

International Interdisciplinary Virtual Conference on 'Recent Advancements in Computer Science, Management and Information Technology' International Journal of Scientific Research in Computer Science, Engineering and Information Technology | ISSN : 2456-3307 (www.ijsrcseit.com)

Critical Data Analysis of Various IoT-Based Technologies for Automated Smart Farming

Mr. Chandrakant R. Patorkar¹, Dr. Avinash B. Kadam²

¹Research Scholar, ²Assistant Professor

Department of Computer Science, Shri Shivaji Science & Arts College, Chikhli 443201, Maharashtra, India

ABSTRACT

The IoT-based smart farming uses various technologies in agriculture as well as challenges, outcomes, pests and diseases of Crops Cultivations. In this research paper, we studied the various research papers on IoT-based smart farming and its technologies used for automation to smart farming. We especially criticize the Data Analysis of Various IoT-based technologies for Automation Smart Farming to develop farming techniques for increasing the human population and other parameters are developed for any country to boost its economy. We will save money for our country to pay another country to require fulfill food, and also to boost the country's economy by exporting to others countries for food. This research paper aims to improve farming techniques of farmers to use sustainable water and energy. Life without farming is impossible to imagine; it survives for humans easily with food. But problems with the cultivation of crops identify pests and diseases. Here we gather the various articles data to related diagnosis Pests and Diseases of crops as well as automation to farming.

Keywords: IoT, Smart Farming, Agriculture, LoRo, Big Data, Cloud, Deep Learning, Machine Learning, Artificial Intelligence, WSN.

I. INTRODUCTION

Farming is a very important thing for humans to eat food. This farming offers food for humans and it's the backbone of any country to fulfil and boost the economy. Today there are a lot of demands for food because of the increasing human population in every country in this world. So every country needs to develop its farming techniques. The IoT is an abstract idea for changing the future. This IoT interconnects all devices, tools, and gadgets over the Internet to enable these devices to communicate with other devices. IoT finds application in various areas, such as Healthcare, Agriculture, Smart Home, Education, Retails, and Industries. These things are changing the future of humans. The IoT-bases smart farming on achieving the desired outcome for human life. The Internet of Things (IoT) gives an automatic system that can operate without any human intervention. These systems are really necessary for farm fields and help the farmers to maintain more farm fields. The automatic system notifies the farmers to take the proper decision to deal with various problems the farmers face during farming[1]. A LoRa-based IoT system that aims for a low cost, low power, and wide range wireless

Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited

sensor network targeted at smart farms. The presented system integrates already existing Programmable Logic Controllers (PLC) typically used to control multiple processes and devices, such as water pumps, certain machinery, etc., along with a newly developed network of wireless LoRa sensors distributed over the farm. A Telegram bot is also included as a novelty for automated user communication via this mobile phone messaging application[2]. IoT-based agricultural monitoring is reducing human intervention in farming. The system also has an excellent set of decision-makers with reduced manual contributions. Furthermore, the outcomes help us to understand more about the significance of each variable in obtaining healthy plants. This achievement leads to smart water management in farming[3].

II. LITERATURE REVIEW

This Literature Review of IoT-based smart farming uses various technologies for different proposed. This is a literature review of automated farming and agriculture using IoT-based technologies, challenges, outcomes, pests, and diseases of Crops Cultivations. The Critical Data Analysis of Various IoT-based technologies for Automation Smart Farming to develop farming techniques for increasing the human population and other things are developed for any country to boost its economy. We have various paper surveys on smart farming and agriculture about farmers' techniques for sustainable water and energy, challenges, outcomes, pests, and diseases of Crops Cultivations.

The review of this research paper tries to fathom the use of modern technologies in smart farming. Different types of sensors are used to collect the data in a farm field and also cyber security that occurs in the agriculture sector[1]. This paper describes the development of a complete IoT system for a smart farm with three main aims: 1) Provide better storage conditions of the food products inside a warehouse by monitoring the humidity and temperature and set suitable values. 2) Remote monitoring and control of the different devices of the system via the web application. 3) Automate some tasks such as irrigation, or adjusting the temperature inside the warehouse[2]. Smart Agricultural is reducing human intervention in farming using IoT-based Technologies. This process is aimed at educating the farmer on the use of an integrated technology system to monitor and control operations in farming. The system has also reduced manual contributions and its outcomes are helping us to understand healthy plants. This achievement leads to smart water management in agriculture[3]. IoT modernization helps to get information on a situation such as the weather, climate, temperature, and soil fertility. There are many technological transformations in the last decades that have become technology-driven. Smart farming is a new technology in agriculture that makes agriculture more effective and more efficient[4].

III. CRITICAL ANALYSIS OF METHODOLOGY

A detailed review of related papers is conducted and analyzed from various key points of view. The methodology used, outcomes, and limitations are thoroughly studied and summarized in Table-1.

Sr. N o.	Title of the paper	Authors	Journal /Year	Methodology/ Objective	Outcomes/ Advantages	Limitations/ Disadvantages
1	IoT Enabled Smart Farming:	A. Y and A. S. Poornima	(ICICCS) 2022	1) Smart Irrigation using IoT.	1) Data Security	1) Only Irrigation and
	A Review			2) Cyber Attack	2)Reviews different	data Security 2) Doesn't
					research papers on IOT Base Farming	Diseases Identification Of crops
2	Deployment of a LoRa-based Network and Web Monitoring Application for a	M. Saban, O. Aghzout and A. Rosado- Muñoz	IEEE, 2022.	 LoRa-based IoT system cloud-based monitoring application 	1) a low cost, low power and wide range wireless sensor network.	 1) warehouse control 2) Only Irrigation and No data Security.
3	Smart Farm Real Time Automation of Agriculture Environment for Indian Agricultural System using IoT	E. D, K. SB, G. N and D. S. Kumar	(ICSES) 2022	 IoT-based real- time dynamic and manual irrigation Sensor-based IoT technology. 	 Reduce water use by using a more efficient method. Watering may be automated and monitored at the same time. 	 1) Only watering base on moisture level of soil. 2) It is a major challenge for uneducated farmers.
4	IoT Based Smart Agriculture	M. Jeyaselvi, M. Sathya and B. Prasad	(ICASI) 2022	 IoT based applications in agriculture Deep Learning and Machine Learning based farming. 	 IOT based agriculture are making farmer to smarter in farming. Identify to Healthy and diseased of crops using images of plant leaf. 	 It's challenging for uneducated farmers. Identify to Healthy and diseased of crops but not a solution.
5	Internet-of- Things (IoT)- Based Smart	M. Ayaz, M. Ammad- Uddin, Z.	IEEE Access, 2019	1) IoT based farm area network (FAN).	1)Sustainable IoT-based sensors and	1) New agricultural practices can be

Table-1: Critical Data	Analysis of Various	IoT-based technologies for	Automation Smart Farming
		0	8

