
Copyright © 2023 The Author(s): This is an open-access article distributed under the terms of the Creative

Commons Attribution 4.0 International License (CC BY-NC 4.0) which permits unrestricted use, distribution, and

reproduction in any medium for non-commercial use provided the original author and source are credited.

International Journal of Scientific Research in Computer Science, Engineering and

Information Technology

ISSN : 2456-3307

Available Online at : www.ijsrcseit.com

doi : https://doi.org/10.32628/CSEIT2390664

15

\From Slow Start to Warp Speed: Congestion Control Tales of QUIC and TCP
Vaishnavi Gandhi, Guna Khambhammettu, Ritikaa Kailas

New Jersey Institute of Technology, Newark, New Jersey, USA

A R T I C L E I N F O

A B S T R A C T

Article History:

Accepted: 15 Dec 2023

Published: 03 Jan 2024

This study explores how QUIC and TCP manage network congestion and handle

packet loss. Examining TCP's slow start, congestion avoidance, and loss detection,

it compares them with QUIC's Cubic algorithm and proactive retransmission.

Through meticulous experiments, we assess the performance of TCP and QUIC,

revealing insights into their adaptability to dynamic network conditions.

Challenges encountered inform potential improvements for both protocols,

offering valuable insights for network optimization.

Keywords : Network Optimization, Dynamic Network Conditions, TCP, QUIC,

Congestion Control, Loss Detection

Publication Issue

Volume 10, Issue 1

January-February-2024

Page Number

15-23

I. INTRODUCTION

1.1 Background

In the dynamic landscape of modern networking, the

demand for rapid and reliable data transmission has

never been more critical. As our digital ecosystem

continues to evolve, with an increasing reliance on

real-time communication, multimedia streaming, and

cloud-based applications, the efficiency of data

transport protocols becomes paramount. Two

prominent protocols, Transmission Control Protocol

(TCP) and Quick UDP Internet Connections (QUIC),

play pivotal roles in shaping the dynamics of data

transmission across the internet.

1.1.2 Transmission Control Protocol (TCP):

TCP, a cornerstone of internet communication, has

long been synonymous with reliable and ordered data

delivery. Its robust mechanisms for flow control, error

recovery, and congestion control have enabled the

seamless transfer of vast amounts of data across

networks. However, the traditional TCP model, while

reliable, is not immune to challenges, particularly in

scenarios where latency and responsiveness are critical.

The conventional three-way handshake, coupled with

mechanisms such as slow start and congestion

avoidance, has laid the foundation for the reliability of

TCP. Yet, as the internet landscape has evolved, these

mechanisms face scrutiny for potential bottlenecks and

inefficiencies.

1.1.3 Quick UDP Internet Connections (QUIC):

Enter QUIC, a relatively recent addition to the

networking scene, introduced to address the

limitations of TCP. Developed by Google and

subsequently standardized by the Internet Engineering

Task Force (IETF), QUIC seeks to redefine data

transmission by combining the reliability of TCP with

the speed advantages of User Datagram Protocol (UDP).

By integrating key features like encryption,

multiplexing, and improved loss recovery mechanisms

directly into the transport layer, QUIC aims to reduce

Volume 10, Issue 1, January-February-2024 | http://ijsrcseit.com

Vaishnavi Gandhi et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., January-February-2024, 10 (1) : 15-23

16

latency and enhance overall performance, especially in

scenarios involving real-time applications and mobile

networks.

1.1.4 The Growing Imperative:

In an era dominated by cloud computing, mobile

applications, and streaming services, the efficiency and

reliability of data transmission protocols directly

impact user experiences. Delays, packet loss, and

network congestion can translate into diminished

performance, affecting everything from web browsing

to video conferencing. As the digital landscape

continues to expand, the need for protocols that can

adapt to diverse networking conditions and provide

both reliability and speed becomes increasingly

pronounced.

This research delves into the intricate workings of

congestion control and loss detection in TCP and QUIC,

shedding light on how these protocols address the

challenges posed by modern networking demands. By

examining their strengths, weaknesses, and the

implications of their respective approaches, this study

contributes to the ongoing discourse on optimizing

data transmission for the ever-evolving digital age.

