the expected_ack value and 

removes acknowledged packets from unacked_packets. 

Calculates the Sample Round-Trip Time (SRTT) using 

EWMA with the formula rtt = (1 - alpha) * rtt + alpha * 

sample_rtt. 

Implements a simple TCP-like congestion control: In 

slow start phase: Increments the congestion_window 

by 1.  

In congestion avoidance phase: Increments the 

congestion_window by 1 / congestion_window. 

If no ACK is received: Simulates a timeout of 0.5 

seconds. Resends packets starting from the lost one and 

resets the congestion_window to 1.  

 

Retransmission: Initiates retransmission by resending 

the lost packet's data.  

 

In summary, this TCP-like congestion control 

mechanism starts with a slow start and transitions to 

congestion avoidance as it adapts to network 

conditions. It incorporates acknowledgment handling, 

RTT estimation, and retransmission in case of packet 

loss. 

III.  Congestion Control in QUIC  

 
 

Initialization: congestion_window: Starts with an 

initial value of 4, representing the size of the 

congestion window. 

ssthresh: Set to infinity for the initial slow start phase. 

cubic_window_scale, cubic_beta, cubic_k: Parameters 

for the Cubic congestion control algorithm. 

cubic_origin_point: Origin point for the Cubic 

algorithm. 

Sending Packets: When a packet is sent, it is added to 

the unacked_packets list, and the transmission time is 

simulated. A task is created to handle the 

acknowledgment for the sent packet. 
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Receiving ACKs: Simulates network delay and checks 

if an acknowledgment is received (simulated with a 70% 

ACK rate). 

If ACK is received: Updates the expected_ack value and 

removes acknowledged packets from unacked_packets. 

Implements congestion control using the Cubic 

algorithm: In slow start phase: Increments the 

congestion_window by 1. 

In congestion avoidance phase: Adjusts the 

congestion_window based on the Cubic algorithm, 

considering elapsed time, origin point, and other 

parameters.  

If no ACK is received: Initiates retransmission of the 

lost packet if loss detection is enabled. 

Retransmission: Initiates retransmission by resending 

the lost packet's data. 

In summary, this QUIC congestion control mechanism 

uses the Cubic algorithm to adapt the congestion 

window based on ACK reception, providing a balance 

between slow start and congestion avoidance. The 

algorithm's parameters influence the rate at which the 

congestion window is adjusted. 

 

IV.  Loss Detection in TCP 

 
Sending Packets: When a packet is sent, it is added to 

the unacked_packets list, and the transmission time is 

recorded. 

Receiving ACKs: Simulates network delay and checks 

if an acknowledgment is received (simulated with a 70% 

ACK rate). 

If an ACK is received: Updates the expected_ack value 

and removes acknowledged packets from 

unacked_packets. Updates the Round-Trip Time (RTT) 

using Exponentially Weighted Moving Average 

(EWMA). Implements a simple TCP-like congestion 

control, adjusting the congestion_window based on 

slow start or congestion avoidance. 

No ACK Received (Timeout Handling): If no ACK is 

received within the simulated timeout period (0.5 

seconds): Initiates a timeout simulation (await 

asyncio.sleep(0.5)). Sets expected_ack to the packet 

number of the lost packet, indicating a need for 

retransmission.  

Removes unacknowledged packets with packet 

numbers greater than or equal to the lost packet from 

unacked_packets.Resets the congestion_window to 1, 

indicating a return to slow start. 

Retransmission: Initiates retransmission by calling the 

retransmit method, which resends the data of the lost 

packet. 

In summary, the loss detection in TCP involves 

monitoring ACK reception, simulating timeouts when 

needed, and triggering retransmissions to recover from 

packet loss. The mechanism incorporates a 

combination of ACK-based updates, timeout handling, 

and congestion control adjustments. 

 

V. Loss Detection in QUIC 

 
Sending Packets: When a packet is sent, it is added to 

the unacked_packets list, and the transmission time is 

simulated. A task is created to handle the 

acknowledgment for the sent packet. 

Receiving ACKs: Simulates network delay and checks 

if an acknowledgment is received (simulated with a 70% 

ACK rate). 

If an ACK is received: Updates the expected_ack value 

and removes acknowledged packets from 

unacked_packets. Implements congestion control 

using the Cubic algorithm, adjusting the 

congestion_window based on slow start or congestion 

avoidance. 
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No ACK Received (Loss Detection) and Retransmission: 

If no ACK is received within the simulated ACK rate, 

If loss detection is enabled (self.loss_detection_enabled 

is True), it initiates retransmission by creating a task to 

call the retransmit method. 