	Agriculture:	Sharif, A.		2)Hydroponics	communicatio	very crucial to
	Toward Making	Mansour		and vertical	n technologies	overcome the
	the Fields Talk	and EH.		farming (vf)	2) Predict	geographic and
		M. Aggoune		3) Machine	which genes	resource
				learning and	are best suited	limitation
				analytics.	for crop	challenge.
					production.	2) Respective
					3) Crop disease	locations and
					and pest	climate
					management	conditions crops
						cultivation.
6	Effective	Р.	2018 21st	1) IoT-based crop	1) The system	2) The system
	Utilization of	Suriyachai	Internation	monitoring and	consists of	uses an open
	IoT for Low-cost	and J. Pansit	al	automation	low-cost	weather API to
	Crop Monitoring		Symposiu	system.	sensor nodes.	obtain a weather
	and Automation		m on	2) IoT cloud-based	2) web	forecast.
			(WPMC)	platform	application for	2) IoT- requires
					both real-time	a constant
					and historical	internet
					data displays	connection.
						3) IoT-related
						devices enable
						farmers to learn.
7	Agricultural	M. Lee, J.	2013 IEEE	1) IoT-based	1) Developed	1) Demand of
	Production	Hwang and		agricultural	the decision	agricultural
	System Based on	H. Yoe		production system	support system	products has not
	IoT			2) IoT-based	to forecast	been controlled
				monitoring system	agricultural	properly.
				to analyze crop	production	4) Uneducated
				environment	using IoT	farmers
					sensors.	challenges' to
					2) farmers	observe whole
					observe whole	cycle from
					cycle from	seeding to
					seeding to	selling.
					selling using	
					this IoT-based	
					decision	
					support system	

8	Intelligent	U. Shandilya	2020 5th	1) state-of-the-art	1) The	1) Crops
	Farming System	and V.	(ICCCS)	technology to	proposed	harvesting based
	With Weather	Khanduja		provide the water	system	on the past
	Forecast Support			to the agricultural	suggests the	year's data
	and Crop			field based on the	farmers about	2) Doesn't
	Prediction			soil moisture	crops that are	Identify to
				value, which is	suitable for a	Healthy and
				detected using IoT	particular	diseased of crops.
				sensor.	region.	
				2) The system is	2) This	
				activated using	automated	
				the mobile	irrigation	
				application; this	system,	
				can be	weather	
				accomplished	prediction and	
				with the help of	notification	
				ON/OFF buttons.	regarding new	
					government	
					policies.	
9	A Novel	S. C. Shah,	2021 IEEE	1) The entire	1) Remotely	1) It is a major
	Approach	А.	15th	architecture is	monitor	challenge for
	towards using	Chakraborty	Internation	based upon	natural	future
	Internet-of-	, Y. S.	al	Wireless Sensor	conditions like	Large-scale
	Things in Smart	Kumar, T.	Conference	Network (WSN).	soil moisture,	implementations
	Agriculture	Samant and	on (AICT)	2) linear	humidity	of smart farming.
	Monitoring	S.		regression model	temperature,	2) Security major
	System	Swayamsidd		3) binary logistic	pressure,	challenge WSN.
		ha		regression model	unwanted	3) Plant disease
					presence,	detection and
					detect the	solution.
					presence of	
					light, rain.	
10	Wireless	D. K. Singh	2021 6th	1) IoT wireless	1) Suitable for	1) If scalability is
	Communication	and R. Sobti	(ISPCC)	communication	short-distance	not suitable for
	Technologies for			technologies	communicatio	long-distance
	Internet of			deployed in	n and offers	communication
	Things and			agriculture are	good power	range.
	Precision			ZigBee, Bluetooth,	efficiency.	2) Wireless
	Agriculture: A			WiFi, RFID, GSM,	2) Wireless	communication
	Review			4G, SigFox, and	communicatio	technologies
				LoRa. ZigBee	n technologies	different devices

					differ in their	in their different
					data	range and power
					communicatio	capacity.
					n range and	3) farmers to
					power	plan agricultural
					efficiency.	based on the past
					3) The	year's data
					collected	
					information	
					helps the	
					farmers to	
					plan	
					agricultural	
					activities	
					efficiently.	
11	IOT Based	S. R.	2017	1) IOT Based	1) Wireless	1) In future this
	Monitoring	Prathibha,	(ICRAECT	Monitoring	monitoring of	system can be
	System in Smart	A. Hongal)	System	field reduces	improved by
	Agriculture	and M. P.			the human	adding several
		Jyothi			power.	modern
					2) User to see	techniques like
					accurate	irrigation
					changes in	method, solar
					crop yield.	power source
						usage.
12	Agricultural	L. Qi	2022 6th	1) The system	1) utilization	1) water-saving
	Water-Saving		(ICOEI),	completes	rate of	efficiency
	Precision		Tirunelveli	Intelligent	agricultural	reaches 96.3%.
	Irrigation		, India.	irrigation.	Irrigation	
	Control Strategy			2)Agricultural	water and the	
	based on			Water-Saving	water-saving	
	Internet of			Irrigation	efficiency	
	Things and				reach 96.3%.	
	Rainy Season					
	Prediction					
13	IoT, big data	S. Roy et al	2017 8th	1) IoT, Big Data	1) Efficiency	1) High cost
	science &		(IEMECO	Analytics, Cloud	of agriculture	maintenance to
	analytics, cloud		N),	Computing and	2) harvesting	hybrid system.
	computing and		Bangkok,	Mobile	rainwater	2) It's
	mobile app based		Thailand.	Applications based	and	implementation
	hybrid system			Hybrid	groundwater,	are difficult for

	for smart			Solution for Smart	and predicting	Farmers.
	agriculture			Agriculture.	effective	
				2) AgroTick.	utilization.	
14	Agro-tech: A	О.	2017 Third	1) AGRO-TECH is	1) User	1) It's
	digital model for	Pandithurai,	(ICONSTE	IOT application.	friendly to be	implementation
	monitoring soil	S.	М),	2) AGRO-TECH	interactive	are difficult for
	and crops using	Aishwarya,	Chennai,	to update the	with the	Farmers. And
	internet of	B. Aparna	India.	activities of	farmers.	Long process.
	things (IOT)	and K.		several sensors.	2) Updated to	2) It is a major
		Kavitha		3) A. Farmer	farmers	challenge for
				registration	through	future
				B. Installation of	proposed	Security.
				sensors	system	3) In future
				C. Water level	methodology.	work, track a
				sensor in well and	3) Sprinkle the	wide area to
				irrigation	water in the	monitor critical
				sprinkler	field	aspects like
				D. AGRO-TECH	sufficiently.	abnormal
				Software E. Cloud	4) Fast and	weather
				storage	effectively	conditions, pests
					using cloud	and fungal
					sensor.	infestations.
					5) Power	
					management	
					using solar	
					radiation	
					sensors.	
					6) Irrigation	
					sprinkler to be	
					effectively	
					used water	
					scarcity.	
15	A LoRa based	M. R, A. T,	2022 6th	1) LoRa-based	1) a low cost,	1) Only
	Wireless Smart	V. T and V.	(ICECA)	Wireless system	low power and	Irrigation system
	Irrigation System	S	Technolog	2) automated	wide range	and No data
			у,	irrigation systems	wireless sensor	Security.
			Coimbator	on the basis of	network.	2) Doesn't
			e, India.	Internet of Things	2) Automated	monitor, pests
					irrigation	and fungal
					systems.	infestations.
						3) Only based on

