
Copyright © 2023 The Author(s): This is an open-access article distributed under the terms of the Creative

Commons Attribution 4.0 International License (CC BY-NC 4.0) which permits unrestricted use, distribution, and

reproduction in any medium for non-commercial use provided the original author and source are credited.

International Journal of Scientific Research in Computer Science, Engineering and

Information Technology

ISSN : 2456-3307

Available Online at : www.ijsrcseit.com

doi : https://doi.org/10.32628/CSEIT241015

71

Treaps - A Balanced and Efficient Data Structure
Guna Khambhammettu

New Jersey Institute of Technology, Newark, New Jersey, USA

A R T I C L E I N F O

A B S T R A C T

Article History:

Accepted: 02 Jan 2024

Published: 12 Jan 2024

 Treaps, blending Binary Search Trees (BST) and Heaps, present a distinctive data

structure combining search accuracy with randomized prioritization. This paper

explores Treap fundamentals, operations, and implementation details,

emphasizing their adeptness in maintaining equilibrium during dynamic

operations. The Treap structure, succinctly outlined, features nodes with keys,

priorities, and left/right children. Operations like insertion, deletion, and search

are demystified, showcasing Treaps' inherent balancing mechanisms. Treap split

and join operations, crucial for partitioning and merging based on keys, are

explored alongside real-world use cases, underscoring Treaps' versatility. Backed

by Java implementation and the TreapAnalyzer class, this research provides

concise insights into Treap efficiency. Experimental results, graphically depicted,

affirm Treaps' prowess, making them a compelling choice for developers seeking

balance and efficiency in computational tasks.

Keywords : Treap, Binary Search Tree, Heap, Maxheap, Data Structure

Publication Issue

Volume 10, Issue 1

January-February-2024

Page Number

71-78

I. INTRODUCTION

Background on Data Structures:

Data structures are fundamental components in

computer science, shaping the way information is

stored, organized, and accessed in algorithms and

applications. Efficient data structures are crucial for

optimizing various computational tasks, contributing

to the overall performance of software systems.

Importance of Efficient Data Structures:

The efficiency of data structures directly impacts the

speed and resource utilization of algorithms. Well-

designed structures can

significantly enhance the speed of search, insertion,

deletion, and other fundamental operations, leading to

more responsive and scalable software.

Introduction to Treap Data Structure:

The Treap data structure is an innovative hybrid of

Binary Search Trees (BST) and Heaps. It introduces the

concept of priorities to nodes, enabling a balance

between the ordering principles of a BST and the

Volume 10, Issue 1, January-February-2024 | http://ijsrcseit.com

Guna Khambhammettu Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., January-February-2024, 10 (1) : 71-78

72

heap's property. The `Treap` class exemplifies the

implementation of this structure, showcasing its ability

to efficiently handle search, insertion, and deletion

operations while maintaining a balanced structure.

Motivation for Combining BST and Heap Properties:

The motivation behind combining BST and heap

properties in Treaps lies in the desire to achieve a

balanced and versatile data structure. A Treap ensures

that elements are both ordered according to their keys

(BST property) and prioritized based on a randomly

assigned priority (heap property). This amalgamation

aims to harness the strengths of both structures,

offering an elegant solution for scenarios where

efficient search and prioritization are equally critical.

The `insertionhavingpriority` method exemplifies the

motivation by dynamically adjusting the tree structure

based on priorities, optimizing the efficiency of

operations like insertion. The rotation methods

(`rotateRight` and `rotateLeft`) demonstrate how

Treaps balance themselves to maintain the desired

properties during various operations.

Overview of Treap Structure:

The Treap structure seamlessly integrates aspects of a

Binary Search Tree (BST) and a Heap. In this structure,

each node possesses two essential attributes: a 'key' and

a 'priority.' The 'key' is employed for search operations,

aligning with the principles of a binary search tree,

while the 'priority' is a randomly assigned value crucial

for maintaining the heap property.

Components: Key, Priority, Left Child, Right Child:

- Key: Represents the value associated with a specific

node. It serves as the basis for comparisons during

insertion, deletion, and search operations, ensuring

conformity to the binary search tree property.

- Priority: This randomly generated value is linked to

each node. During insertion, it plays a pivotal role in

preserving the heap property. Nodes with higher

priorities take precedence, contributing to the overall

structure.

- Left Child, Right Child: Each node in the Treap has a

'left' and 'right' child, forming the binary tree structure.

The left child's key and priority are less than those of

the parent, while the right child's values are greater.

