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ABSTRACT 

MapReduce (MR) has been one of the popular computing framework for BigData analysis and processing 

application in last decade; further Hadoop is an open source platform which is widely used for MR framework. 

Moreover, existing HMR aka Hadoop-MR model faces major issues like I/O overhead and memory overhead. In 

this research work, we focus on developing memory and performance awarescheduler design named as MPA-

HMR for efficient utilization of system resources and data processing in real time. MPAS-HMR is developed for 

analyzing the Global Memory Management; thus minimizing the Disk I/O seek. Moreover, MPAS method are 

evaluated on the Microsoft Azure HDInsight cloud platform in consideration with text mining applications, 

also comparative analysis with the existing model is carried out. Further, comparative analysis shows that our 

model outperforms existing model in terms of computation time and computing cost. 
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I. INTRODUCTION 

 

Several organizations such as educational institution, government and industry gathers huge data through 

various sources like WWW, bioinformatics, social network, sensor network and so on for different purpose. 

Moreover, analyzing these unstructured data has become one of the desired work for various organization; 

however state-of-art approach fails to perform considering the real time scenario on the stream/continuous 

data. In case of real time scenario, data-based platform like google have designed the parallel computational 

approach named MR (MapReduce) framework [Dean and Ghemawat (2008)]; this particular framework offers 

parallel execution in distributed manner. HMR (Hadoop MapReduce) is one of the popular and widely adopted 

tool in comparison with other tools like Phoenix [Taura et al. (2003)], Mars [He et al. (2008)] and Dryad [Isard 

et al. (2007)]; as HMR is open source [Kang et al. (2011)].  

HMR model comprises various phases which includes Setup, Mapping, shuffling and reduce; these are shown in 

Fig. 1; moreover, HMR have computing nodes cluster and master node. Further, Jobs assigned to Hadoop are 

shared into Mapping and reducing tasks; in setup phase, input data are divided into particular volume known as 

chunks for Map nodes. Furthermore, Hadoop parts MR (MapReduce) jobs into various task set where each 

chunk are processed through Map Worker; in general Map phase accepts the input in certain form as (K_1,V_1) 

key/value and creates further pair of key/value as an output. Shuffle phase starts after Map phase completion 
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where intermediate key and value pair are gathered from Map Task; sorting is carried out on the intermediate 

pair of key, value. In general sorting and shuffling are combined in shuffling phase, also reduce phase process 

the data in accordance with UDF (User Defined Function). At last, reduce phase output is written and stored in 

HDFS aka Hadoop distributed-FS (File system). 

In past few years, Hadoop application has seen enormous growth and performance enhancement has been 

observed as well [Lin et al. (2012)], [Cui et al. (2013)]; there are various model of Hadoop some of the effective 

methods are presented in [Khan et al. (2014)] developed starfish model that gathers Hadoop task profile for 

satisfactory granularity. In [Xu et al. (2017)] developed mechanism named Elasticiser which was based on VM 

considered (as in starfish model) for resource allocation problem; however, it leads to over-predicted task run 

time and large overhead while gathering the active task profile (Hadoop task). Further, considering this 

drawback, [Glushkova et al. (2017), Ehsan et al. (2017), Khan (2016)] utilizes overlapping and non-overlapping 

phenomena and to predict the task, conventional LR (Linear regression) is adopted. Moreover these methods 

also predicts the amount of resources for different task with deadline as constraint. In [Wu et al. (2017)] found 

that slow shuffling is main reason for any degradation in MapReduce and only considerable amount of work 

has been carried out for shuffle phase speed optimization; hence they presented a new mechanism for 

balancing the network loads on various cross rack links while sampling and shuffling for application where 

random processing generates efficient results. However, these schemes were designed for sampling-based 

application only and they were not convenient for general application where whole data is processed.  

In [Yao et al. (2019)] introduces YARN mechanism integrated with resource management for scheduling of 

jobs and they made a point that fairness and efficiency are that major concern in resource management since 

resources shared by the various applications. Moreover, current scheduling mechanism in YARN does not 

provide the optimal resource management, hence this framework omits the dependency among the defined 

which is one of the major concerns for resource utilization and heterogeneous characteristics in real time 

scenario. In [Zheng et al. (2018)], it is observed map phase is considered to be CPU sensitive whereas I/O 

intensive and these phases are performed parallelly. 

 
Figure 1. Architecture of Standard Hadoop MapReduce Framework. 
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Further, author performed joint scheduling for overlapping mapping and shuffling to optimize the makespan. 