						the moisture
						data to pump is
						turned ON or
						OFF.
16	IoT based Smart	K. S.	2020	1) Supervised	1) Farmer can	1)Limited to
	Agriculture	Pratyush	Second	machine learning	decide himself	only water
	using Machine	Reddy, Y.	(ICIRCA),	algorithms-	to water the	irrigation
	Learning	M. Roopa, K.	Coimbator	decision tree	crop only	
	_	Rajeev L.N.	e, India.	Raspberry pi.	when	
		and N. S.		2) smart irrigation	required,	
		Nandan		system which	avoiding the	
				predicts the water	wastage of	
				requirement for a	water use.	
				crop, using	2) Crop yield	
				machine learning	making it	
				algorithm.	more	
				3) decision tree	profitable and	
				algorithm	reduce	
					irrigation	
					wastages. 3)	
					Decision tree	
					algorithm is	
					used to solve	
					several	
					regression and	
					classification	
					problems.	
17	Ensemble	G.	IEEE	1) Analytical	1) System that	1) Limited to
	Classification	Nagasubram	Internet of	statistics on plant	observes the	Pattern
	and IoT-Based	anian, R. K.	Things	growth and	crops' growth	Recognition of
	Pattern	Sakthivel, R.	Journal,	disease patterns,	and leaf	Crop growth and
	Recognition for	Patan, M.	Aug.15,	the proposed	diseases.	Disease.
	Crop Disease	Sankayya,	2021.	framework uses	2) Efficient	2) Doesn't
	Monitoring	М.		machine learning	crop condition	Irrigation and
	System.	Daneshman		(ML) techniques,	notifications to	data Security.
		d and A. H.		such as support	terminal IoT	3) In the future,
		Gandomi		vector machine	components	this work is to be
				(SVM) and	which are	extended using a
				convolution	assisting in	huge data set of
				neural network	irrigation,	multiple plants
				(CNN).	nutrition	and its parts

				2) Ensemble	planning, and	using the deep
				classification and	environmental	learning
				pattern	compliance	approaches.
				recognition of	related to the	
				crop.	farming lands.	
					3) (ECPRC) to	
					identify plant	
					diseases at the	
					early stages	
18	Affordable Smart	R. Varghese	2018	1) Machine	1) Affordable	1) Reliability
	Farming Using	and S.	Second	learning based	system which	2) cyber-attacks
	IoT and Machine	Sharma	(ICICCS),	real-time analytics	deployed will	on field from
	Learning		Madurai,	is performed to	give an insight	anywhere in the
			India.	predict the future	into the real	world.
				condition of the	time condition	
				crops base on its	of the crop.	
				past data.	2) State-of-	
					the-art	
					methods in	
					order to	
					improve the	
					accuracy.	
					3) Minimal	
					human	
					intervention	
19	An Overview of	O. Elijah, T.	IEEE	1) Cloud platform,	1) Increase	1) Range of
	Internet of	A. Rahman,	Internet of	sensors and	productivity of	communication
	Things (IoT) and	I. Orikumhi,	Things	camera,	crop yield	distance, data
	Data Analytics in	C. Y. Leow	Journal,	communication		rate, battery life,
	Agriculture:	and M. N.	Oct. 2018	technology		mobility,
	Benefits and	Hindia				latency, security
	Challenges					
20	Sensor Based	М.	(ICCCI),	1) Precision	1) IoT sensor-	1)IoT-Smart
	Smart	Pyingkodi et	Coimbator	agriculture	based	farming requires
	Agriculture with	al.,	e, India,	2) Acoustic Sensor	agriculture is	a constant
	IoT		2022.	Field-	now widely	internet
	Technologies: A			Programmable	recognized as	connection.
	Review			Gate Array	the new age of	2) IoT-related
				(FPGA)-Based	farming	devices enable
				Sensor	2) It is already	farmers to learn
				2) Optical Sensors	in use in large	and realize how

				3) Ultrasonic	farms	to
				Ranging Sensor	and	implement
				4) Humidity	industrialized	technology
				Sensors	nations	3) It is a major
				5) Airflow Sensor	3) It may	challenge for
				6) Temperature	quickly Solve	future
				Sensor	world hunger.	Large-scale
				7) Moisture	4) Green	implementations
				Sensors	revolution	of smart farming.
				8) Soil Water	and pave the	4) Security
				Content Sensor	way for	measures,
				9) PH Sensor	progress in a	Different types
				10)	nation like	of network
				Optoelectronic	India	attacks.
				Sensor		5) IoT
						framework is
						extremely
						complex
21	IoT Based Smart	K.	2021 Third	1)Data Collection	1)Productive	1) The crop
	Agriculture	Parasuraman	(ICICV) on	Module(Soil	harvest	detection
	Automation in	, U.	Technologi	Parameters:Soil	proposal	algorithm
	Artificial	Anandan	es and	Type, Soil Ph	Framework	Accuracy of
	Intelligence	and A.	Virtual	value),	utilizing	99.96%. Not a
		Anbarasan	Mobile	(Climatic	classifier	100%.
			Networks	Parameters:Humi	models.	
			Tirunelveli	dity, Temperature,	2) The crop	
			, India.	Wind, Rainfall)	detection	
				2) Recurrent	algorithm	
				Neural Network	Accuracy of	
				(RNN)	99.96%.	
				3) Multi-Layer		
				Perception (MLP).		
22	Predictive	A. Akbar, A.	IEEE	1)Adaptive	1) AMWR as	1) Real-time and
	Analytics for	Khan, F.	Internet of	Moving Window	described	historical data
	Complex IoT	Carrez and	Things	Regression	below. I)	processing using
	Data Streams	K. Moessner	Journal,	2) Complex event	Selection of	CEP and ML.
			Oct. 2017.	processing (CEP),	regression	2) Prediction
				data streams,	algorithm. II)	algorithm called
				Internet of Things	Finding	AMWR for
				(IoT), machine	optimum	realtime data.
				learning (ML),	training	3) Prediction

				predictive	window size.	algorithm was
				analytics (PAs)	III) Size of the	validated on
					prediction	traffic data with
					horizon.	accuracy up to
					2) Prediction	96%.
					algorithm was	
					validated on	
					traffic data	
					with accuracy	
					up to 96%.	
23	IoT, Big Data,	N. N. Misra,	IEEE	1) IoT, big data,	1) IoT and big	1) It is a major
	and Artificial	Y. Dixit, A.	Internet of	and artificial	data	challenge for
	Intelligence in	Al-Mallahi,	Things	intelligence (AI)	technologies	future
	Agriculture and	M. S.	Journal,	2) ML algorithms.	will be	Large-scale
	Food Industry	Bhullar, R.	MAY 1,	I) Supervised	potentially	implementations
		Upadhyay	2022	Learning,	impacting are	of
		and A.		II)Unsupervised	economical	ML algorithms.
		Martynenko		Learning,	(e.g., increased	1) Supervised
				III)	productivity,	Learning: 2)
				Reinforcement	lower	Unsupervised
				Learning	production	Learning: 3)
				IV)	cost, and	Reinforcement
				Representation	higher	Learning: 4)
				Learning:	quality),	Representation
				3)block chain-	environmental	Learning:
				based digital	(e.g., less	
				traceability	resource	
					consumption,	
					lower	
					emission, and	
					carbon	
					footprint).	
24	Internet of	M. S.	IEEE	1) Internet of	1) IoT	1) IOT based
	Things in	Farooq, S.	Access	Things in	backbone and	Greenhouse
	Greenhouse	Riaz, M. A.	2022	Greenhouse	help farmers	Agriculture
	Agriculture: A	Helou, F. S.		Agriculture.	to increase	is a major
	Survey on	Khan, A.		2) IoT-enabled	crop	challenge for
	Enabling	Abid and A.		greenhouse	productivity.	future
	Technologies,	Alvi		network structure	2) Remotely	Large-scale
	Applications,			based on cloud	monitor the	implementations
	and Protocols			and big data	greenhouse	

