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 Treaps, blending Binary Search Trees (BST) and Heaps, present a distinctive data 

structure combining search accuracy with randomized prioritization. This paper 

explores Treap fundamentals, operations, and implementation details, 

emphasizing their adeptness in maintaining equilibrium during dynamic 

operations. The Treap structure, succinctly outlined, features nodes with keys, 

priorities, and left/right children. Operations like insertion, deletion, and search 

are demystified, showcasing Treaps' inherent balancing mechanisms. Treap split 

and join operations, crucial for partitioning and merging based on keys, are 

explored alongside real-world use cases, underscoring Treaps' versatility. Backed 

by Java implementation and the TreapAnalyzer class, this research provides 

concise insights into Treap efficiency. Experimental results, graphically depicted, 

affirm Treaps' prowess, making them a compelling choice for developers seeking 

balance and efficiency in computational tasks. 
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I. INTRODUCTION 

 

Background on Data Structures: 

Data structures are fundamental components in 

computer science, shaping the way information is 

stored, organized, and accessed in algorithms and 

applications. Efficient data structures are crucial for 

optimizing various computational tasks, contributing 

to the overall performance of software systems. 

 

 

 

Importance of Efficient Data Structures: 

The efficiency of data structures directly impacts the 

speed and resource utilization of algorithms. Well-

designed structures can  

significantly enhance the speed of search, insertion, 

deletion, and other fundamental operations, leading to 

more responsive and scalable software. 

Introduction to Treap Data Structure: 

The Treap data structure is an innovative hybrid of 

Binary Search Trees (BST) and Heaps. It introduces the 

concept of priorities to nodes, enabling a balance 

between the ordering principles of a BST and the 
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heap's property. The `Treap` class exemplifies the 

implementation of this structure, showcasing its ability 

to efficiently handle search, insertion, and deletion 

operations while maintaining a balanced structure. 

Motivation for Combining BST and Heap Properties: 

The motivation behind combining BST and heap 

properties in Treaps lies in the desire to achieve a 

balanced and versatile data structure. A Treap ensures 

that elements are both ordered according to their keys 

(BST property) and prioritized based on a randomly 

assigned priority (heap property). This amalgamation 

aims to harness the strengths of both structures, 

offering an elegant solution for scenarios where 

efficient search and prioritization are equally critical. 

The `insertionhavingpriority` method exemplifies the 

motivation by dynamically adjusting the tree structure 

based on priorities, optimizing the efficiency of 

operations like insertion. The rotation methods 

(`rotateRight` and `rotateLeft`) demonstrate how 

Treaps balance themselves to maintain the desired 

properties during various operations. 

Overview of Treap Structure: 

The Treap structure seamlessly integrates aspects of a 

Binary Search Tree (BST) and a Heap. In this structure, 

each node possesses two essential attributes: a 'key' and 

a 'priority.' The 'key' is employed for search operations, 

aligning with the principles of a binary search tree, 

while the 'priority' is a randomly assigned value crucial 

for maintaining the heap property. 

Components: Key, Priority, Left Child, Right Child: 

- Key: Represents the value associated with a specific 

node. It serves as the basis for comparisons during 

insertion, deletion, and search operations, ensuring 

conformity to the binary search tree property. 

- Priority: This randomly generated value is linked to 

each node. During insertion, it plays a pivotal role in 

preserving the heap property. Nodes with higher 

priorities take precedence, contributing to the overall 

structure. 

- Left Child, Right Child: Each node in the Treap has a 

'left' and 'right' child, forming the binary tree structure. 

The left child's key and priority are less than those of 

the parent, while the right child's values are greater. 

Visual Representation of a Treap Node: 

A Treap node is conceptually represented by the class 

`TreapNode`. This class encapsulates the fundamental 

attributes: 

private static class TreapNode<K extends 

Comparable<K>> 

 { 

    K key; 

    double priority; 

    TreapNode<K> left; 

    TreapNode<K> right; 

    TreapNode(K key, double priority)  

{ 

        this.key = key; 

        this.priority = priority; 

    } 

} 

Through the relationships established by key and 

priority comparisons, the Treap structure visually 

unfolds, adhering to both binary search tree and heap 

properties. Each instance of `TreapNode` represents a 

node in the Treap, encapsulating the key, priority, and 

pointers to left and right children. 

Basic Operations on Treaps 

Insertion with Priority: 
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Insertion with priority is a fundamental operation in 

Treaps, where a new node is added to the tree with a 

specified key and a randomly assigned priority. The 

code first checks if the current node is null, and if so, 

creates a new node with the given key and priority. If 

the node is not null, it compares the key with the 

current node's key. If the new key is less, it recursively 

inserts on the left side, and if greater, on the right side. 

