

Copyright © 2023 The Author(s) : This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/)

International Journal of Scientific Research in Computer Science, Engineering

and Information Technology

ISSN : 2456-3307

Available Online at : www.ijsrcseit.com
https://doi.org/10.32628/CSEIT239074

414

How to Choose the Right Database for Your Application
Nagaraju Thallapally

University of Missouri Kansas City Missouri, United States

A R T I C L E I N F O

A B S T R A C T

Article History:

Accepted: 10 Oct 2023

Published: 22 Oct 2023

 Choose the right database; it is a very important choice that determines the

speed, scale, and success of any application or system. Various databases now

exist with a growing variety, from relational databases to newer NoSQL

databases, so development teams, system architects, and business users need to

do some homework to find the one that is right for them. In this article, I will

show decision-makers how to select the right database based on data structure,

scalability, transaction size, consistency, and performance. This article explains

what to consider when selecting a database type and contrasts the types.

Keywords: Database, Right Database, Speed, Scale, Success, Application,

Relational Databases.

Publication Issue

Volume 9, Issue 5

September-October-2023

Page Number

414-418

1 Introduction

The critical nature of database selection in modern

data-driven environments requires no exaggeration.

The database stands as the essential component for

effective data storage and retrieval in systems where

large volumes of data are generated and used by

businesses and applications. Any application relies

on its database to store essential information,

including user details and transaction records,

together with product catalogs, among other data.

Applications and systems depend on database

performance and stability to achieve functionality

and success, which makes selecting the right

database a critical choice for development and IT

teams.

Choosing the correct database becomes even more

crucial today because data types are growing in

variety and complexity. Organizations primarily

chose relational databases like MySQL, Oracle, and

SQL Server historically, and many applications still

depend on them today. The emergence of big data

together with cloud computing advancements and

high-speed application needs has led to the

development of new database models. NoSQL

databases like MongoDB, Cassandra, and Redis were

created to solve the problems traditional relational

databases face by delivering increased flexibility and

scalability while processing unstructured and semi-

structured data faster. NewSQL databases offer

organizations facing specialized requirements

another choice by combining NoSQL scalability

with relational consistency (Cattell, 2011).

Volume 9, Issue 5, September-October-2023 | http://ijsrcseit.com

Nagaraju Thallapally Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., September-October-2023, 9 (5) : 414-418

 415

The process of selecting an appropriate database

cannot be standardized across all organizations.

Selecting the ideal database requires knowledge of

available database types alongside their respective

advantages and limitations, which suit different

business requirements and use cases. The

organization’s requirements must be matched by the

selected database through careful evaluation of

factors including data structure, scalability,

transaction size, consistency, and performance. For

enterprises running large-scale real-time

applications or generating data-driven insights,

database systems must manage increasing data

volumes without sacrificing performance or

availability.

This paper investigates the most popular industry

database types, including relational databases along

with NoSQL and NewSQL databases. The selection

process will be analyzed by identifying primary

influencing factors, and we will evaluate the

advantages and disadvantages of each database type.

After reading this paper, you will possess a thorough

knowledge base to effectively choose databases

among numerous possibilities. When developers,

system architects, and business leaders understand

this information, they will be able to make decisions

that improve application performance and

efficiency, which will help their organizations

achieve success.

2 Types of Databases

2.1 Relational Databases

This is the most popular type of database, a

relational database. They maintain the information

in tables with schema pre-defined, and they use

rows and columns to model entities and

relationships. Databases in relational type use

Structured Query Language (SQL) to query data and

support querying, data manipulation, and

transactions (Selinger et al., 1979).

Examples: MySQL, PostgreSQL, Microsoft SQL

Server, Oracle Database

Key Features:

• ACID Compliance: Relational databases ensure

data consistency, integrity, and reliability

through ACID (Atomicity, Consistency,

Isolation, Durability) properties.

• Normalization: Data is often normalized to

eliminate redundancy and improve consistency.

• Complex Queries: SQL databases are well-suited

for complex queries, joins, and aggregations.

• Transactions: Strong support for multi-step

transactional operations.

• Use cases:

• Applications requiring structured data and

transactional consistency (e.g., financial

applications, inventory management, e-

commerce platforms) (Williams & Lane, 2004).

• Systems that require complex reporting and

querying capabilities.