				analysis.	parameters	
				3) Technology	such as CO2,	
				based cultivation	PH, moisture	
				techniques of	content,	
				greenhouse.	humidity,	
					temperature,	
					and irrigation	
					by using IoT	
					sensors and	
					devices.	
25	Machine	Adi, E.,	Springer	1) Machine	1) Machine	1) Intelligent
	learning and	Anwar, A.,	Nature	learning and data	learning and	applications for
	data analytics for	Baig, Z. et al.	2020	analytics	data analysis	the IoT
	the IoT			2)classification of	and highlight	2) cyber security
				various analytics	the current	
				techniques for	challenges.	
				IoT(Descriptive,		
				Predictive,		
				Prescriptive ,Adap		
				tive analytics for		
				IoT,		
				3) Classification of		
				IoT data analytics		
				based on		
				Technological		
				(Cloud, Edge , Fog		
				computing)		
26	IoT-based Plant	H. Bagha, A.	(DICTA),	1) Devising plant	1) RGB image	1) plant variety
	Health Analysis	Yavari and	Gold	models from RGB	analysis	profiles to
	using Optical	D.	Coast,	and multi-spectral	provides a	determine the
	Sensors in	Georgakopo	Australia,	data.	relatively	performance and
	Precision	ulos	2021.	2) UAVs and IoT	cheap method	health of the
	Agriculture			can be used to	to analyse	plants across
				automatically	visible light	entire crops
				capture and	colours and	
				analyse the images	determine	
				and multi-spectral	plant health	
				data for advancing	status at	
				PA.	different	
					stages.	
					2) Multi	

					spectral data	
					analysis	
					enables	
					analysis of	
					invisible lights	
					in particular	
					NIR.	
27	IoT based Soil	М.	(ICESC),	1) Soil sensor and	1) Soil	1) Spectral
	Nutrients	Pyingkodi,	Coimbator	Arduino can be	nutrient	analysis method
	Analysis and	К.	e, India,	used to quickly	content in	is inconvenient,
	Monitoring	Thenmozhi,	2022	determine the	Nitrogen,	where the
	System for Smart	M.		nutrient content	phosphorus,	records are only
	Agriculture	Karthikeyan,		of the soil.	and potassium	60-70% accurate.
	0	T. Kalpana,		2) Soil fertility can	increase the	2) Lack of
		S.		be detected by	crop fertility.	nutrients cannot
		Palarimath		using NPK sensors		be identified in
		and G. B. A.		3) analyses and		the soil.
		Kumar		compares		
				different nutrient		
				levels in soil by		
				using kernel		
				density estimation		
				algorithm and		
				machine learning.		
28	Smart Farming –	R. Dagar, S.	2018	1) Poly House	1) Farming can	1) Poly House
	IoT in	Som and S.	(ICIRCA)C	2) Water Volume	be made more	
	Agriculture	K. Khatri	oimbatore,	Sensor	efficient &	
			India,	3) Soil Moisture	accurate with	
			2018.	Sensor Air	the	
				Temperature	implementatio	
				Sensor	n of IoT	
				4) Motion	device.	
				Detector	2) We can	
				Sensor	control water	
					wastage then	
					we are	
					automatically	
					controlling	
					electricity	
					wastage	

29	Modeling and	Т.	(ICORIS)	1)Fuzzy Logic	1) IoT to smart	1) agri-food such
	Simulink of	Krongthong	Denpasar,	Controller	agriculture	as fruit,
	Smart	and B.	Indonesia,	2) Temperature	and	vegetable only.
	Agriculture	Muangmeesr	2019	control	sustainable	2) IoT to better
	Using IoT	i,		3) Soil moisture	agriculture	support the
	Framework			control	2) cooling	smart agriculture
				4) Humidity	system control	and sustainable
				control	and to adjust	agriculture.
				5) Smart	the	-
				Agriculture	environmental	
				Enhanced by	higher	
				Cloud-Based and	conditions	
				Networking	such as the	
				Technology.	speed of the	
					fan motor, the	
					air volume,	
					the flow rate,	
					the vibration	
					and various	
					energy of	
					smart	
					agriculture.	
30	IoT Based Smart	M. S.	IEEE	1) IOT Smart	1) IOT based	1) IOT based
	Greenhouse	Farooq, R.	Access,	Greenhouse	Greenhouse	Greenhouse
	Framework and	Javid, S. Riaz	2022	Framework.	framework	framework
	Control	and Z. Atal,		2) IoT-based	help farmers	is a major
	Strategies for			network	to increase	challenge for
	Sustainable			framework for a	crop	Large-scale
	Agriculture			sustainable	productivity.	implementations
				greenhouse	2) efficient	
				environment and	resources	2) Smart
				implement control	management	greenhouse
				strategies for	3) IoT	farming
				efficient resources	deployment	challenges and
				management	challenges,	security issues.
				3) cloud	and security	3) IoT-based
				computing, big	issues are	greenhouse farm
				data analytics,	stated as	security attacks.
				security attacks	outcomes	

31	Automation in	V. Puranik,	2019 4th	1) IoT based	1) Automate	1) Require
	Agriculture and	Sharmila, A.	Internation	Automation in	the	human
	IoT	Ranjan and	al	Agriculture	Maintenance,	intervention not
		A. Kumari	Conference	2) Soil moisture	Control of	done completely
			on (IoT-	sensor, pH Sensor,	Insecticides	automation.
			SIU),	Temperature and	and pesticides,	
			Ghaziabad,	Humidity Sensor.	Water	
			India,		Management	
			2019.		and Crop	
					Monitoring.	
					2) Minimizing	
					human labour	
32	A model for	K. A. Patil	(ICGTSPIC	1) smart	1) Real time	1) Real-time
	smart agriculture	and N. R.	C), Jalgaon,	agriculture using	data of	and historical
	using IoT	Kale	India, 2016	IoT to combined	agriculture	environment
				with internet and	production	information is
				wireless	environment t	expected to help
				communications,	provides easy	to achieve
				Remote	access for	efficient
				Monitoring	agricultural	management and
				System (RMS)	facilities	utilization of
				2) smart	through SMS	resources.
				agriculture to	and advices on	2) IOT based
				develop real time	weather	smart agriculture
				monitoring system	pattern, crops.	is a major
				3) Proposed	2) Improve the	challenge for
				system has	quality and	Large-scale
				methods as	quantity of	implementations
				follows.	productivity of	
					agriculture. 3)	2) Smart
					Efficient	agriculture using
					management	IoT in challenges
					and utilization	of security
					of resources.	issues.
22	Test sum of the			1)	1) Day of 1	1) Time 1
33	Things (I-T) (WI. Dholu	(ICOEI), Timeral all	1) application of	1) Precision	1) Limited
	I fings (101) for	and K. A.	I iruneiveli	cioua based lol in	agriculture is	resources are
	Agriculture	Gnodinde	, INCLA,	the agriculture	to provide	water, light,
	Agriculture		2018	2) Agriculture	right amount	pesticides etc.
	Application			parameters are	of resources at	2) Network
				Soll Moisture,	and for exact	attacks.

