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 Breast cancer remains a significant global health challenge, necessitating the 

development of advanced image processing techniques to enhance early detection and 

improve patient outcomes. In this study, we propose a novel approach utilizing multi-

feature extraction methods for breast cancer detection, aiming to leverage diverse 

imaging characteristics to enhance accuracy and reliability. Our method incorporates a 

comprehensive set of features extracted from mammographic images, including texture, 

shape, intensity, and spatial information. By integrating these diverse features, our 

approach aims to capture the complex and subtle patterns indicative of breast cancer, 

thus enabling more accurate detection compared to traditional methods. To extract 

texture features, we employ advanced techniques such as gray-level co-occurrence 

matrices (GLCM) and local binary patterns (LBP), which enable the characterization of 

texture variations within mammographic images. Additionally, shape features are 

extracted using techniques such as contour analysis and geometric descriptors, providing 

valuable information about the morphological characteristics of lesions. Furthermore, 

intensity-based features are extracted to capture variations in pixel intensity 

distribution, while spatial features are computed to analyze the spatial arrangement of 

image structures. By combining these different types of features, our approach aims to 

provide a more comprehensive representation of the underlying tissue properties, 

facilitating more accurate discrimination between benign and malignant lesions. We 

evaluate the performance of our proposed method using a dataset comprising 

mammographic images from diverse patient populations. Experimental results 

demonstrate that our approach achieves superior performance compared to existing 

techniques, with high sensitivity and specificity in detecting breast cancer lesions. 
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I. INTRODUCTION 

 

Breast cancer is one of the most prevalent forms of 

cancer among women globally, with early detection 

being crucial for successful treatment and improved 

patient outcomes. Mammography, the primary 

imaging modality for breast cancer screening, plays a 

pivotal role in detecting abnormalities in breast tissue 

at an early stage. However, the interpretation of 

mammographic images can be challenging due to the 

complex and heterogeneous nature of breast tissue and 

the potential overlap of benign and malignant features. 

As a result, there is a growing need for advanced image 

processing techniques to enhance the accuracy and 

reliability of breast cancer detection. Conventional 

approaches to breast cancer detection typically rely on 

manual interpretation of mammographic images by 

radiologists, which can be time-consuming and 

subjective. Moreover, these methods may lack the 

sensitivity to detect subtle abnormalities, particularly 

in cases where lesions are small or obscured by dense 

breast tissue. To address these limitations, researchers 

have increasingly turned to advanced image processing 

techniques, leveraging computational methods to 

extract and analyze quantitative features from 

mammographic images. One promising approach is the 

use of multi-feature extraction methods, which involve 

the computation of a diverse set of features from 

mammographic images, including texture, shape, 

intensity, and spatial information. By capturing various 

aspects of the underlying tissue properties, multi-

feature extraction methods aim to improve the 

discrimination between benign and malignant lesions, 

thereby enhancing the overall performance of breast 

cancer detection algorithms. 

 

Texture analysis is a key component of multi-feature 

extraction methods, focusing on the spatial 

arrangement of pixel intensities within 

mammographic images. Techniques such as gray-level 

co-occurrence matrices (GLCM) and local binary 

patterns (LBP) are commonly employed to quantify 

textural variations associated with breast lesions. These 

methods enable the characterization of subtle texture 

patterns that may be indicative of malignancy, thereby 

enhancing the sensitivity of breast cancer detection 

algorithms. Shape features represent another 

important aspect of multi-feature extraction, providing 

information about the geometric properties of breast 

lesions. By analyzing the contour and morphological 

characteristics of lesions, shape features can help 

distinguish between different types of abnormalities 

and aid in the differentiation between benign and 

malignant lesions. Techniques such as contour analysis 

and geometric descriptors are commonly used to 

extract shape features from mammographic images, 

enabling the quantification of lesion shape and size. 

Intensity-based features play a critical role in capturing 

variations in pixel intensity distribution within 

mammographic images. These features provide 

information about the relative brightness of different 

regions within the breast tissue, which can be 

indicative of underlying pathological changes. By 

analyzing the intensity distribution of mammographic 

images, intensity-based features can help identify 

regions of interest and facilitate the localization of 

potential abnormalities. 

 

Spatial features represent another important aspect of 

multi-feature extraction, focusing on the spatial 

arrangement of image structures within 

mammographic images. These features provide 

information about the spatial relationships between 

different regions of interest, enabling the 

characterization of tissue architecture and organization. 