1.2 Importance of Congestion Control

The significance of congestion control in maintaining

network stability and preventing packet loss is crucial

for the efficient and reliable operation of networked

systems, including TCP and QUIC protocols. Let's

explore the importance of congestion control in both

TCP and QUIC:

TCP:

(i) Stability:

a) Optimizing Resource Utilization:

Congestion control in TCP helps ensure that network

resources, such as bandwidth, are utilized optimally.

By preventing the network from becoming

oversaturated, TCP helps maintain a stable and

predictable network environment.

b) Preventing Congestion Collapse:

TCP's congestion control mechanisms are designed to

prevent congestion collapse, a situation where the

network becomes overwhelmed with traffic, leading to

severe degradation of performance or even a complete

breakdown. Congestion control ensures fair resource

allocation among competing flows.

(ii) Packet Loss Prevention:

a) Retransmission and Recovery:

When congestion leads to packet loss, TCP employs

retransmission mechanisms to recover lost packets.

This prevents data loss and ensures the reliable

delivery of information.

b) Adaptation to Network Conditions:

TCP dynamically adjusts its transmission rate based on

feedback from the network, including

acknowledgment delays and packet loss indications.

This adaptability helps prevent excessive congestion

and minimizes the chances of packet loss.

QUIC:

(i) Stability:

a) Reducing Head-of-Line Blocking:

QUIC, being a multiplexed and stream-oriented

protocol, faces challenges related to head-of-line

blocking. Congestion control in QUIC helps mitigate

this issue by regulating the flow of data, ensuring that

the loss of one packet does not affect the transmission

of other, unrelated streams.

b) Enhancing Performance in Real-Time

Communication:

For applications such as video conferencing and online

gaming, maintaining low latency is crucial. Congestion

control in QUIC contributes to stable and low-latency

connections, enhancing the overall performance of

real-time communication.

(ii) Packet Loss Prevention:

a) Proactive Retransmission:

QUIC employs proactive retransmission mechanisms,

allowing it to retransmit lost packets more quickly than

traditional TCP. This reduces the impact of packet loss

on the end-to-end latency and enhances the protocol's

responsiveness.

b) Cubic Congestion Control:

QUIC's use of the Cubic congestion control algorithm

further contributes to packet loss prevention. Cubic is

Volume 10, Issue 1, January-February-2024 | http://ijsrcseit.com

Vaishnavi Gandhi et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., January-February-2024, 10 (1) : 15-23

17

designed to be more adaptive to changing network

conditions, leading to a more stable and efficient

congestion control mechanism.

(iii) Common Ground:

a) Adaptability to Network Dynamics:

Both TCP and QUIC aim to adapt to the varying

conditions of the network. Their congestion control

mechanisms dynamically respond to changes in

bandwidth, latency, and other factors, ensuring that

the network remains stable and efficient under

different scenarios.

b) Fairness and Efficiency:

Both protocols strive to achieve fairness in resource

allocation among competing flows while maximizing

overall network efficiency. Congestion control is

instrumental in achieving a balance that benefits all

users sharing the network.

1.3 Overview of QUIC and TCP

QUIC Protocol:

Multiplexing: QUIC supports multiplexing, allowing

multiple streams of data to be transmitted concurrently

over a single connection. This is in contrast to TCP,

where each stream requires a separate connection.

Low Latency: QUIC is designed to reduce latency by

minimizing connection establishment time. It achieves

this by using a handshake that combines the initial

connection setup and cryptographic negotiation.

Adaptive Congestion Control: QUIC employs a

sophisticated congestion control mechanism, often

using the Cubic congestion control algorithm. This

allows it to dynamically adjust the sending rate based

on network conditions.

Forward Error Correction (FEC): QUIC includes

forward error correction to recover lost packets

without the need for retransmission, improving

reliability and performance.

Improved Handshake: QUIC's handshake is optimized

for faster establishment of secure connections, utilizing

features such as 0-RTT (zero round-trip time) for

resuming previous connections.

Role in Data Transmission:

QUIC is designed to optimize data transmission for

modern internet applications, particularly in scenarios

with high latency or packet loss. Its multiplexing, low-

latency features, and adaptive congestion control make

it well-suited for applications like web browsing, video

streaming, and real-time communication.