Similarly [Yang et al. (2019)] adopted mechanism which was based on the dynamic scheduling for minimizing 

the shuffle traffic as several existing methodology failed to consider the impact of data centers. In here, 

Hit(Hierarchical topology) aware MR (MapReduce) was proposed for reducing the overall traffic cost which in 

terms reduces the execution time. However, these model do not utilize memory efficiently as jobs are executed 

at system level rather than thread level. 

Moreover to overcome these challenges this research work designs and develops memory constraint aware 

scheduler for HMR framework namely MPAS-HMR; MPAS-HMR is very much similar to work carried in 

[Apache (2014)]; further a thread based execution is considered for optimal memory utilization and 

minimization of I/O overhead [Zhang, J. et al.(2012), Longbin, L., et al.(2013), Kim et al. (2018)], also this 

research work focuses on developing a dynamic memory distribution among the task throughout thread in one 

VM. Furthermore, this research work develops I/O model to improvise memory management for CPU and 

cross I/O, also MPAS-HMR helps in avoiding the re-reading the data before transmission which minimizes the 

task through caching final outcome of job in memory.  

Research Contribution are as follows: 

• Presented memory and performance aware scheduling design for HMR for executing text mining and 

iterative application.  

• The proposed MPAS design reduces makespan and computational cost for executing text mining and 

iterative applications when compared with existing scheduling design for HMR [Yao et al. (2019)].  

The rest of the paper is organized as follows. In section II the memory and performance aware scheduling 

design for HMR framework is presented. In penultimate section experimental study is carried out. The 

conclusion and future work is described in last section. 

 

II. METHODS AND MATERIAL 

 

In this section, we present a new framework namely, Memory and performance aware scheduler (MPAS) 

design for Hadoop MapReduce Framework as shown in Figure 2. 

 
Figure 2. Architecture of Memory and performance Aware Scheduling Design for Hadoop MapReduce 

Framework. 
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a) System model: 

In standard Hadoop-MR framework, the tasks are executed on different nodes individually. However, in 

MPAS-HMR framework, the task will be executed through Memoryschedular. The Memoryschedular is 

responsible for allocation and deallocation of memory resources. Here different worker will have different 

memory level and these information about memory resource capacity can be collected from GlobalList. The I/O 

scheduler pings ReadWorker for collecting information from disk and CleanWorker cleans information from 

the GlobalList. The MPAS-HMR realizes global memory management through GlobalList by adopting such 

data structure mechanism. In GlobalList, the intermediate data of different task are sorted and kept. For reading 

and cleaning data from the disk the I/O scheduler uses Multiple-buffers. In this way memory resource are 

utilized more efficiently aiding in reduction of makespan. 

 

b) Memory and Performance Aware Scheduling design: 

The memory and performance aware scheduler is designed considering following assumption. First, buffers size 

will be of varied size; thus for allocating memory resource to these buffers an effective optimization design 

must be modelled. Second, different MapReduce tasks will have different memory requirement; thus, dynamic 

memory allocation design is needed. The total size U_T of different buffers is estimated using CacheList as 

follows  

u_T=T^↑-〖E_(〖list〗_T )-N〗_(D_T ) (1) 

where T^↑ represent memory size maximal limit for storing intermediate data, E_(〖list〗_T ) represent the 

overall size of DataPairList, and N_(D_T )   depicts I/O Scheduler overall memory usage.   

In similar manner, the MapController uses memory of size 〖MC〗_T for executing Map task is computed 

using following equation 

〖MC〗_T=min⁡(〖P_D〗_T+〖〖Qtrnsm〗_D〗_T,U_T ) (2) 

where 〖P_D〗_T represent MSort buffer size and 〖〖Qtrnsm〗_D〗_T defiens I/O buffer size. The MSort 

buffer size is computed using following equation  

〖P_D〗_T={█(NP^↑*N_o   NP^↑≠0@〖〖QP〗_D〗_T           NP^↑=0)┤ (3) 

where NP^↑ represent MSort maximal size for executing each task, 〖〖QP〗_D〗_T defines current MSort 

buffer size and M_n describes the total Map task current being processed. Then, the Reduce Controller 

memory size 〖RC〗_T for executing task is computed using following equation 

〖RC〗_T=T_S-〖MMC〗_S (4) 