By analyzing the spatial distribution of image features, 

spatial features can help identify regions of interest and 

facilitate the localization of potential abnormalities. In 

this study, we propose a novel approach for breast 

cancer detection using multi-feature extraction 

methods, aiming to leverage diverse imaging 

characteristics to enhance diagnostic accuracy. Our 

method incorporates a comprehensive set of features 

extracted from mammographic images, including 
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texture, shape, intensity, and spatial information. By 

integrating these different types of features, our 

approach aims to provide a more comprehensive 

representation of the underlying tissue properties, 

facilitating more accurate discrimination between 

benign and malignant lesions. Throughout this paper, 

we will describe the methodology and implementation 

of our proposed approach, as well as present 

experimental results demonstrating its effectiveness in 

breast cancer detection. We believe that our study 

contributes to the growing body of research on 

advanced image processing techniques for breast 

cancer detection, with the potential to improve the 

accuracy and reliability of screening programs and 

ultimately, the clinical management of breast cancer. 

 

II. RELATED WORK 

 

Early endeavors in breast cancer detection 

predominantly relied on manual interpretation of 

mammograms by radiologists, which presented 

challenges due to subjectivity and time constraints [1]. 

To address these limitations, computer-aided detection 

(CAD) systems emerged, leveraging computational 

methods to assist radiologists in image analysis [2]. 

These CAD systems often employ feature extraction 

techniques to characterize breast lesions, including 

texture analysis, shape-based features, intensity-based 

features, and spatial features [3] [4]. Texture analysis 

has gained attention for its ability to discern subtle 

textural variations within mammograms, utilizing 

methods like GLCM and LBP [5]. Shape-based features 

offer insights into lesion morphology, employing 

techniques such as geometric descriptors and contour 

analysis [6]. Intensity-based features capture pixel 

intensity distributions, aiding in identifying regions of 

interest [7]. Spatial features analyze the arrangement of 

image structures, providing information on tissue 

organization [8]. 

 

Numerous studies have explored the efficacy of CAD 

systems in breast cancer detection, with some 

integrating multiple feature extraction methods. For 

instance, Li et al. demonstrated a CAD system 

incorporating texture, shape, and intensity-based 

features, showing promise in discriminating between 

benign and malignant lesions [9]. Similarly, Zheng et 

al. developed a CAD system utilizing texture and shape 

features, achieving improved sensitivity and specificity 

[10]. Texture analysis has been a focal point in several 

studies, investigating GLCM-based texture features 

combined with machine learning algorithms [11]. 

Shape-based features have also been extensively 

researched, with proposals employing geometric 

descriptors and contour analysis [12]. Intensity-based 

features, as demonstrated, have shown improved 

sensitivity in lesion detection, especially in subtle cases 

[13]. Spatial features have contributed to superior 

lesion detection performance [14]. Despite 

advancements, challenges persist in achieving robust 

performance across diverse populations. Deep learning 

techniques, particularly convolutional neural 

networks (CNNs), have shown promise in automating 

feature learning from mammograms [15]. CNN-based 

CAD systems for breast cancer detection have achieved 

high sensitivity and specificity [16]. Transfer learning 

has also been effective in fine-tuning pre-trained CNN 

models for lesion classification [17]. However, 

interpretability of deep learning models remains a 

challenge, necessitating further research in explainable 

AI techniques [18]. In summary, multi-feature 

extraction methods have significantly advanced CAD 

systems for breast cancer detection, offering potential 

for improved early detection and patient outcomes. 

Continued research in deep learning and explainable 

AI is essential for further enhancing CAD systems in 

the fight against breast cancer. 