				Temperature &	duration of	
				Relative Humidity	time.	
				around plant,	2) implement	
				Light intensity.	precision	
					agriculture the	
					benefits of	
					IOT has been	
					utilized water,	
					light,	
					pesticides etc	
					3) Irrigation	
					valve is	
					actuated based	
					on soil	
					moisture	
					readings.	
34	IoT Applications	M. R. M.	2020 IEEE	1) IoT	1) Increasing	2) Limited
	in Smart	Kassim		Applications in	of world	agriculture
	Agriculture:			Smart Agriculture	population to	products for
	Issues and			of Issues and	agriculture	increasing
	Challenges			Challenges	products will	population of
					have be a very	world.
					high demand	3) It's
					In future	challenging for
					Agriculture.	uneducated
					2) IoT and	farmers.
					related	
					technologies	
					will be the	
					potential	
					solution to	
					solve the	
					agricultural	
					and food	
					demand issues.	
35	A Study on IoT	S. Jaisankar,	Internation	1) Low cost smart	1) Manage	1) farms major
	based Low-Cost	P. Nalini	al	kit of coconut	their farmland	reasons; The
	Smart Kit for	and K. K.	Conference	farm.	efficiently	frequent
	Coconut Farm	Rubigha, "	on I-		without any	intrusion of
	Management		SMAC,		manpower	elephants in the
			Palladam,		resources.	fields, Scarcity of

			India, 2020			water to supply
						to grow coconut
						trees, Common
						pests attacking
						coconut trees.
36	A Survey on the	M. S.	IEEE	1) IOT	1) Minimal	1) Major
	Role of IoT in	Farooq, S.	Access	base .automaticall	human	challenge
	Agriculture for	Riaz, A.	2019	y maintains and	involvement.	Implementation
	the	Abid, K.		monitors	2) Efficient	of Smart
	Implementation	Abid and M.		agricultural farms.	and reliable.	Farming.
	of Smart	A. Naeem		2) IoT based smart		2) Security
	Farming.			farming.		issues.
				3) cloud		
				computing, big		
				data storage and		
				analytics		
37	AgriTalk: IoT for	WL. Chen	IEEE	1) AgriTalk	1) turmeric	1) To apply these
	Precision Soil	et al	Internet of	2) biopesticides	quality has	biopesticides
	Farming of		Things		been	precisely before
	Turmeric		Journal,		significantly	diseases
	Cultivation		June 2019		enhanced	occurring and
					2) user-	pest damage
					friendly GUI	
					called	
					AgriGUI.	
					3)Maintenance	
					of IoT	
					precision	
					farming is	
					effective by	
					using the	
					IoTtalk	
38	Internet of	O. Friha, M.	IEEE/CAA	1) IoT platforms,	1) water	1) Sustainable
	Things for the	A. Ferrag, L.	Journal of	(SDN), (NFV)	management,	resources and
	Future of Smart	Shu, L.	Automatic	technologies,	, disease	Energy.
	Agriculture: A	Maglaras	a Sinica,	cloud/fog	management,	
	Comprehensive	and X. Wang	April 2021	computing.	harvesting,	
	Survey of			2) IoT applications	supply chain	
	Emerging			for smart	management.	
	Technologies.			agriculture.		

39	Internet of	K. Shafique,	IEEE	1) cloud-based	1) higher data-	1) High Cost
	Things (IoT) for	B. A.	Access,	platforms and IoT	rates, large	implementation
	Next-Generation	Khawaja, F.	2020	devices based edge	bandwidth,	of 5G-IoT.
	Smart Systems:	Sabir, S.		computing.	increased	
	A Review of	Qazi and M.		2) advances in	capacity, low	
	Current	Mustaqim		artificial	latency and	
	Challenges,			intelligence,	high	
	Future Trends			machine and deep	throughpu	
	and Prospects for			learning		
	Emerging 5G-			3) Fifth		
	IoT Scenarios			Generation (5G)		
				(MIMO, massive-		
				MIMO,		
				coordinated		
				multipoint		
				processing		
				(CoMP), (D2D)		
				communications,		
				(CRAN), (SD-		
				WSN), (NFV) and		
				cognitive radios		
				(CRs)		
40	Sustainable	H. H. Kadar,	2019 9th	1) IoT for smart	1)Sustainable	1) Limited to
	Water Resource	S. S. Sameon	IEEE	farming	Water	water irrigations.
	Management	and P. A.	(ICCSCE),	2) smart water	Resource	2) around 70% of
	Using IOT	Rafee	Penang,	management	Management.	water resource
	Solution for		Malaysia,	3) smart water	2) optimum	for irrigation
	Agriculture		2019	management	use of water	
				system AGRI2L.	resources	
41	IoT Based Smart	G. S.	2019 4th	1) Smart	1) Farmers to	1) Limited to
	Agriculture	Nagaraja, A.	Internation	Agriculture	increase the	production.
	Management	В.	al	Management	crop	
	System	Soppimath,	Conference	System(SAMS).	production.	
		T. Soumya	on	2)ThingSpeak IoT	2) Reduce	
		and A.	(CSITSS)Be	Cloud platform.	resource	
		Abhinith	ngaluru,		wastage.	
			India.		3) Crop	
					prediction and	
					crop	
					efficiently	

42	Smart Cropping	S. Ghosh, A.	2020 IEEE	1) predicting solar	1) optimizing	1) Limited to
	based on	Sarkar, A.	(ICATMRI	radiation data	crop	solar radiation
	Predicted Solar	Mitra and A.),	2) machine	production	data.
	Radiation using	Das	Buldhana,	learning algorithm	2) boost up	
	IoT and Machine		India.	3) renewable	cropping	
	Learning			power		
43	Adaptive Power	S. S. A.	(ICENCO),	1) Power source	1) energy	1) No Security
	System for IoT-	Emira, K. Y.	Cairo,	represented as	optimization,	and Prediction.
	Based Smart	Youssef and	Egypt,	either solar panel	sustainable,	
	Agriculture	М.	2019	or battery.	energy	
	Applications	Abouelatta		2) Architecture	efficient	
				for monitoring		
				Agro systems.		
				3) simulation		
				results for energy		
				efficient algorithm		
44	Precision	M. S. Islam	2019	1) Precision	1) sustainable	1) limited to
	Agriculture:	and G. K.	Internation	agriculture (PA),	technology	sustainable
	Renewable	Dey	al	wireless sensory	2) avoid	technology
	Energy Based		Conference	network (WSN).	interrupted	
	Smart Crop Field		on (STI),	2) sustainable	power supply	
	Monitoring and		Dhaka,	technology such	due to the load	
	Management		Bangladesh	as solar panel	shedding	
	System Using		, 2019	3) Monitor the		
	WSN via IoT			crop field		
				conditions by		
				using smartphone.		
45	Security and	M. A.	IEEE	1) Security and	1) state-of-	1) Limited to
	Privacy for	Ferrag, L.	Access,	privacy of green	the-art of	existing security
	Green IoT-Based	Shu, X.	2020	IoT-based	existing	and privacy.
	Agriculture:	Yang, A.		agriculture.	security and	
	Review,	Derhab and		2) blockchain-	privacy	
	Blockchain	L. Maglaras,		based	solutions	
	Solutions, and			3) Precision		
	Challenges.			agriculture		
				4) Four-tier green.		
46	Machine	G. Singh, D.	2019 5th	1) Soil moisture	1) Optimize	1) Limited to
	Learning based	Sharma, A.	(ISPCC),	prediction.	the irrigation	water irrigation.
	soil moisture	Goap, S.	Solan,	2) Smart Irrigation	water.	
	prediction for	Sehgal, A. K.	India.	System	2) Soil	
	Internet of	Shukla and			moisture of a	