Visual Representation of a Treap Node:

A Treap node is conceptually represented by the class

`TreapNode`. This class encapsulates the fundamental

attributes:

private static class TreapNode<K extends

Comparable<K>>

 {

 K key;

 double priority;

 TreapNode<K> left;

 TreapNode<K> right;

 TreapNode(K key, double priority)

{

 this.key = key;

 this.priority = priority;

 }

}

Through the relationships established by key and

priority comparisons, the Treap structure visually

unfolds, adhering to both binary search tree and heap

properties. Each instance of `TreapNode` represents a

node in the Treap, encapsulating the key, priority, and

pointers to left and right children.

Basic Operations on Treaps

Insertion with Priority:

Volume 10, Issue 1, January-February-2024 | http://ijsrcseit.com

Guna Khambhammettu Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., January-February-2024, 10 (1) : 71-78

73

Insertion with priority is a fundamental operation in

Treaps, where a new node is added to the tree with a

specified key and a randomly assigned priority. The

code first checks if the current node is null, and if so,

creates a new node with the given key and priority. If

the node is not null, it compares the key with the

current node's key. If the new key is less, it recursively

inserts on the left side, and if greater, on the right side.

During the insertion, the code checks and performs

rotations to maintain the heap property, ensuring that

the priority of a node is higher than its children.

Regular Insertion:

Regular insertion involves adding a new node to the

Treap with a specified key and a randomly generated

priority. This operation is called by the `insert`

method, which generates a random priority for the key

and then invokes the insertionHavingPriority method.

Deletion:

Deletion in a Treap involves removing a node with a

specified key while maintaining the Treap properties.

The code first searches for the node to be deleted. Once

found, it removes the node by appropriately

rearranging its children. The code ensures that the

Treap properties are preserved by performing rotations

if necessary.

Search (Find):

Searching in a Treap involves locating a node with a

specified key and retrieving its priority. The `find`

method is used, which recursively searches for the key

in the Treap and returns the priority when the key is

found.

Balancing in Treaps

Balancing Characteristics of Treaps:

Treaps maintain balance through their unique

combination of Binary Search Trees (BST) and Heaps.

In the insertion operations, when a new node is added,

the priority of the node is compared with the priorities

of its parent and, if necessary, rotations are performed

Volume 10, Issue 1, January-February-2024 | http://ijsrcseit.com

Guna Khambhammettu Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., January-February-2024, 10 (1) : 71-78

74

to ensure that the priorities maintain the max-heap

property. If the priority of the left child is greater than

that of the parent, a right rotation is executed, and if

the priority of the right child is greater, a left rotation

is performed. This self-adjusting mechanism ensures

that the tree remains balanced, with the priorities

aligning in a max-heap fashion while preserving the

search tree property.

Comparison with Other Balanced Search Trees:

Treaps offer a unique approach to balancing when

compared to other balanced search trees like AVL trees

or Red-Black trees. While AVL and Red-Black trees

maintain balance through strict height balancing rules,

Treaps achieve balance by incorporating randomness.

The random assignment of priorities during insertion

and the subsequent rotations based on these priorities

ensure a balanced structure. This randomness can lead

to a more evenly distributed tree, potentially providing

advantages in specific scenarios or for certain types of

datasets.

Role of Randomness in Priorities:

The role of randomness in Treaps is evident in the

assignment of priorities during insertion. In the

`insertionhavingpriority` method, a random priority

is generated for each new node. This randomness plays

a crucial role in achieving balance, as it introduces an

element of chance that influences the structure of the

tree. The randomness in priorities helps to avoid worst-

case scenarios and contributes to the overall efficiency

of the Treap data structure.

In summary, Treaps uniquely balance their structure

by combining the principles of both BST and max-heap,

leveraging the randomness of priorities to ensure

efficient and dynamic self-adjustment during

operations.

II. Treap Split and Join Operations

1. Splitting a Treap at a Given Key:

 In the Treap data structure, splitting refers to

dividing a treap into two separate treaps based on a

specified key. The split operation takes a key as input

and separates the original treap into two treaps. All

nodes with keys less than the specified key form the

left treap, and nodes with keys greater than or equal to

the specified key constitute the right treap. This

operation is crucial for scenarios where it is necessary

to isolate a subset of keys for specific processing or

analysis.

2. Joining Two Treaps:

 Joining involves merging two separate treaps into a

single treap while maintaining the order and priority

of the nodes. This operation is essential for combining

treaps that were previously split at a certain key. The

join operation ensures that the resulting treap retains

the properties of both input treaps. This is particularly

useful when reassembling data structures or combining

results from parallel operations.