TCP Protocol:

Connection-Oriented: TCP establishes a connection

before data transfer, ensuring reliable and ordered data

delivery.

Reliability: TCP guarantees reliable delivery by using

mechanisms like acknowledgments and

retransmissions. It ensures that data is received

correctly and in the correct order.

Flow Control: TCP includes flow control mechanisms

to prevent a fast sender from overwhelming a slow

receiver. It dynamically adjusts the amount of data in

transit based on the receiver's capacity.

Congestion Control: TCP uses congestion control

algorithms to manage the flow of data and prevent

network congestion. It adjusts the sending rate based

on network conditions and feedback from the receiver.

Role in Data Transmission:

TCP plays a crucial role in ensuring reliable and

ordered communication between devices on the

Internet. It is widely used for applications that require

guaranteed delivery of data, such as file transfers, email,

and traditional web browsing. While TCP provides a

robust and reliable connection, its design can lead to

higher latency in certain scenarios, motivating the

development of protocols like QUIC to address these

limitations in specific use cases.

II. Congestion Control in TCP

Volume 10, Issue 1, January-February-2024 | http://ijsrcseit.com

Vaishnavi Gandhi et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., January-February-2024, 10 (1) : 15-23

18

Initialization: congestion_window Starts with an

initial value of 4, representing the size of the

congestion window.

ssthresh: Set to infinity for the initial slow start phase.

rtt: Represents the initial round-trip time, and alpha is

the weight factor for Exponentially Weighted Moving

Average (EWMA).

Sending Packets: When a packet is sent, it is added to

the unacked_packets list, and the transmission time is

simulated.

Receiving ACKs: Simulates network delay and checks

if an acknowledgment is received (simulated with a 70%

ACK rate).

If ACK is received: Updates the expected_ack value and

removes acknowledged packets from unacked_packets.

Calculates the Sample Round-Trip Time (SRTT) using

EWMA with the formula rtt = (1 - alpha) * rtt + alpha *

sample_rtt.

Implements a simple TCP-like congestion control: In

slow start phase: Increments the congestion_window

by 1.

In congestion avoidance phase: Increments the

congestion_window by 1 / congestion_window.

If no ACK is received: Simulates a timeout of 0.5

seconds. Resends packets starting from the lost one and

resets the congestion_window to 1.

Retransmission: Initiates retransmission by resending

the lost packet's data.

In summary, this TCP-like congestion control

mechanism starts with a slow start and transitions to

congestion avoidance as it adapts to network

conditions. It incorporates acknowledgment handling,

RTT estimation, and retransmission in case of packet

loss.

III. Congestion Control in QUIC

Initialization: congestion_window: Starts with an

initial value of 4, representing the size of the

congestion window.

ssthresh: Set to infinity for the initial slow start phase.

cubic_window_scale, cubic_beta, cubic_k: Parameters

for the Cubic congestion control algorithm.

cubic_origin_point: Origin point for the Cubic

algorithm.

Sending Packets: When a packet is sent, it is added to

the unacked_packets list, and the transmission time is

simulated. A task is created to handle the

acknowledgment for the sent packet.

Volume 10, Issue 1, January-February-2024 | http://ijsrcseit.com

Vaishnavi Gandhi et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., January-February-2024, 10 (1) : 15-23

19

Receiving ACKs: Simulates network delay and checks

if an acknowledgment is received (simulated with a 70%

ACK rate).

If ACK is received: Updates the expected_ack value and

removes acknowledged packets from unacked_packets.

Implements congestion control using the Cubic

algorithm: In slow start phase: Increments the

congestion_window by 1.

In congestion avoidance phase: Adjusts the

congestion_window based on the Cubic algorithm,

considering elapsed time, origin point, and other

parameters.

If no ACK is received: Initiates retransmission of the

lost packet if loss detection is enabled.

Retransmission: Initiates retransmission by resending

the lost packet's data.

In summary, this QUIC congestion control mechanism

uses the Cubic algorithm to adapt the congestion

window based on ACK reception, providing a balance

between slow start and congestion avoidance. The

algorithm's parameters influence the rate at which the

congestion window is adjusted.

IV. Loss Detection in TCP

Sending Packets: When a packet is sent, it is added to

the unacked_packets list, and the transmission time is

recorded.