The MPAS design keep enough memory in reserve for executing task; thus, avoid frequent recycling of 

memory and I/O resource aiding in reduction of makespan. The makespan C of for executing job can be 

computed using following equation 

C=C_T+C_M+C_R. (5) 

where C_T define makespan for initialization worker, C_M depicts map job execution makespan, and C_R 

define reduce job execution makespan. Let consider that each workerq is composed n number of core/thread 

with memory size of x; then the average makespan for executing task can be computed using following 

equation 

C_M=(∑_(a=1)^q▒C_(a_M) )/q. (6) 

Similarly, for reduce task average makespan can be computed as 

C_R=(∑_(a=1)^q▒C_(a_R) )/q. (7) 
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Using Eq. (6) and (7), the total makespan of MPAS can be computed as 

C=C_T+(∑_(a=1)^q▒(C_(a_M)+C_(a_R) ) )/q. (8) 

The MPAS design minimize makespan and reduce cost for executing text mining and iterative application 

when compared with existing HMR scheduling methodologies which is experimentally shown below.  

 

III. RESULTS AND DISCUSSION 

 

Here experiment is conducted to evaluate the performance of MPAS-HMR over HaSTE [21]. The system 

parameter used for experiment analysis is Ubuntu 16 operating system configured with 8GB RAM and two 

cores. Hadoop cluster with one master and two slave node of identical configuration is used similar to 

HDInsight Azure A2_v2 instance [24]. Experiment is conducted on simple Wikipedia dataset of size varied 

from 250 MB to 1 GB. Further, experiment is conducted using complex sensor data of size varied from 100MB 

to 400 MB. Outcome is measured in terms of make span and computational cost for executing above workload 

using respective scheduling mechanism.  

A. The makespan outcome achieved for executing simple workload of varied size by HaSTE and MPAS-

HMR is shown in Fig. 3. MPAS-HMR reduces makespan by 3.714%, 6.66%, and 8.52% when compared 

with HaSTE when workload size is 100MB, 200MB, and 1000MB, respectively. From result obtained it 

can be state that MPAS-HMR improves makespan performance by 6.3% on an average when compared 

with HaSTE.  

 
Figure 3. Makespan performance for executing simple workload. 

 

The computational cost induced for executing simple workload of varied size by HaSTE and MPAS-HMR is 

shown in Fig. 4. MPAS-HMR reduces computational cost by 4.079%, 7.015%, and 8.87% when compared with 

HaSTE when workload size is 100MB, 200MB, and 1000MB, respectively. From result obtained it can be state 

that MPAS-HMR reduce computation cost by 6.654% on an average when compared with HaSTE under varied 

workload scenarios. 
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Figure 4. Computational cost for executing simple workload. 

 

The makespan outcome achieved for executing complex workload of varied size by HaSTE and MPAS-HMR is 

shown in Fig. 5. MPAS-HMR reduces makespan by 1.833%, 2.323%, and 6.226% when compared with HaSTE 

when workload size is 100MB, 200MB, and 400MB, respectively. From result obtained it can be state that 

MPAS-HMR improves makespan performance by 3.46% on an average when compared with HaSTE.  

 

 
Figure 5. Makespan performance for executing complex workload. 

 

The computational cost induced for executing complex workload of varied size by HaSTE and MPAS-HMR is 

shown in Fig. 6. MPAS-HMR reduces computational cost by 2.206%, 2.69%, and 6.58% when compared with 

HaSTE when workload size is 100MB, 200MB, and 400MB, respectively. From result obtained it can be state 

that MPAS-HMR reduce computation cost by 3.83% on an average when compared with HaSTE under varied 

workload scenarios.  
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Fig. 6. Computational cost for executing complex workload. 

 

IV. CONCLUSION 

 

Managing memory resource is a challenging task. Since different phases of MapReduce job are executed 

concurrently. This paper presented memory and performance aware task scheduling adopting dynamic 

memory management technique and thread based task execution. Thus, uses memory resource and multi-core 

processing resource more efficiently when compared with existing HMR scheduler. Experiments are conducted 

using simple and complex workload. From result achieved it can be seen the MPAS-HMR reduce makespan 

and cost by 6.3% and 6.654% when compared with HaSTE for simple workload, respectively. Similarly, MPAS-

HMR reduce makespan and cost by 3.46% and 3.83% when compared with HaSTE for complex workload, 

respectively. Thus, MPAS-HMR is efficient for running simple and complex iterative task. Though the MPAS-

HMR achieves good result; still it is important to test the outcome considering heterogeneous workload. 

Further, need to evaluate how intermedia task failure affects makespan of scheduling model for HMR.  
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