Retransmission Logic in retransmit Method: Initiates 

retransmission by calling the send_packet method to 

resend the data of the lost packet. 

In summary, the loss detection mechanism in QUIC 

involves monitoring ACK reception, and in case of 

missing ACKs, it provides the option to trigger 

retransmission of unacknowledged packets. The loss 

detection is part of the receive_ack method in the 

QuicConnection class. The retransmission process is 

handled by the retransmit method, ensuring reliability 

in the face of packet loss. 

 

VI.  Results and Analysis 

 

In the realm of modern networking protocols, TCP 

(Transmission Control Protocol) and QUIC (Quick 

UDP Internet Connections) stand out as key players. 

This theoretical presentation aims to shed light on the 

experimental results obtained through a comparative 

analysis of TCP and QUIC. We delve into the 

intricacies of congestion control, loss detection, and 

overall performance to gain insights into the efficiency 

of these protocols. 

Experimental Setup 

Test Environment 

The experiments were conducted in a simulated 

networking environment using asyncio and Python, 

replicating typical scenarios encountered in real-world 

internet communication. 

Metrics 

1. Congestion Control: 

TCP: Utilizes a simple TCP-like congestion control 

mechanism, adjusting the congestion window during 

slow start and congestion avoidance phases. 

QUIC: Implements the Cubic algorithm for congestion 

control, dynamically adjusting the congestion window 

based on elapsed time. 

2. Loss Detection: 

TCP : Employs a timeout-based loss detection 

mechanism with retransmission of unacknowledged 

packets. 

QUIC : Incorporates an ACK-based loss detection 

mechanism with optional retransmission. 

Congestion Control Performance 

TCP : The TCP protocol exhibits a traditional approach 

to congestion control, characterized by a gradual 

increase in the congestion window during the slow 

start phase and subsequent adjustments in the 

congestion avoidance phase. The algorithm relies on 

the round-trip time (RTT) and dynamically adjusts the 

congestion window to balance network utilization and 

responsiveness. 

QUIC : In contrast, QUIC adopts the Cubic algorithm 

for congestion control, introducing a more 

sophisticated approach. The cubic_window_scale, 

cubic_beta, cubic_k, and cubic_origin_point 

parameters play pivotal roles in dynamically shaping 

the congestion window. The Cubic algorithm aims to 

achieve higher throughput and fairness in network 

resource utilization. 

Loss Detection Mechanisms 

TCP : TCP relies on timeout-based loss detection. If an 

acknowledgment is not received within a specified 

time frame, the protocol initiates a retransmission of 

unacknowledged packets. This approach is effective 

but may lead to suboptimal performance in dynamic 

and fluctuating network conditions. 

QUIC : QUIC employs an ACK-based loss detection 

mechanism. In the event of missing acknowledgments, 

QUIC provides the flexibility to trigger retransmission 

selectively. This approach enhances adaptability to 

varying network scenarios and contributes to overall 

reliability. 

Comparative Analysis 

Congestion Control Efficiency 

The experimental results reveal that QUIC, with its 

Cubic algorithm, demonstrates a more adaptive and 

responsive congestion control mechanism compared to 

TCP. The Cubic algorithm's ability to dynamically 
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adjust the congestion window contributes to improved 

throughput and efficient network resource utilization. 

Loss Detection and Retransmission 

In loss detection, QUIC's ACK-based mechanism 

proves to be advantageous in scenarios with varying 

network conditions. It offers a nuanced approach to 

retransmission, potentially reducing unnecessary 

retransmissions and enhancing protocol efficiency. 

TCP's timeout-based approach, while robust, may 

result in suboptimal performance in dynamic 

environments. 

 

The analysis of experimental results highlights the 

strengths and weaknesses of TCP and QUIC in 

congestion control and loss detection. QUIC, with its 

Cubic algorithm and ACK-based loss detection, 

demonstrates a promising paradigm shift in enhancing 

performance and efficiency in internet communication. 

The insights gained from this comparative analysis 

contribute to the ongoing discourse on the evolution of 

networking protocols in the digital era. 

 

VII. Challenges Faced in Implementing Congestion 

Control 

1. Dynamic Network Conditions 

Challenge: Adapting congestion control to varying 

network conditions poses a significant challenge. 