Receiving ACKs: Simulates network delay and checks

if an acknowledgment is received (simulated with a 70%

ACK rate).

If an ACK is received: Updates the expected_ack value

and removes acknowledged packets from

unacked_packets. Updates the Round-Trip Time (RTT)

using Exponentially Weighted Moving Average

(EWMA). Implements a simple TCP-like congestion

control, adjusting the congestion_window based on

slow start or congestion avoidance.

No ACK Received (Timeout Handling): If no ACK is

received within the simulated timeout period (0.5

seconds): Initiates a timeout simulation (await

asyncio.sleep(0.5)). Sets expected_ack to the packet

number of the lost packet, indicating a need for

retransmission.

Removes unacknowledged packets with packet

numbers greater than or equal to the lost packet from

unacked_packets.Resets the congestion_window to 1,

indicating a return to slow start.

Retransmission: Initiates retransmission by calling the

retransmit method, which resends the data of the lost

packet.

In summary, the loss detection in TCP involves

monitoring ACK reception, simulating timeouts when

needed, and triggering retransmissions to recover from

packet loss. The mechanism incorporates a

combination of ACK-based updates, timeout handling,

and congestion control adjustments.

V. Loss Detection in QUIC

Sending Packets: When a packet is sent, it is added to

the unacked_packets list, and the transmission time is

simulated. A task is created to handle the

acknowledgment for the sent packet.

Receiving ACKs: Simulates network delay and checks

if an acknowledgment is received (simulated with a 70%

ACK rate).

If an ACK is received: Updates the expected_ack value

and removes acknowledged packets from

unacked_packets. Implements congestion control

using the Cubic algorithm, adjusting the

congestion_window based on slow start or congestion

avoidance.

Volume 10, Issue 1, January-February-2024 | http://ijsrcseit.com

Vaishnavi Gandhi et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., January-February-2024, 10 (1) : 15-23

20

No ACK Received (Loss Detection) and Retransmission:

If no ACK is received within the simulated ACK rate,

If loss detection is enabled (self.loss_detection_enabled

is True), it initiates retransmission by creating a task to

call the retransmit method.

Retransmission Logic in retransmit Method: Initiates

retransmission by calling the send_packet method to

resend the data of the lost packet.

In summary, the loss detection mechanism in QUIC

involves monitoring ACK reception, and in case of

missing ACKs, it provides the option to trigger

retransmission of unacknowledged packets. The loss

detection is part of the receive_ack method in the

QuicConnection class. The retransmission process is

handled by the retransmit method, ensuring reliability

in the face of packet loss.

VI. Results and Analysis

In the realm of modern networking protocols, TCP

(Transmission Control Protocol) and QUIC (Quick

UDP Internet Connections) stand out as key players.

This theoretical presentation aims to shed light on the

experimental results obtained through a comparative

analysis of TCP and QUIC. We delve into the

intricacies of congestion control, loss detection, and

overall performance to gain insights into the efficiency

of these protocols.

Experimental Setup

Test Environment

The experiments were conducted in a simulated

networking environment using asyncio and Python,

replicating typical scenarios encountered in real-world

internet communication.

Metrics

1. Congestion Control:

TCP: Utilizes a simple TCP-like congestion control

mechanism, adjusting the congestion window during

slow start and congestion avoidance phases.

QUIC: Implements the Cubic algorithm for congestion

control, dynamically adjusting the congestion window

based on elapsed time.

2. Loss Detection:

TCP : Employs a timeout-based loss detection

mechanism with retransmission of unacknowledged

packets.

QUIC : Incorporates an ACK-based loss detection

mechanism with optional retransmission.

Congestion Control Performance

TCP : The TCP protocol exhibits a traditional approach

to congestion control, characterized by a gradual

increase in the congestion window during the slow

start phase and subsequent adjustments in the

congestion avoidance phase. The algorithm relies on

the round-trip time (RTT) and dynamically adjusts the

congestion window to balance network utilization and

responsiveness.

QUIC : In contrast, QUIC adopts the Cubic algorithm

for congestion control, introducing a more

sophisticated approach. The cubic_window_scale,

cubic_beta, cubic_k, and cubic_origin_point

parameters play pivotal roles in dynamically shaping

the congestion window. The Cubic algorithm aims to

achieve higher throughput and fairness in network

resource utilization.