 

 

Table 1 : Summary of related work 
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Method Key Finding Algorithm Limitation Scope 

CAD Systems Improved sensitivity 

and specificity 

Texture analysis, 

Machine Learning 

False-positive 

findings, 

Generalizability 

Further refinement 

of CAD systems 

Multi-Feature 

Extraction 

Enhanced 

discrimination 

between benign and 

malignant 

GLCM, LBP, 

Contour Analysis 

Manual parameter 

tuning, Complexity 

Integration with 

deep learning 

techniques 

Texture 

Analysis [18] 

Capturing subtle 

textural variations 

indicative of 

malignancy 

GLCM, LBP Subjectivity in 

feature selection, 

Overfitting 

Automation of 

feature selection 

process 

Shape Features 

[19] 

Differentiation 

between lesion types 

Contour Analysis, 

Geometric 

Descriptors 

Sensitivity to lesion 

shape variations, 

Complexity 

Integration with 

shape-based deep 

learning models 

Intensity-Based 

Features 

Localization of 

potential 

abnormalities 

Statistical Methods Sensitivity to image 

noise, Variability 

Integration with 

noise reduction 

techniques 

Spatial Features Characterization of 

tissue architecture and 

organization 

Spatial Analysis Sensitivity to image 

artifacts, 

Computational cost 

Optimization of 

spatial feature 

extraction 

algorithms 

CNN-based 

CAD Systems 

High sensitivity and 

specificity 

Convolutional 

Neural Networks 

(CNNs) 

Black-box nature, 

Interpretability 

Incorporation of 

explainable AI 

techniques 

Transfer 

Learning [20] 

Effective fine-tuning 

of pre-trained CNN 

models 

Transfer Learning Limited availability 

of labeled data, 

Overfitting 

Exploration of 

semi-supervised 

learning approaches 

Deep Learning 

Techniques 

Automated feature 

learning from 

mammograms 

Convolutional 

Neural Networks 

(CNNs) 

Large data 

requirements, 

Training time 

Exploration of 

federated learning 

approaches 

Explainable AI 

Techniques 

Enhanced 

interpretability of 

deep learning models 

Interpretability 

Techniques 

Trade-off between 

interpretability and 

performance 

Integration with 

clinical decision 

support systems 

Integration 

with Clinical 

Workflow 

Seamless integration 

into clinical practice 

SVM Regulatory 

compliance, 

Workflow disruption 

Adoption of 

standardized 

protocols and 

guidelines 

Real-world 

Deployment 

Translation of research 

findings into clinical 

practice 

CNN, SVM Resource constraints, 

Clinical validation 

Collaboration with 

healthcare 
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institutions and 

providers 

Population-

based Studies 

Generalizability of 

algorithms across 

diverse populations 

SVM, GA Ethnic and 

demographic 

variations, Bias 

Inclusion of diverse 

patient cohorts in 

research studies 

Longitudinal 

Studies 

Assessment of 

algorithm performance 

over time 

Regression 

Analysis, PSO 

Temporal variations 

in lesion 

characteristics 

Long-term 

monitoring of 

algorithm 

performance 

 

 

III. Methodology 

 

A. Preprocessing: 

In the preprocessing stage, normalizing 

mammographic images ensures consistency in 

illumination and contrast, crucial for subsequent 

analysis. This process involves scaling pixel values to a 

common range, typically between 0 and 1, to mitigate 

variations caused by differences in image acquisition 

conditions. Mathematically, normalization can be 

expressed as: 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐼𝑚𝑎𝑔𝑒 =
(𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐼𝑚𝑎𝑔𝑒 − 𝑀𝑖𝑛)

𝑀𝑖𝑛𝑀𝑎𝑥
 

Removing noise is essential to enhance the quality of 

mammographic images. Median filtering or Gaussian 

smoothing techniques are commonly employed to 

attenuate noise while preserving edge details. The 

median filter replaces each pixel's value with the 

median value of its neighboring pixels, effectively 

reducing impulse noise. Mathematically, the median 

filter operation can be represented as: 

𝐹𝑖𝑙𝑡𝑒𝑟𝑒𝑑 𝑃𝑖𝑥𝑒𝑙 𝑉𝑎𝑙𝑢𝑒

= 𝑀𝑒𝑑𝑖𝑎𝑛(𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 𝑃𝑖𝑥𝑒𝑙𝑠) 

Alternatively, Gaussian smoothing convolves the 

image with a Gaussian kernel to blur noise while 

preserving image structures. The Gaussian kernel can 

be defined as: 

𝐺(𝑥, 𝑦) =
1

2𝜋𝜎2
exp (−𝑥2 +

𝑦2

2𝜎2
) 𝐺(𝑥, 𝑦) 

Optionally, image enhancement techniques such as 

histogram equalization or contrast stretching can be 

applied to improve visualization and highlight subtle 

features in mammograms, facilitating more accurate 

analysis and interpretation. 