	Things based	S. Kumar			field.	
	Smart Irrigation					
	System					
47	Machine	H. Youness,	(ICM),	1) Machine	1) Free and	1) Limitation to
	Learning-based	G. Ahmed	Casablanca	Learning	Low-Cost IoT	irrigation
	Smart Irrigation	and B. E.	, Morocco,	2) Smart Irrigation	Platform	system.
	Monitoring	Haddadi	2022	Monitoring	2) agriculture	
	System for			System for	in waste of	
	Agriculture			Agriculture	water and the	
	Applications			3) Artificial	quality of	
	Using Free and			intelligence	products.	
	Low-Cost IoT					
	Platform					
48	An IoT Based	A. Dahane,	2020	1) Smart Farming	1) Optimize	1) Limited to
	Smart Farming	R.	(ISNCC),	System.	plant growth.	Optimize plant
	System Using	Benameur,	Montreal,	2) Machine	2) feasible and	growth and
	Machine	B. Kechar	QC,	Learning	cost effective	Prediction.
	Learning	and A.	Canada,	3) artificial	for optimizing	
		Benyamina	2020.	intelligence	water	
				4) Precision	resources	
				agriculture.		
				5) EDGE-Fog-IoT-		
				Cloud		
49	Raspberry Pi as	R. Kamath,	IEEE	1) Precision	1) Enhance	1) Limited to
	Visual Sensor	М.	Access,	agriculture,	the crop	crop producers.
	Nodes in	Balachandra	2019	Raspberry Pi 3,	production.	
	Precision	and S.		Computer vision,		
	Agriculture: A	Prabhu		wireless visual		
	Study			sensor network.		
				2) To monitor		
				paddy for weeds		
				using Raspberry		
				Pi		
50	Crop Yield	D. J. Reddy	2021 5th	1) Crop Yield	1) Crop Yield	1) Limited to
	Prediction using	and M. R.	(ICICCS),	Prediction	Prediction.	Crop Yield
	Machine	Kumar	Madurai,	2) Artificial		Prediction.
	Learning		India.	Neural Network,		2) Security
	Algorithm			Convolution		issues.
				Neural Network,		
				Crop yield		
				prediction,		

	Machine learning.	

IV. APPLICATIONS

Recently, various algorithms are frequently used that are used according to application and their performance is given below in Table 2. Such as Big Data, Cloud, Artificial Intelligence, Machine Learning, and Deep Learning have been widely used in farming and agriculture, such as classification, crop health monitoring, prediction of crop disease, etc.

Table 2: Big Data, Cloud, Artificial Intelligence, Machine Learning and Deep Learning for automation smart farming and agriculture

Application	Models / Algorithms used
IoT Based Smart Agriculture[4]	Deep Learning and Machine Learning
Crop disease and pest management[5]	Machine learning and analytics.
in Smart Agriculture Monitoring System[9]	Cloud, linear regression model, binary logistic regression
	model
AgroTick ;Smart Agriculture[13]	Big Data Analytics, Cloud
	Computing and Mobile Applications
Smart Irrigation System[15]	LoRa, Machine Learning
IoT based Smart Agriculture[16]	Machine Learning, Supervised machine learning
	algorithms-decision tree, Raspberry pi.
IoT-Based Pattern Recognition for Crop Disease	Machine learning (ML) techniques, such as support
Monitoring System[17]	vector machine (SVM) and convolution neural network
	(CNN).
Affordable Smart Farming[18]	Machine Learning
Data Analytics in Agriculture: Benefits and	Cloud platform
Challenges[19]	
IoT Based Smart Agriculture Automation[21]	Artificial Intelligence, Recurrent Neural Network
	(RNN), Multi-Layer Perception (MLP).
Classification of IoT data analytics[25]	Machine learning , Cloud, Edge , Fog computing)
IoT-based Plant Health Analysis[26]	Precision Agriculture , multi-spectral data
IoT based Soil Nutrients Analysis and Monitoring	Machine learning.
System for Smart Agriculture[27]	
Smart Greenhouse Framework and Control	Cloud computing, big data analytics, security attacks
Strategies for Sustainable Agriculture[30]	
Low-Cost Smart Kit for Coconut Farm	Big Data, Artificial Intelligence and Machine Learning
Management[35].	

Agriculture for the Implementation of Smart	Cloud and edge computing, Big data analytics and
Farming[36].	machine learning
AgriTalk: IoT for Precision Soil Farming of	Artificial intelligence
Turmeric Cultivation[37]	
smart agriculture sensors enable, analyzed supply	Cloud/fog computing, block-chain
chain management of IoT Base agricultural[38]	
Internet of Things (IoT) for Next-Generation Smart	Cloud-based, edge computing, artificial intelligence,
Systems[39]	machine and deep learning
smart agriculture management system (SAMS),	Machine Learning, Precision Agriculture, Message
NodeMCU and Raspberry Pi3 [41]	Queuing Telemetry Transport (MQTT)
Smart Cropping based on Predicted Solar	Machine Learning
Radiation[42]	
Smart Irrigation System based on Soil moisture	Machine Learning
prediction[46]	
Smart Irrigation Monitoring System for Agriculture	Machine Learning, Raspberry Pi, artificial intelligence
[47]	
Smart Farming System ,optimize plant growth [48]	Machine Learning, Raspberry Pi,
	Artificial intelligence, Precision agriculture.
To monitor paddy for weeds using Raspberry Pi[49]	wireless visual sensor network for precision agriculture,
	Random forest and support vector machine
To analyze crop yield prediction [50]	Artificial Neural Network, Convolution Neural Network,
	Machine learning

V. CONCLUSION & FUTURE SCOPE

In this research paper, we surveyed different IoT applications to control the environment of crop fields. For these reasons, we have a system based on an IoT-based application to predict pests, diseases, and moisture in crops. So that increasing food for human demands of the growing population can be fulfilled.

Automated Smart Farming using IoT was applied in farming to improve crop yields, improve quality and reduce costs.

Extensive literature, we found that precision agriculture and farming use an IoT basis. Furthermore, the applications of these technologies in precision agriculture are highlighted. Moreover, the paper tried to address one of the problems faced by crop cultivation in a country like India. Since crop growers are still using the classical approaches of disease prediction without any technological intervention like IoT/ WSN, one of the major advantages of the proposed approach will be real-time measures against any possible disease of crops.

We have many challenges ahead before the survey of IoT-based farming framework on various technologies. The IoT is an abstract idea for changing the future. Here, Critical Data Analysis of Various IoT-based technologies for Automation Smart Farming to develop farming techniques for increasing the human population and other things are developed for any country to boost its economy. The research paper aims to

automate farming using IoT-based technologies, challenges, outcomes, pests, and diseases of crop cultivation. IoT-based Automation Smart Farming enables the future of agriculture.