2.2 NoSQL Databases

NoSQL databases are much more extensible than

relational databases and store both unstructured and

semi-structured data. These databases can scale

horizontally to huge amounts of heterogeneous

data. They do not have to use a particular schema

and can be used for different data models, such as

key-value, document, column-family, and graph

databases (Cattell, 2011). Examples: MongoDB,

Cassandra, Redis, Neo4j

Volume 9, Issue 5, September-October-2023 | http://ijsrcseit.com

Nagaraju Thallapally Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., September-October-2023, 9 (5) : 414-418

 416

Key Features:

• Scalability: NoSQL databases excel in distributed

environments, offering horizontal scaling for large

amounts of data and traffic.

• Flexible Schema: NoSQL databases can handle

unstructured and semi-structured data without

requiring a rigid schema.

• High Availability: Many NoSQL databases are

designed with built-in replication and fault-

tolerance features.

• Eventual Consistency: Unlike SQL databases,

NoSQL databases may follow an eventual

consistency model for distributed systems.

Use cases:

• Large-scale applications such as social media

platforms, recommendation engines, and big data

analytics.

• Applications that require high availability, fault

tolerance, and horizontal scalability.

2.3 In-Memory Databases

Data is stored in in-memory databases (i.e., not on

disk but in the system's main memory (RAM) and

therefore can be processed very quickly. They are

perfect for applications in real-time with low

latency requirements (Wiese, 2015).

Examples: Redis, Memcached, Apache Ignite

Key Features:

• Speed: In-memory databases offer faster data access

compared to disk based systems due to the absence

of I/O bottlenecks.

• Persistence Options: Some in-memory databases

support persistence options to periodically write

data to disk for durability.

• Low Latency: Ideal for applications where real-

time responses are required, such as caching, session

management, or high-frequency trading

platforms.

Use cases:

• Real-time applications such as gaming platforms,

recommendation systems, and ad targeting.

• Caching frequently accessed data to reduce latency

in web applications.

2.4 Graph Databases

Graph databases are databases that are used to store

and query data in graphs. They represent

relationships through nodes, edges, and properties,

which is perfect for scenarios where relationships

between data elements are a primary part of the

query logic. Below is the

Examples: Neo4j, ArangoDB, Amazon Neptune

Key Features:

• Relationship-Centric: Graph databases excel at

representing complex relationships and networks of

data.

• Efficient Traversals: They offer efficient querying

and traversal of connected data, such as finding

shortest paths or detecting cycles.

• Flexible Schema: Like NoSQL databases, graph

databases do not require a predefined schema.

Use cases:

• Social networks, fraud detection, and

recommendation engines.

• Any system where relationships or connected data

are central to the business logic.

3 Key Considerations When Choosing a Database

Data Structure:

Volume 9, Issue 5, September-October-2023 | http://ijsrcseit.com

Nagaraju Thallapally Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., September-October-2023, 9 (5) : 414-418

 417

The first thing to think about while choosing a

database is how the data should be stored. Relational

databases are for structured data, that is, with

explicit relationships, and NoSQL databases are for

unstructured or semi-structured data. Graph

databases are perfect for applications that need to do

a lot of complex relationships and traversals of

graphs, and in-memory databases are great for high-

performance data loads.

3.1 Scalability:

Handling bigger data volume and traffic requires

scale. Relational databases scale vertically on more

powerful hardware to handle a larger number of

requests. NoSQL databases, on the other hand, scale

horizontally and can share data among several

servers, processing terabytes of data.

3.2 Transactional Requirements:

A relational database is usually the optimal choice if

it involves many transactions or if we need high

consistency; then it should be an ACID-compliant

database. NoSQL databases might provide eventual

consistency, which is suitable for systems where the

immediate consistency is not essential, like the large

web applications.

3.3 Performance:

Database performance depends on data volume,

query complexity, and high availability. In-memory

databases are also very fast, and they are great for

low latency. Conversely, relational databases can

become performance congested by big data or large

joins, which can be addressed through indexing and

caching.

3.4 Maintenance and Support:

Database maintenance includes regular backups,

upgrades, security updates, and performance tuning

of databases. Relational databases generally come

with proven tools and vendors. NoSQL databases

can need more custom management but also have an

open-source option.