B. Multi-Feature Extraction: 

1. Extract texture features using GLCM and LBP 

methods: 

Texture features play a crucial role in characterizing 

subtle patterns within mammographic images, aiding 

in the discrimination between benign and malignant 

lesions. Two commonly employed methods for 

extracting texture features are the Gray-Level Co-

occurrence Matrix (GLCM) and Local Binary Patterns 

(LBP). 

• GLCM quantifies the spatial relationships 

between pairs of pixels with certain intensity 

levels in an image. It captures the frequency of 

occurrence of different intensity pairs and their 

spatial arrangements, providing insights into 

textural patterns. Mathematically, GLCM 

computes the probability of occurrence P(i,j,d,θ)of 

a pixel with intensity level iii at a given distance d 

and angle θ from another pixel with intensity level 

j. The GLCM is then symmetrized and normalized 
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to obtain texture features such as contrast, 

homogeneity, and entropy. 

• Local Binary Patterns (LBP) characterize texture 

by comparing the intensity of a central pixel with 

its neighbors. It encodes the local texture structure 

into binary patterns, representing each pixel in the 

image with a binary code based on comparisons 

with neighboring pixels. These binary patterns are 

then histogrammed to generate a feature vector 

representing the texture of the image. LBP is 

robust to variations in illumination and noise and 

is computationally efficient, making it suitable for 

texture analysis in mammographic images. 

 

Figure 1: Overview of proposed model 

2. Calculate intensity-based features to capture pixel 

intensity variations 

 

Intensity-based features quantify variations in pixel 

intensity distribution within mammographic images, 

providing valuable information about the underlying 

tissue properties. These features characterize the 

relative brightness of different regions within the 

breast tissue, which can be indicative of pathological 

changes associated with breast lesions. Common 

intensity-based features include mean intensity, 

standard deviation, skewness, and kurtosis, which 

describe the central tendency, spread, and shape of the 

intensity distribution. By analyzing intensity 

variations, these features aid in identifying regions of 

interest and facilitating the localization of potential 

abnormalities. Integration of intensity-based features 

alongside texture and shape features enhances the 

overall discriminative power of breast cancer detection 

algorithms, contributing to improved diagnostic 

accuracy. 

Intensity-Based Features Calculation Algorithm: 

1. Load Mammographic Image: 

   - Load the mammographic image I into memory. 

2. Convert to Grayscale: 

   - If the image is in color, convert it to grayscale using: 

      𝐼_𝑔𝑟𝑎𝑦 =  0.299 ∗  𝑅 +  0.587 ∗  𝐺 +  0.114 ∗  𝐵 

• where R, G, and B are the red, green, and blue 

channels, respectively. 

3. Calculate Mean Intensity: 

   - Compute the mean intensity of the image using: 

    𝑀𝑒𝑎𝑛 =  (
1

𝑁
) ∗  𝑠𝑢𝑚(𝐼(𝑖)) 

• where N is the total number of pixels in the 

image, and I(i) is the intensity of the ith pixel. 

4. Calculate Standard Deviation: 

   - Compute the standard deviation of the intensity 

values using: 

       𝑆𝑡𝑑𝐷𝑒𝑣 =  𝑠𝑞𝑟𝑡 ((
1

𝑁
) ∗  𝑠𝑢𝑚((𝐼(𝑖) −  𝑀𝑒𝑎𝑛)2)) 
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5. Calculate Skewness: 

- Compute the skewness of the intensity distribution 

using: 

  𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =  (
1

(𝑁 ∗  𝑆𝑡𝑑𝐷𝑒𝑣3)
)

∗  𝑠𝑢𝑚((𝐼(𝑖) −  𝑀𝑒𝑎𝑛)3) 

6. Calculate Kurtosis: 

- Compute the kurtosis of the intensity distribution 

using: 

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =  (
1

(𝑁 ∗  𝑆𝑡𝑑𝐷𝑒𝑣4)
)

∗  𝑠𝑢𝑚((𝐼(𝑖)–  𝑀𝑒𝑎𝑛)4) 

7. Output: 

- Return the calculated intensity-based features (Mean, 

StdDev, Skewness, Kurtosis) for further analysis. 

 

C. Feature Selection: 

In the feature selection stage, the goal is to identify the 

most informative features that contribute significantly 

to the discrimination between benign and malignant 

lesions in mammographic images. This process 

involves evaluating the relevance and discriminative 

power of each feature and selecting a subset of features 

for further analysis. Feature relevance assessment 

entails examining the correlation between individual 

features and the target variable (i.e., lesion malignancy). 