VI. REFERENCES

- A. Y and A. S. Poornima, "IoT Enabled Smart Farming: A Review," 2022 6th International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 2022, pp. 431-436, doi: 10.1109/ICICCS53718.2022.9788149.
- [2]. M. Saban, O. Aghzout and A. Rosado-Muñoz, "Deployment of a LoRa-based Network and Web Monitoring Application for a Smart Farm," 2022 IEEE International Workshop on Metrology for Industry 4.0 & IoT (MetroInd4.0&IoT), Trento, Italy, 2022, pp. 424-427, doi: 10.1109/MetroInd4.0IoT54413.2022.9831521.
- [3]. E. D, K. SB, G. N and D. S. Kumar, "Real Time Automation of Agriculture Environment for Indian Agricultural System using IoT," 2022 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES), Chennai, India, 2022, pp. 1-7, doi: 10.1109/ICSES55317.2022.9914154.
- [4]. M. Jeyaselvi, M. Sathya and B. Prasad, "IoT Based Smart Agriculture," 2022 8th International Conference on Applied System Innovation (ICASI), Nantou, Taiwan, 2022, pp. 123-126, doi: 10.1109/ICASI55125.2022.9774472.
- [5]. M. Ayaz, M. Ammad-Uddin, Z. Sharif, A. Mansour and E. -H. M. Aggoune, "Internet-of-Things (IoT)-Based Smart Agriculture: Toward Making the Fields Talk," in IEEE Access, vol. 7, pp. 129551-129583, 2019, doi: 10.1109/ACCESS.2019.2932609.
- [6]. P. Suriyachai and J. Pansit, "Effective Utilization of IoT for Low-cost Crop Monitoring and Automation," 2018 21st International Symposium on Wireless Personal Multimedia Communications (WPMC), Chiang Rai, Thailand, 2018, pp. 246-251, doi: 10.1109/WPMC.2018.8713163.
- [7]. M. Lee, J. Hwang and H. Yoe, "Agricultural Production System Based on IoT," 2013 IEEE 16th International Conference on Computational Science and Engineering, Sydney, NSW, Australia, 2013, pp. 833-837, doi: 10.1109/CSE.2013.126.
- [8]. U. Shandilya and V. Khanduja, "Intelligent Farming System With Weather Forecast Support and Crop Prediction," 2020 5th International Conference on Computing, Communication and Security (ICCCS), Patna, India, 2020, pp. 1-6, doi: 10.1109/ICCCS49678.2020.9277437.
- [9]. S. C. Shah, A. Chakraborty, Y. S. Kumar, T. Samant and S. Swayamsiddha, "A Novel Approach towards using Internet-of-Things in Smart Agriculture Monitoring System," 2021 IEEE 15th International Conference on Application of Information and Communication Technologies (AICT), Baku, Azerbaijan, 2021, pp. 1-5, doi: 10.1109/AICT52784.2021.9620508.
- [10]. D. K. Singh and R. Sobti, "Wireless Communication Technologies for Internet of Things and Precision Agriculture: A Review," 2021 6th International Conference on Signal Processing, Computing and Control (ISPCC), Solan, India, 2021, pp. 765-769, doi: 10.1109/ISPCC53510.2021.9609421.
- [11]. S. R. Prathibha, A. Hongal and M. P. Jyothi, "IOT Based Monitoring System in Smart Agriculture," 2017 International Conference on Recent Advances in Electronics and Communication Technology (ICRAECT), Bangalore, India, 2017, pp. 81-84, doi: 10.1109/ICRAECT.2017.52.

- [12]. L. Qi, "Agricultural Water-Saving Precision Irrigation Control Strategy based on Internet of Things and Rainy Season Prediction," 2022 6th International Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli, India, 2022, pp. 527-530, doi: 10.1109/ICOEI53556.2022.9777192.
- [13]. S. Roy et al., "IoT, big data science & analytics, cloud computing and mobile app based hybrid system for smart agriculture," 2017 8th Annual Industrial Automation and Electromechanical Engineering Conference (IEMECON), Bangkok, Thailand, 2017, pp. 303-304, doi: 10.1109/IEMECON.2017.8079610.
- [14]. O. Pandithurai, S. Aishwarya, B. Aparna and K. Kavitha, "Agro-tech: A digital model for monitoring soil and crops using internet of things (IOT)," 2017 Third International Conference on Science Technology Engineering & Management (ICONSTEM), Chennai, India, 2017, pp. 342-346, doi: 10.1109/ICONSTEM.2017.8261306.
- [15]. M. R, A. T, V. T and V. S, "A LoRa based Wireless Smart Irrigation System," 2022 6th International Conference on Electronics, Communication and Aerospace Technology, Coimbatore, India, 2022, pp. 514-517, doi: 10.1109/ICECA55336.2022.10009142.
- [16]. K. S. Pratyush Reddy, Y. M. Roopa, K. Rajeev L.N. and N. S. Nandan, "IoT based Smart Agriculture using Machine Learning," 2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA), Coimbatore, India, 2020, pp. 130-134, doi: 10.1109/ICIRCA48905.2020.9183373.
- [17]. G. Nagasubramanian, R. K. Sakthivel, R. Patan, M. Sankayya, M. Daneshmand and A. H. Gandomi, "Ensemble Classification and IoT-Based Pattern Recognition for Crop Disease Monitoring System," in IEEE Internet of Things Journal, vol. 8, no. 16, pp. 12847-12854, 15 Aug.15, 2021, doi: 10.1109/JIOT.2021.3072908.
- [18]. R. Varghese and S. Sharma, "Affordable Smart Farming Using IoT and Machine Learning," 2018 Second International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 2018, pp. 645-650, doi: 10.1109/ICCONS.2018.8663044.
- [19]. O. Elijah, T. A. Rahman, I. Orikumhi, C. Y. Leow and M. N. Hindia, "An Overview of Internet of Things (IoT) and Data Analytics in Agriculture: Benefits and Challenges," in IEEE Internet of Things Journal, vol. 5, no. 5, pp. 3758-3773, Oct. 2018, doi: 10.1109/JIOT.2018.2844296.
- [20]. M. Pyingkodi, K. Thenmozhi, M. Karthikeyan, T. Kalpana, S. Palarimath and G. B. A. Kumar, "IoT based Soil Nutrients Analysis and Monitoring System for Smart Agriculture," 2022 3rd International Conference on Electronics and Sustainable Communication Systems (ICESC), Coimbatore, India, 2022, pp. 489-494, doi: 10.1109/ICESC54411.2022.9885371.
- [21]. K. Parasuraman, U. Anandan and A. Anbarasan, "IoT Based Smart Agriculture Automation in Artificial Intelligence," 2021 Third International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV), Tirunelveli, India, 2021, pp. 420-427, doi: 10.1109/ICICV50876.2021.9388578.
- [22]. A. Akbar, A. Khan, F. Carrez and K. Moessner, "Predictive Analytics for Complex IoT Data Streams," in IEEE Internet of Things Journal, vol. 4, no. 5, pp. 1571-1582, Oct. 2017, doi: 10.1109/JIOT.2017.2712672.
- [23]. N. N. Misra, Y. Dixit, A. Al-Mallahi, M. S. Bhullar, R. Upadhyay and A. Martynenko, "IoT, Big Data, and Artificial Intelligence in Agriculture and Food Industry," in IEEE Internet of Things Journal, vol. 9, no. 9, pp. 6305-6324, 1 May1, 2022, doi: 10.1109/JIOT.2020.2998584.