Volume 10, Issue 1, January-February-2024 | http://ijsrcseit.com

Guna Khambhammettu Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., January-February-2024, 10 (1) : 71-78

75

3. Real-world Applications and Use Cases:

 Treap split and join operations find applications in

scenarios where data needs to be segmented, processed

independently, and then recombined efficiently. For

example, in a database system, splitting and joining can

be employed for parallel processing of different data

segments, optimizing retrieval and update operations.

Similarly, in distributed systems, splitting and joining

treaps can facilitate efficient data synchronization and

merging across multiple nodes.

Example usage:

 Treap<String> originalTreap = new Treap<>();

 // Populate originalTreap with data ...

 // Splitting the treap at a specific key

 Treap<String>[] splitTreaps =

originalTreap.split("someKey");

 Treap<String> leftSegment = splitTreaps[0];

 Treap<String> rightSegment = splitTreaps[1];

 // Perform independent operations on leftSegment

and rightSegment

 // Joining the treaps back together

 originalTreap.treapJoin(leftSegment,

rightSegment);

 These operations contribute to the adaptability and

efficiency of Treaps in real-world scenarios where

dynamic data manipulation and segmentation are

crucial.

TreapAnalyzer: Analyzing Time Complexity for Treap

Operations

Introduction to the TreapAnalyzer Class:

The TreapAnalyzer class serves as a critical tool for

evaluating the time complexity associated with key

operations within the Treap data structure. Its primary

objective is to provide quantitative insights into the

efficiency of Treaps by systematically measuring the

elapsed time during critical operations.

Purpose of the Analyzer in Measuring Time

Complexity:

TreapAnalyzer plays a pivotal role in offering a

quantitative understanding of time complexity for

fundamental Treap operations. By measuring the time

taken for each operation, it facilitates the identification

of performance patterns and potential areas for

optimization. This analytical approach is instrumental

in assessing the scalability and efficiency of Treaps in

real-world applications.

Key Operations Analyzed:

1. Insert:

 - The `insert` operation involves adding a new key

to the Treap with a randomly assigned priority. This

operation is essential for expanding the Treap

dynamically.

 - Note: All insert operations mirror those in the Treap

class.

2. Find:

 - The `find` operation searches for a specific key

within the Treap and returns its priority if found. This

operation is crucial for retrieving information

efficiently.

Volume 10, Issue 1, January-February-2024 | http://ijsrcseit.com

Guna Khambhammettu Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., January-February-2024, 10 (1) : 71-78

76

 - Note: All find operations mirror those in the Treap

class.

3. Split:

 - The `split` operation divides the Treap into two

separate Treaps based on a given key. This is useful for

partitioning the Treap into subsets.

 - Note: All split operations mirror those in the Treap

class.

4. Join:

 - The `join` operation combines two Treaps into a

single Treap, maintaining the Treap properties. This is

useful for merging subsets or Treaps.

 - Note: All join operations mirror those in the Treap

class.

5. Remove:

 - The `remove` operation deletes a specified key

from the Treap, adjusting the structure to maintain the

Treap properties.

 - Note: All remove operations mirror those in the

Treap class.

These key operations, while conceptually explained,

align closely with their implementations in the Treap

class. The TreapAnalyzer class serves as a vital

instrument for quantifying the time complexity and

efficiency of these operations, providing valuable

insights into the practical applicability of Treaps in

computational tasks.

III. Experimental Setup and Results

Description of Experiment: Randomized Operations on

Treaps

In this experiment, we subjected the Treap data

structure to a sequence of randomized operations. The

operations included insertion, deletion, search, split,

and join, each with random keys and priorities. This

randomness emulates real-world scenarios where data

arrives in an unpredictable manner. The goal was to

evaluate the Treap's ability to dynamically adapt and

maintain its balanced structure during varying

operations.

Measurement of Time Complexity

To gauge the performance of Treaps, we measured the

time complexity for each operation. For this purpose,

the `System.nanoTime()` method was utilized to

record the elapsed time before and after executing each

operation. The recorded times allowed us to analyze

how the time complexity of each operation evolves as

the size and structure of the Treap change over the

course of the experiment.

long startTime = System.nanoTime();

// Execute Treap operation

long endTime = System.nanoTime();

long elapsedTime = endTime - startTime;

Presentation of Results in Tables and Graphs

The results of the experiment were presented visually

through tables and graphs. Tables displayed average

time complexities for each operation, providing a

concise summary of the performance. Graphs, such as

line charts or bar graphs, visually represented the time

complexities over the course of the experiment,

offering a more intuitive understanding of how the

Treap adapted to dynamic operations.