Statistical measures such as correlation coefficients or 

mutual information can quantify the strength of the 

relationship between features and the target. Features 

with higher correlation or information gain are 

considered more relevant and are prioritized for 

selection. Discriminative power evaluation involves 

assessing how well each feature separates between 

benign and malignant lesions. Machine learning 

algorithms such as decision trees, support vector 

machines, or random forests can be employed to 

measure the feature's ability to distinguish between 

classes. Features that lead to higher classification 

accuracy or lower classification error rates are deemed 

more discriminative and are retained for further 

analysis. 

Once feature relevance and discriminative power are 

evaluated, a subset of significant features is selected 

using techniques like forward/backward selection, 

recursive feature elimination, or regularization 

methods. This subset of features forms the basis for 

building classification models and facilitates improved 

performance in breast cancer detection algorithms. 

Feature section Algorithm: 

1. Evaluate Feature Relevance: 

Calculate correlation coefficients ρ between each 

feature and the target variable (lesion malignancy) 

using: 

𝜌 =  𝑐𝑜𝑣(𝑋, 𝑌) / (𝜎_𝑋 ∗  𝜎_𝑌) 

where cov(X, Y) is the covariance between the 

feature X and the target variable Y, and σ_X and 

σ_Y are the standard deviations of X and Y, 

respectively. 
2. Assess Discriminative Power: 

Employ machine learning algorithms to measure 

how well each feature separates between benign 

and malignant lesions. For instance, calculate the 

Gini impurity or entropy reduction using decision 

trees. 
3. Select Significant Features: 

Retain features with high correlation ρ or 

information gain and those leading to better 

classification accuracy or lower error rates. 
4. Subset Selection: 

Utilize techniques like forward/backward 

selection or recursive feature elimination to 

identify a subset of significant features for further 

analysis. 
D. Classification: 

1. SVM: 

Support Vector Machine (SVM) is a powerful machine 

learning algorithm utilized in breast cancer detection. 

It effectively classifies mammographic images into 

benign and malignant categories based on multi-

feature extraction methods. SVM operates by finding 

the optimal hyperplane that best separates the two 

classes while maximizing the margin between them. Its 

ability to handle high-dimensional feature spaces and 

nonlinear decision boundaries makes it well-suited for 
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integrating various features extracted from 

mammograms. By leveraging SVM, breast cancer 

detection algorithms achieve high accuracy and robust 

performance, contributing to early diagnosis and 

improved patient outcomes. 

Algorithm: 

SVM Algorithm: 

1. Initialize: 

- Select a kernel function (linear, polynomial, or radial 

basis function). 

- Specify regularization parameter C. 

2. Training Phase: 

- Find the hyperplane with the maximum margin that 

separates the classes. 

- Solve the optimization problem to find the optimal 

decision boundary. 

3. Predictions: 

- For a new input sample, calculate the decision 

function: 

     𝑓(𝑥)  =  𝑤^𝑇 ∗  𝑥 +  𝑏 

- Determine the class label based on the sign of the 

decision function: 

     𝐼𝑓 𝑓(𝑥)  >=  0, predict as positive class; otherwise, 

predict as negative class. 

4. Evaluation: 

- Assess the model's performance using metrics like 

accuracy, sensitivity, specificity, and AUC-ROC. 

5. Optimization: 

- Fine-tune parameters like C and the kernel 

parameters to optimize model performance if necessary. 

 

2. Random Forest: 

Random Forest is a versatile machine learning 

algorithm widely employed in breast cancer detection 

using multi-feature extraction methods. It operates by 

constructing an ensemble of decision trees, where each 

tree is trained on a subset of features and samples. By 

aggregating the predictions of multiple trees, Random 

Forest mitigates overfitting and enhances classification 

accuracy. In the context of breast cancer detection, 

Random Forest effectively integrates diverse features 

extracted from mammographic images, such as texture, 

shape, and intensity-based features. Its ability to 

handle high-dimensional data and nonlinear 

relationships between features makes it well-suited for 

this task. Random Forest offers robust performance, 

making it a valuable tool for accurate and reliable 

breast cancer diagnosis, ultimately improving patient 

outcomes. 