- [24]. M. S. Farooq, S. Riaz, M. A. Helou, F. S. Khan, A. Abid and A. Alvi, "Internet of Things in Greenhouse Agriculture: A Survey on Enabling Technologies, Applications, and Protocols," in IEEE Access, vol. 10, pp. 53374-53397, 2022, doi: 10.1109/ACCESS.2022.3166634.
- [25]. Adi, E., Anwar, A., Baig, Z. et al. Machine learning and data analytics for the IoT. Neural Comput & Applic 32, 16205–16233 (2020). https://doi.org/10.1007/s00521-020-04874-y Springer-Verlag London Ltd., part of Springer Nature 2020.
- [26]. H. Bagha, A. Yavari and D. Georgakopoulos, "IoT-based Plant Health Analysis using Optical Sensors in Precision Agriculture," 2021 Digital Image Computing: Techniques and Applications (DICTA), Gold Coast, Australia, 2021, pp. 01-08, doi: 10.1109/DICTA52665.2021.9647066.
- [27]. M. Pyingkodi et al., "Sensor Based Smart Agriculture with IoT Technologies: A Review," 2022 International Conference on Computer Communication and Informatics (ICCCI), Coimbatore, India, 2022, pp. 1-7, doi: 10.1109/ICCCI54379.2022.9741001.
- [28]. R. Dagar, S. Som and S. K. Khatri, "Smart Farming IoT in Agriculture," 2018 International Conference on Inventive Research in Computing Applications (ICIRCA), Coimbatore, India, 2018, pp. 1052-1056, doi: 10.1109/ICIRCA.2018.8597264.
- [29]. T. Krongthong and B. Muangmeesri, "Modeling and Simulink of Smart Agriculture Using IoT Framework," 2019 1st International Conference on Cybernetics and Intelligent System (ICORIS), Denpasar, Indonesia, 2019, pp. 185-188, doi: 10.1109/ICORIS.2019.8874914.
- [30]. M. S. Farooq, R. Javid, S. Riaz and Z. Atal, "IoT Based Smart Greenhouse Framework and Control Strategies for Sustainable Agriculture," in IEEE Access, vol. 10, pp. 99394-99420, 2022, doi: 10.1109/ACCESS.2022.3204066.
- [31]. V. Puranik, Sharmila, A. Ranjan and A. Kumari, "Automation in Agriculture and IoT," 2019 4th International Conference on Internet of Things: Smart Innovation and Usages (IoT-SIU), Ghaziabad, India, 2019, pp. 1-6, doi: 10.1109/IoT-SIU.2019.8777619.
- [32]. K. A. Patil and N. R. Kale, "A model for smart agriculture using IoT," 2016 International Conference on Global Trends in Signal Processing, Information Computing and Communication (ICGTSPICC), Jalgaon, India, 2016, pp. 543-545, doi: 10.1109/ICGTSPICC.2016.7955360.
- [33]. M. Dholu and K. A. Ghodinde, "Internet of Things (IoT) for Precision Agriculture Application," 2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli, India, 2018, pp. 339-342, doi: 10.1109/ICOEI.2018.8553720.
- [34]. M. R. M. Kassim, "IoT Applications in Smart Agriculture: Issues and Challenges," 2020 IEEE Conference on Open Systems (ICOS), Kota Kinabalu, Malaysia, 2020, pp. 19-24, doi: 10.1109/ICOS50156.2020.9293672.
- [35]. S. Jaisankar, P. Nalini and K. K. Rubigha, "A Study on IoT based Low-Cost Smart Kit for Coconut Farm Management," 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), Palladam, India, 2020, pp. 161-165, doi: 10.1109/I-SMAC49090.2020.9243486.
- [36]. M. S. Farooq, S. Riaz, A. Abid, K. Abid and M. A. Naeem, "A Survey on the Role of IoT in Agriculture for the Implementation of Smart Farming," in IEEE Access, vol. 7, pp. 156237-156271, 2019, doi: 10.1109/ACCESS.2019.2949703.

- [37]. W. -L. Chen et al., "AgriTalk: IoT for Precision Soil Farming of Turmeric Cultivation," in IEEE Internet of Things Journal, vol. 6, no. 3, pp. 5209-5223, June 2019, doi: 10.1109/JIOT.2019.2899128.
- [38]. O. Friha, M. A. Ferrag, L. Shu, L. Maglaras and X. Wang, "Internet of Things for the Future of Smart Agriculture: A Comprehensive Survey of Emerging Technologies," in IEEE/CAA Journal of Automatica Sinica, vol. 8, no. 4, pp. 718-752, April 2021, doi: 10.1109/JAS.2021.1003925.
- [39]. K. Shafique, B. A. Khawaja, F. Sabir, S. Qazi and M. Mustaqim, "Internet of Things (IoT) for Next-Generation Smart Systems: A Review of Current Challenges, Future Trends and Prospects for Emerging 5G-IoT Scenarios," in IEEE Access, vol. 8, pp. 23022-23040, 2020, doi: 10.1109/ACCESS.2020.2970118.
- [40]. H. H. Kadar, S. S. Sameon and P. A. Rafee, "Sustainable Water Resource Management Using IOT Solution for Agriculture," 2019 9th IEEE International Conference on Control System, Computing and Engineering (ICCSCE), Penang, Malaysia, 2019, pp. 121-125, doi: 10.1109/ICCSCE47578.2019.9068592.
- [41]. G. S. Nagaraja, A. B. Soppimath, T. Soumya and A. Abhinith, "IoT Based Smart Agriculture Management System," 2019 4th International Conference on Computational Systems and Information Technology for Sustainable Solution (CSITSS), Bengaluru, India, 2019, pp. 1-5, doi: 10.1109/CSITSS47250.2019.9031025.
- [42]. S. Ghosh, A. Sarkar, A. Mitra and A. Das, "Smart Cropping based on Predicted Solar Radiation using IoT and Machine Learning," 2020 IEEE International Conference on Advent Trends in Multidisciplinary Research and Innovation (ICATMRI), Buldhana, India, 2020, pp. 1-5, doi: 10.1109/ICATMRI51801.2020.9398323.
- [43]. S. S. A. Emira, K. Y. Youssef and M. Abouelatta, "Adaptive Power System for IoT-Based Smart Agriculture Applications," 2019 15th International Computer Engineering Conference (ICENCO), Cairo, Egypt, 2019, pp. 126-131, doi: 10.1109/ICENCO48310.2019.9027393.
- [44]. M. S. Islam and G. K. Dey, "Precision Agriculture: Renewable Energy Based Smart Crop Field Monitoring and Management System Using WSN via IoT," 2019 International Conference on Sustainable Technologies for Industry 4.0 (STI), Dhaka, Bangladesh, 2019, pp. 1-6, doi: 10.1109/STI47673.2019.9068017.
- [45]. M. A. Ferrag, L. Shu, X. Yang, A. Derhab and L. Maglaras, "Security and Privacy for Green IoT-Based Agriculture: Review, Blockchain Solutions, and Challenges," in IEEE Access, vol. 8, pp. 32031-32053, 2020, doi: 10.1109/ACCESS.2020.2973178.
- [46]. G. Singh, D. Sharma, A. Goap, S. Sehgal, A. K. Shukla and S. Kumar, "Machine Learning based soil moisture prediction for Internet of Things based Smart Irrigation System," 2019 5th International Conference on Signal Processing, Computing and Control (ISPCC), Solan, India, 2019, pp. 175-180, doi: 10.1109/ISPCC48220.2019.8988313.
- [47]. H. Youness, G. Ahmed and B. E. Haddadi, "Machine Learning-based Smart Irrigation Monitoring System for Agriculture Applications Using Free and Low-Cost IoT Platform," 2022 International Conference on Microelectronics (ICM), Casablanca, Morocco, 2022, pp. 189-192, doi: 10.1109/ICM56065.2022.10005419.
- [48]. A. Dahane, R. Benameur, B. Kechar and A. Benyamina, "An IoT Based Smart Farming System Using Machine Learning," 2020 International Symposium on Networks, Computers and Communications (ISNCC), Montreal, QC, Canada, 2020, pp. 1-6, doi: 10.1109/ISNCC49221.2020.9297341.

- [49]. R. Kamath, M. Balachandra and S. Prabhu, "Raspberry Pi as Visual Sensor Nodes in Precision Agriculture: A Study," in IEEE Access, vol. 7, pp. 45110-45122, 2019, doi: 10.1109/ACCESS.2019.2908846.
- [50]. D. J. Reddy and M. R. Kumar, "Crop Yield Prediction using Machine Learning Algorithm," 2021 5th International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 2021, pp. 1466-1470, doi:10.1109/ICICCS51141.2021.9432236.