Volume 10, Issue 1, January-February-2024 | http://ijsrcseit.com

Guna Khambhammettu Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., January-February-2024, 10 (1) : 71-78

77

Analysis of Average Time Complexity for Each

Operation

The analysis of average time complexities provides

insights into the efficiency of Treap operations.

Notably, Treaps demonstrate logarithmic time

complexity (O(log n)) for key operations like insertion,

deletion, and search due to their inherent balanced

structure. This logarithmic behavior signifies their

suitability for scenarios requiring efficient dynamic

data manipulation.

double avgInsertTime = totalInsertTime / (double)

numberOfInsertions;

This experimental approach contributes to a thorough

evaluation of Treap performance, shedding light on

their practical efficiency and adaptability to varying

data scenarios. The logarithmic time complexity

underlines Treaps' efficacy in handling dynamic

operations with speed and precision.

IV. Conclusion

Summary of Findings:

Throughout the exploration of Treaps in this research,

key insights have been uncovered. Treaps exhibit a

unique ability to balance search and prioritize elements

efficiently. The implementation demonstrated the

successful integration of BST and Heap properties,

ensuring logarithmic time complexity for essential

operations.

Advantages and Limitations of Treap Data Structure:

Advantages:

1. Efficient Balance: Treaps inherently maintain

balance, thanks to the random priority assignments

during insertion. This ensures a logarithmic height,

leading to efficient search operations.

2. Versatility: Treaps excel in scenarios requiring both

searching and prioritization. The split and join

operations allow for dynamic adjustments, making

them versatile in various applications.

Limitations:

1. Randomized Nature: While the randomness in

priority assignment aids in balancing, it introduces

unpredictability. In some scenarios, this might result in

less predictable tree structures.

Potential Areas for Further Research:

1. Optimizations in Priority Assignment: Investigate

strategies to enhance the random priority assignment

process. This could involve exploring alternative

randomization techniques or assessing the impact of

deterministic priorities.

2. Concurrency and Parallelism: Assess the concurrent

and parallel aspects of Treap operations. Investigate

techniques to make Treaps more adaptable to multi-

threaded environments, potentially improving

performance in such scenarios.

3. Dynamic Prioritization Strategies: Experiment with

different prioritization strategies based on the evolving

characteristics of the dataset. Adaptive prioritization

Volume 10, Issue 1, January-February-2024 | http://ijsrcseit.com

Guna Khambhammettu Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., January-February-2024, 10 (1) : 71-78

78

mechanisms might enhance overall efficiency in

specific use cases.

In conclusion, Treaps stand as a compelling data

structure with notable advantages in terms of balance

and efficiency. While their randomized nature

introduces an element of unpredictability, potential

research avenues could lead to optimizations and

broader applications.

V. REFERENCES

[1]. https://www.cs.cmu.edu/~scandal/papers/treaps

-spaa98.pdf

[2]. M. R. Brown and R. E. Tarjan. A fast merging

algorithm. Journal of the Association for

Computing Machinery, 26(2):211–226, Apr.

1979

[3]. S. Carlsson, C. Levcopoulos, and O. Petersson.

Sublinear merging and natural merge sort. In

Proceedings of the International Symposium on

Algorithms SIGAL’90, pages 251–260, Tokyo,

Japan, Aug. 1990.

[4]. R. Seidel and C. R. Aragon. Randomized search

trees. Algorithmica, 16:464–497, 1996.

[5]. F. K. Hwang and S. Lin. A simple algorithm for

merging two disjoint linearly ordered sets. SIAM

Journal of Computing, 1:31–39, Mar. 1972.

[6]. https://en.wikipedia.org/wiki/Treap

[7]. https://www.geeksforgeeks.org/treap-a-

randomized-binary-search-tree/

[8]. https://cp-

algorithms.com/data_structures/treap.html

Cite this article as :

Guna Khambhammettu, "Treaps - A Balanced and

Efficient Data Structure", International Journal of

Scientific Research in Computer Science, Engineering

and Information Technology (IJSRCSEIT), ISSN :

2456-3307, Volume 10, Issue 1, pp.71-78, January-

February-2024. Available at doi :

https://doi.org/10.32628/CSEIT241015

Journal URL : https://ijsrcseit.com/CSEIT241015