 

Step wise Model: 

1. Training Phase: 

• Randomly select a subset of features and samples 

from the training dataset. 

• Construct multiple decision trees using these 

subsets via bootstrapping: 

𝑆𝑎𝑚𝑝𝑙𝑒 =  𝐵𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝(𝐷𝑎𝑡𝑎𝑠𝑒𝑡) 

• At each node, randomly select a subset of features 

m and determine the best split using criteria like 

Gini impurity or information gain: 

𝑆𝑝𝑙𝑖𝑡 =  𝐹𝑖𝑛𝑑𝐵𝑒𝑠𝑡𝑆𝑝𝑙𝑖𝑡(𝑆𝑎𝑚𝑝𝑙𝑒, 𝑚) 

2. Voting for Prediction: 

• For a new input sample, pass it through each 

decision tree: 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛_𝑖 =  𝑇𝑟𝑎𝑣𝑒𝑟𝑠𝑒(𝑇𝑟𝑒𝑒_𝑖, 𝑆𝑎𝑚𝑝𝑙𝑒) 

3. Aggregation: 

• Aggregate individual tree predictions to make the 

final prediction: 

𝐹𝑖𝑛𝑎𝑙𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 =  𝑀𝑜𝑑𝑒(𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠) 

4. Evaluation: 

• Assess the model's performance using metrics like 

accuracy, sensitivity, specificity, and AUC-ROC. 

E. Evaluation and Integration: 

In the Evaluation and Integration phase, the classifier's 

performance is rigorously assessed using metrics like 

sensitivity, specificity, and the area under the ROC 

curve (AUC-ROC). These metrics provide insights into 

the classifier's ability to correctly identify benign and 

malignant lesions. If needed, parameters are optimized 

to enhance classifier performance, ensuring robustness 

and accuracy. Finally, the validated methodology is 
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seamlessly integrated into clinical workflows or 

Computer-Aided Detection (CAD) systems, facilitating 

real-world application in breast cancer screening and 

diagnosis. This integration ensures that the developed 

methodology aligns with clinical standards and 

guidelines, ultimately benefiting patients by improving 

early detection and treatment outcomes. 

 

IV. Result and Discussion 

In Table 2, the results showcase the performance of 

two widely-used machine learning algorithms, SVM 

(Support Vector Machine) and Random Forest, in 

breast cancer detection without employing feature 

selection methods. SVM achieves an accuracy of 

92.5%, indicating that it correctly classifies 92.5% of 

breast cancer cases. Its precision of 91.2% signifies the 

proportion of correctly identified positive cases among 

all predicted positives, while its recall of 94.5% reflects 

the ability to identify most actual positive cases. The F1 

Score, at 92.8%, balances precision and recall, 

providing an overall measure of the model's accuracy. 

Table 2 : Results of breast cancer detection using SVM 

and Random Forest without feature selection methods 

 

Method Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 

Score 

(%) 

SVM 92.5 91.2 94.5 92.8 

Random 

Forest 

94.8 93.5 96.2 94.8 

On the other hand, Random Forest outperforms SVM 

with an accuracy of 94.8%, showcasing its efficacy in 

detecting breast cancer. With a precision of 93.5%, it 

maintains a high level of accuracy in identifying 

positive cases, while its recall of 96.2% indicates a 

strong ability to detect most actual positive cases. The 

F1 Score of 94.8% confirms the balanced performance 

of Random Forest in terms of precision and recall. Both 

algorithms demonstrate commendable performance in 

breast cancer detection, with Random Forest showing 

slightly superior results compared to SVM in this 

particular context. However, the choice between these 

methods should consider factors such as computational 

efficiency, interpretability, and scalability to handle 

larger datasets, ensuring optimal performance in real-

world applications, shown in figure 2. 

 

Figure 2: Representation of breast cancer detection 

using SVM and Random Forest without feature 

selection methods 

Table 3: Results of breast cancer detection using SVM 

and Random Forest with feature selection methods 

Method Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 

Score 

(%) 

SVM + 

Multi-

Feature 

Extraction 

94.3 93.1 95.8 94.4 

Random 

Forest + 

Multi-

Feature 

Extraction 

96.1 95.2 97.2 96.2 

 

Table 3 presents the outcomes of breast cancer 

detection employing feature selection methods with 

SVM and Random Forest algorithms. Utilizing feature 



Volume 10, Issue 1, January-February-2024 | http://ijsrcseit.com 

Mr. Ashish R. Dandekar et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., January-February-2024, 10 (1) : 237-238 

 

 

 

 
236 

selection techniques helps enhance model 

performance by identifying the most relevant features, 

thereby reducing noise and improving prediction 

accuracy. SVM with Multi-Feature Extraction achieves 

an accuracy of 94.3%, showcasing its ability to 

accurately classify breast cancer cases. The precision of 

93.1% indicates a high proportion of correctly 

identified positive cases among all predicted positives. 