Network dynamics, such as changes in latency, 

bandwidth, and packet loss rates, require constant 

adjustments for optimal performance. 

Implication: Inconsistent or delayed responses to 

dynamic changes may lead to suboptimal throughput 

and responsiveness. 

2. Cross-Protocol Compatibility 

Challenge: Ensuring compatibility across diverse 

networking protocols adds complexity. Different 

protocols may have unique congestion control 

mechanisms, making it challenging to achieve seamless 

interoperability. 

Implication: Inefficiencies and performance 

bottlenecks may arise when integrating systems using 

disparate congestion control strategies. 

3. Scalability 

Challenge: Implementing congestion control 

mechanisms that scale effectively with the growing 

size and complexity of modern networks is a daunting 

task. Scalability challenges emerge when attempting to 

maintain performance across a large number of 

network nodes and devices. 

Implication: Network congestion may become more 

challenging to manage as the scale of networks 

increases, potentially leading to congestion collapse. 

 

Limitations of Current Approaches 

1. Reaction to Bursty Traffic 

Limitation: Current congestion control approaches 

may struggle to effectively handle bursty traffic 

patterns, where short periods of intense data 

transmission are followed by periods of inactivity. 

Impact: Inefficient reactions to bursty traffic may 

result in underutilization of available bandwidth or, 

conversely, network congestion during peak periods. 

2. Fairness in Resource Allocation 

Limitation: Ensuring fair resource allocation among 

different network flows remains a challenge. Existing 

congestion control mechanisms may not always 

guarantee equitable distribution of resources, leading 

to potential disparities among users. 

Impact: Unfair resource allocation can result in a 

suboptimal user experience and may hinder the 

principles of network neutrality. 

3. Real-time Applications 

Limitation: Congestion control mechanisms may 

struggle to meet the demands of real-time applications, 

such as video streaming and online gaming, where low 

latency is crucial. 

Impact: Suboptimal performance in real-time 

applications can lead to buffering, latency issues, and a 

degraded user experience. 

Areas for Improvement 

1. Machine Learning Integration 

Opportunity: Exploring the integration of machine 

learning algorithms for congestion control offers the 
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potential for adaptive and predictive adjustments based 

on historical network data. 

Benefit: Machine learning models can enhance the 

ability to predict and react to network conditions, 

leading to more intelligent and dynamic congestion 

control. 

2. Protocol-Agnostic Approaches 

Opportunity: Developing congestion control 

mechanisms that are agnostic to specific transport 

protocols could enhance interoperability and simplify 

integration across diverse networking environments. 

Benefit: Protocol-agnostic approaches facilitate 

seamless communication between systems using 

different transport protocols. 

3. Edge Computing Considerations 

Opportunity: Considering the unique challenges of 

edge computing environments, tailoring congestion 

control mechanisms to the edge can optimize 

performance for distributed and edge-centric 

applications. 

Benefit: Edge-specific congestion control can improve 

the efficiency of data transfer in edge computing 

scenarios, reducing latency and enhancing overall 

responsiveness. 

 4. Collaborative Congestion Control 

Opportunity: Exploring collaborative congestion 

control mechanisms where network nodes actively 

communicate and coordinate congestion management 

can lead to more efficient resource utilization. 

Benefit: Collaborative approaches foster better 

coordination among network elements, reducing the 

likelihood of congestion collapse and improving 

overall network performance. 

 

In addressing these challenges, overcoming current 

limitations, and exploring areas for improvement, the 

field of congestion control can evolve to meet the 

demands of increasingly complex and dynamic 

networking environments. These considerations are 

crucial for enhancing the reliability, efficiency, and 

fairness of congestion control mechanisms in modern 

communication networks. 

VIII. Conclusion  

 

In conclusion, the study provides valuable insights into 

congestion control mechanisms in TCP and QUIC. The 

exploration of QUIC's Cubic algorithm, comparison of 

loss detection methods, and understanding of protocol-

specific approaches contribute to the discourse on 

network protocol efficiency. Future research should 

focus on refining the Cubic algorithm, integrating 

machine learning for adaptability, fostering cross-

protocol interoperability, conducting real-world 

testing, and exploring collaborative congestion control 

models. These efforts aim to enhance congestion 

control's adaptability, scalability, and overall 

performance in evolving networking landscapes. 
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