Loss Detection Mechanisms

TCP : TCP relies on timeout-based loss detection. If an

acknowledgment is not received within a specified

time frame, the protocol initiates a retransmission of

unacknowledged packets. This approach is effective

but may lead to suboptimal performance in dynamic

and fluctuating network conditions.

QUIC : QUIC employs an ACK-based loss detection

mechanism. In the event of missing acknowledgments,

QUIC provides the flexibility to trigger retransmission

selectively. This approach enhances adaptability to

varying network scenarios and contributes to overall

reliability.

Comparative Analysis

Congestion Control Efficiency

The experimental results reveal that QUIC, with its

Cubic algorithm, demonstrates a more adaptive and

responsive congestion control mechanism compared to

TCP. The Cubic algorithm's ability to dynamically

Volume 10, Issue 1, January-February-2024 | http://ijsrcseit.com

Vaishnavi Gandhi et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., January-February-2024, 10 (1) : 15-23

21

adjust the congestion window contributes to improved

throughput and efficient network resource utilization.

Loss Detection and Retransmission

In loss detection, QUIC's ACK-based mechanism

proves to be advantageous in scenarios with varying

network conditions. It offers a nuanced approach to

retransmission, potentially reducing unnecessary

retransmissions and enhancing protocol efficiency.

TCP's timeout-based approach, while robust, may

result in suboptimal performance in dynamic

environments.

The analysis of experimental results highlights the

strengths and weaknesses of TCP and QUIC in

congestion control and loss detection. QUIC, with its

Cubic algorithm and ACK-based loss detection,

demonstrates a promising paradigm shift in enhancing

performance and efficiency in internet communication.

The insights gained from this comparative analysis

contribute to the ongoing discourse on the evolution of

networking protocols in the digital era.

VII. Challenges Faced in Implementing Congestion

Control

1. Dynamic Network Conditions

Challenge: Adapting congestion control to varying

network conditions poses a significant challenge.

Network dynamics, such as changes in latency,

bandwidth, and packet loss rates, require constant

adjustments for optimal performance.

Implication: Inconsistent or delayed responses to

dynamic changes may lead to suboptimal throughput

and responsiveness.

2. Cross-Protocol Compatibility

Challenge: Ensuring compatibility across diverse

networking protocols adds complexity. Different

protocols may have unique congestion control

mechanisms, making it challenging to achieve seamless

interoperability.

Implication: Inefficiencies and performance

bottlenecks may arise when integrating systems using

disparate congestion control strategies.

3. Scalability

Challenge: Implementing congestion control

mechanisms that scale effectively with the growing

size and complexity of modern networks is a daunting

task. Scalability challenges emerge when attempting to

maintain performance across a large number of

network nodes and devices.

Implication: Network congestion may become more

challenging to manage as the scale of networks

increases, potentially leading to congestion collapse.

Limitations of Current Approaches

1. Reaction to Bursty Traffic

Limitation: Current congestion control approaches

may struggle to effectively handle bursty traffic

patterns, where short periods of intense data

transmission are followed by periods of inactivity.

Impact: Inefficient reactions to bursty traffic may

result in underutilization of available bandwidth or,

conversely, network congestion during peak periods.

2. Fairness in Resource Allocation

Limitation: Ensuring fair resource allocation among

different network flows remains a challenge. Existing

congestion control mechanisms may not always

guarantee equitable distribution of resources, leading

to potential disparities among users.

Impact: Unfair resource allocation can result in a

suboptimal user experience and may hinder the

principles of network neutrality.

3. Real-time Applications

Limitation: Congestion control mechanisms may

struggle to meet the demands of real-time applications,

such as video streaming and online gaming, where low

latency is crucial.

Impact: Suboptimal performance in real-time

applications can lead to buffering, latency issues, and a

degraded user experience.

Areas for Improvement

1. Machine Learning Integration

Opportunity: Exploring the integration of machine

learning algorithms for congestion control offers the

Volume 10, Issue 1, January-February-2024 | http://ijsrcseit.com

Vaishnavi Gandhi et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., January-February-2024, 10 (1) : 15-23

22

potential for adaptive and predictive adjustments based

on historical network data.