With a recall of 95.8%, the model effectively captures 

most actual positive cases, highlighting its sensitivity. 

The F1 Score of 94.4% reflects a balanced performance 

between precision and recall, demonstrating the 

robustness of the SVM model with feature selection, 

shown in figure 3. 

 
Figure 3: Representation of breast cancer detection 

using SVM and Random Forest with feature selection 

methods 

Meanwhile, Random Forest coupled with Multi-

Feature Extraction demonstrates superior performance 

with an accuracy of 96.1%. The precision of 95.2% 

signifies a high level of accuracy in identifying positive 

cases, while the recall of 97.2% underscores its ability 

to detect most actual positive cases, indicating a highly 

sensitive model. The F1 Score of 96.2% confirms the 

balanced performance of Random Forest, maintaining 

high precision and recall rates. The results suggest that 

feature selection methods significantly improve the 

performance of both SVM and Random Forest in breast 

cancer detection. By selecting relevant features, these 

models can focus on the most informative aspects of 

the data, leading to more accurate predictions while 

mitigating the risk of overfitting. Random Forest with 

Multi-Feature Extraction emerges as the top-

performing model in this scenario, surpassing both 

SVM and Random Forest without feature selection. Its 

higher accuracy, precision, recall, and F1 Score 

indicate its effectiveness in accurately detecting breast 

cancer cases. However, the choice between SVM and 

Random Forest with feature selection should consider 

factors such as computational efficiency, 

interpretability, and scalability, ensuring the 

suitability of the chosen model for real-world 

deployment, accuracy comparison in figure 4. 

 

 
Figure 4: Accuracy Comparison of Advance Ml 

Method with and Without feature extraction Method 

 

V. CONCLUSION 

 

The application of advanced image processing 

techniques coupled with multi-feature extraction 

methods represents a significant stride in the realm of 

breast cancer detection. Through this study, it is 

evident that leveraging sophisticated algorithms and 

feature extraction methods enhances the accuracy and 

reliability of detection systems, thereby potentially 

improving patient outcomes. The utilization of multi-

feature extraction methods allows for the extraction of 

diverse and informative features from medical images, 



Volume 10, Issue 1, January-February-2024 | http://ijsrcseit.com 

Mr. Ashish R. Dandekar et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., January-February-2024, 10 (1) : 237-238 

 

 

 

 
237 

enabling the models to capture intricate patterns and 

nuances indicative of breast cancer. By integrating 

these extracted features into machine learning 

algorithms, such as Support Vector Machines (SVM) 

and Random Forest, the models can effectively learn 

and discern subtle patterns that may not be discernible 

to the human eye alone. The results presented in this 

study underscore the efficacy of employing feature 

extraction methods in breast cancer detection. Both 

SVM and Random Forest models augmented with 

multi-feature extraction demonstrate superior 

performance compared to traditional methods. They 

showcase higher accuracy, precision, recall, and F1 

scores, indicating their ability to accurately classify 

breast cancer cases while minimizing false positives 

and false negatives. Furthermore, the enhanced 

performance of these models holds promise for 

improving early detection rates and ultimately patient 

prognosis. Early detection is pivotal in improving 

treatment outcomes and reducing mortality rates 

associated with breast cancer. Therefore, the adoption 

of advanced image processing techniques, particularly 

those incorporating multi-feature extraction methods, 

has the potential to revolutionize breast cancer 

diagnosis and treatment. Moving forward, continued 

research and development in this field are crucial for 

refining existing methodologies, exploring new 

techniques, and ultimately translating these 

advancements into clinical practice. By harnessing the 

power of advanced image processing and machine 

learning, we can strive towards more accurate, 

efficient, and accessible breast cancer detection 

methods, ultimately benefiting patients and healthcare 

systems worldwide. 
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