4 Conclusion

The database that you select is a big decision and

should be determined based on the application

requirements and objectives. Depending on the data

type, scalability, transaction, performance, and

maintenance issues, developers and architects can

choose the database with the greatest match to their

goals. Whether it is a conventional relational

database, an extensible NoSQL database, a powerful

in-memory database, or a graph database for

relationship-oriented queries, all databases provide

different benefits based on the use case. And with

that in mind, the decision-makers can make smart

decisions to optimize performance now and in the

future.

References

1. Codd, E. F. (1970). 'A Relational Model of

Data for Large Shared DataBanks.'

Communications of the ACM, 13(6), 377-387.

2. Abadi, D., Boncz, P., Harizopoulos, S., Idreos,

S., & Madden, S. (2013). The design and

implementation of modern column-oriented

database systems. Foundations and Trends®

in Databases, 5(3), 197-280.

3. Kimball, R., Ross, M. (2013). The Data

Warehouse Toolkit. Wiley.

4. Bansal, A. (2023). Optimizing RAG with

Hybrid Search and Contextual Chunking. In

Journal of Engineering and Applied Sciences

Technology (pp. 1–5).

ScientificResearchandCommunityLtd.

https://doi.org/10.47363/jeast/2023(5)e114

5. Elmasri, R. (2008). Fundamentals of database

systems. Pearson Education India.

6. Cattell, R. (2011). Scalable SQL and NoSQL

data stores. Acm Sigmod Record, 39(4), 12-27.

Volume 9, Issue 5, September-October-2023 | http://ijsrcseit.com

Nagaraju Thallapally Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., September-October-2023, 9 (5) : 414-418

 418

7. Stonebraker, M., Madden, S., Abadi, D. J.,

Harizopoulos, S., Hachem, N., & Helland, P.

(2018). The end of an architectural era: It's

time for a complete rewrite. In Making

Databases Work: the Pragmatic Wisdom of

Michael Stonebraker (pp. 463-489).

8. Williams, H. E., & Lane, D. (2004). Web

Database Applications with PHP and MySQL:

Building Effective Database-Driven Web

Sites. " O'Reilly Media, Inc.".

9. Lourenço, J. R., Cabral, B., Carreiro, P., Vieira,

M., & Bernardino, J. (2015). Choosing the

right NoSQL database for the job: a quality

attribute evaluation. Journal of Big Data, 2, 1-

26.

10. Silberschatz, A., Korth, H. F., & Sudarshan, S.

(2011). Database system concepts.

11. Selinger, P. G., Astrahan, M. M., Chamberlin,

D. D., Lorie, R. A., & Price, T. G. (1979, May).

Access path selection in a relational database

management system. In Proceedings of the

1979 ACM SIGMOD international

conference on Management of data (pp. 23-

34).

12. Özsu, M. T., & Valduriez, P. (1999). Principles

of distributed database systems (Vol. 2).

Englewood Cliffs: Prentice Hall.

13. Sander, J., Ester, M., Kriegel, H. P., & Xu, X.

(1998). Density-based clustering in spatial

databases: The algorithm gdbscan and its

applications. Data mining and knowledge

discovery, 2, 169-194.

14. Sadalage, P. J., & Fowler, M. (2013). NoSQL

distilled: a brief guide to the emerging world

of polyglot persistence. Pearson Education.

15. Kelly, A. (2013). Making Sense of NoSQL: A

Guide for Managers and the Rest of Us by Ann

Kelly and Dan McCreary.

16. Wiese, L. (2015). Advanced data

management: for SQL, NoSQL, cloud and

distributed databases. Walter de Gruyter

GmbH & Co KG.

17. Strauch, C., Sites, U. L. S., & Kriha, W. (2011).

NoSQL databases. Lecture Notes, Stuttgart

Media University, 20(24), 79.

18. Moniruzzaman, A. B. M., & Hossain, S. A.

(2013). Nosql database: New era of databases

for big data analytics-classification,

characteristics and comparison. arXiv

preprint arXiv:1307.0191.

19. Orend, K. (2010). Analysis and classification

of NoSQL databases and evaluation of their

ability to replace an object-relational

Persistence Layer. Architecture, 1, 1-100.

20. Date, C. J. (1977). An Introduction to

Database Systems. Addison-Wesley

Publishing Company.