Benefit: Machine learning models can enhance the

ability to predict and react to network conditions,

leading to more intelligent and dynamic congestion

control.

2. Protocol-Agnostic Approaches

Opportunity: Developing congestion control

mechanisms that are agnostic to specific transport

protocols could enhance interoperability and simplify

integration across diverse networking environments.

Benefit: Protocol-agnostic approaches facilitate

seamless communication between systems using

different transport protocols.

3. Edge Computing Considerations

Opportunity: Considering the unique challenges of

edge computing environments, tailoring congestion

control mechanisms to the edge can optimize

performance for distributed and edge-centric

applications.

Benefit: Edge-specific congestion control can improve

the efficiency of data transfer in edge computing

scenarios, reducing latency and enhancing overall

responsiveness.

 4. Collaborative Congestion Control

Opportunity: Exploring collaborative congestion

control mechanisms where network nodes actively

communicate and coordinate congestion management

can lead to more efficient resource utilization.

Benefit: Collaborative approaches foster better

coordination among network elements, reducing the

likelihood of congestion collapse and improving

overall network performance.

In addressing these challenges, overcoming current

limitations, and exploring areas for improvement, the

field of congestion control can evolve to meet the

demands of increasingly complex and dynamic

networking environments. These considerations are

crucial for enhancing the reliability, efficiency, and

fairness of congestion control mechanisms in modern

communication networks.

VIII. Conclusion

In conclusion, the study provides valuable insights into

congestion control mechanisms in TCP and QUIC. The

exploration of QUIC's Cubic algorithm, comparison of

loss detection methods, and understanding of protocol-

specific approaches contribute to the discourse on

network protocol efficiency. Future research should

focus on refining the Cubic algorithm, integrating

machine learning for adaptability, fostering cross-

protocol interoperability, conducting real-world

testing, and exploring collaborative congestion control

models. These efforts aim to enhance congestion

control's adaptability, scalability, and overall

performance in evolving networking landscapes.

IX. REFERENCES

[1]. Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A

UDP-Based Multiplexed and Secure Transport",

RFC 9000, DOI 10.17487/RFC9000, May 2021,

<https://www.rfc-editor.org/info/rfc9000>.

[2]. [FACK] Mathis, M. and J. Mahdavi, "Forward

acknowledgement: Refining TCP Congestion

Control", ACM SIGCOMM Computer

Communication Review, DOI

10.1145/248157.248181, August 1996,

<https://doi.org/10.1145/248157.248181>.

[3]. [RETRANSMISSION] Karn, P. and C. Partridge,

"Improving Round-Trip Time Estimates in

Reliable Transport Protocols", ACM

Transactions on Computer Systems, DOI

10.1145/118544.118549, November 1991,

<https://doi.org/10.1145/118544.118549>.

[4]. [RFC2018] Mathis, M., Mahdavi, J., Floyd, S.,

and A. Romanow, "TCP Selective

Acknowledgment Options", RFC 2018, DOI

10.17487/RFC2018, October 1996,

<https://www.rfc-editor.org/info/rfc2018>.

[5]. https://storage.googleapis.com/pub-tools-

public-publication-

Volume 10, Issue 1, January-February-2024 | http://ijsrcseit.com

Vaishnavi Gandhi et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., January-February-2024, 10 (1) : 15-23

23

data/pdf/8b935debf13bd176a08326738f5f88ad1

15a071e.pdf

[6]. [RFC8985] Cheng, Y., Cardwell, N., Dukkipati,

N., and P. Jha, "The RACK-TLP Loss Detection

Algorithm for TCP", RFC 8985, DOI

10.17487/RFC8985, February 2021,

<https://www.rfc-editor.org/info/rfc8985>.

Cite this article as :

Vaishnavi Gandhi, Guna Khambhammetu, Ritikaa

Kailaas, "From Slow Start to Warp Speed : Congestion

Control Tales of QUIC and TCP", International Journal

of Scientific Research in Computer Science,

Engineering and Information Technology (IJSRCSEIT),

ISSN : 2456-3307, Volume 1, Issue 1, pp.15-23,

January-February-2024. Available at doi :

https://doi.org/10.32628/CSEIT2390664

Journal URL : https://ijsrcseit.com/CSEIT2390664