During the insertion, the code checks and performs 

rotations to maintain the heap property, ensuring that 

the priority of a node is higher than its children. 

Regular Insertion: 

 
Regular insertion involves adding a new node to the 

Treap with a specified key and a randomly generated 

priority. This operation is called by the `insert` 

method, which generates a random priority for the key 

and then invokes the insertionHavingPriority method. 

Deletion: 

 
Deletion in a Treap involves removing a node with a 

specified key while maintaining the Treap properties. 

The code first searches for the node to be deleted. Once 

found, it removes the node by appropriately 

rearranging its children. The code ensures that the 

Treap properties are preserved by performing rotations 

if necessary. 

Search (Find): 

 
Searching in a Treap involves locating a node with a 

specified key and retrieving its priority. The `find` 

method is used, which recursively searches for the key 

in the Treap and returns the priority when the key is 

found. 

 

Balancing in Treaps 

Balancing Characteristics of Treaps: 

 
Treaps maintain balance through their unique 

combination of Binary Search Trees (BST) and Heaps. 

In the insertion operations, when a new node is added, 

the priority of the node is compared with the priorities 

of its parent and, if necessary, rotations are performed 
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to ensure that the priorities maintain the max-heap 

property. If the priority of the left child is greater than 

that of the parent, a right rotation is executed, and if 

the priority of the right child is greater, a left rotation 

is performed. This self-adjusting mechanism ensures 

that the tree remains balanced, with the priorities 

aligning in a max-heap fashion while preserving the 

search tree property. 

Comparison with Other Balanced Search Trees: 

Treaps offer a unique approach to balancing when 

compared to other balanced search trees like AVL trees 

or Red-Black trees. While AVL and Red-Black trees 

maintain balance through strict height balancing rules, 

Treaps achieve balance by incorporating randomness. 

The random assignment of priorities during insertion 

and the subsequent rotations based on these priorities 

ensure a balanced structure. This randomness can lead 

to a more evenly distributed tree, potentially providing 

advantages in specific scenarios or for certain types of 

datasets. 

Role of Randomness in Priorities: 

The role of randomness in Treaps is evident in the 

assignment of priorities during insertion. In the 

`insertionhavingpriority` method, a random priority 

is generated for each new node. This randomness plays 

a crucial role in achieving balance, as it introduces an 

element of chance that influences the structure of the 

tree. The randomness in priorities helps to avoid worst-

case scenarios and contributes to the overall efficiency 

of the Treap data structure. 

In summary, Treaps uniquely balance their structure 

by combining the principles of both BST and max-heap, 

leveraging the randomness of priorities to ensure 

efficient and dynamic self-adjustment during 

operations. 

 

II. Treap Split and Join Operations 

 

1. Splitting a Treap at a Given Key: 

    In the Treap data structure, splitting refers to 

dividing a treap into two separate treaps based on a 

specified key. The split operation takes a key as input 

and separates the original treap into two treaps. All 

nodes with keys less than the specified key form the 

left treap, and nodes with keys greater than or equal to 

the specified key constitute the right treap. This 

operation is crucial for scenarios where it is necessary 

to isolate a subset of keys for specific processing or 

analysis. 

 

     
 

2. Joining Two Treaps: 

    Joining involves merging two separate treaps into a 

single treap while maintaining the order and priority 

of the nodes. This operation is essential for combining 

treaps that were previously split at a certain key. The 

join operation ensures that the resulting treap retains 

the properties of both input treaps. This is particularly 

useful when reassembling data structures or combining 

results from parallel operations. 
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3. Real-world Applications and Use Cases: 

    Treap split and join operations find applications in 

scenarios where data needs to be segmented, processed 

independently, and then recombined efficiently. For 

example, in a database system, splitting and joining can 

be employed for parallel processing of different data 

segments, optimizing retrieval and update operations. 

Similarly, in distributed systems, splitting and joining 

treaps can facilitate efficient data synchronization and 

merging across multiple nodes. 

 

Example usage: 

    Treap<String> originalTreap = new Treap<>(); 

    // Populate originalTreap with data ... 

    // Splitting the treap at a specific key 

    Treap<String>[] splitTreaps = 

originalTreap.split("someKey"); 

    Treap<String> leftSegment = splitTreaps[0]; 

    Treap<String> rightSegment = splitTreaps[1]; 

 

    // Perform independent operations on leftSegment 

and rightSegment  

 

    // Joining the treaps back together 

    originalTreap.treapJoin(leftSegment, 

rightSegment); 

 

    These operations contribute to the adaptability and 

efficiency of Treaps in real-world scenarios where 

dynamic data manipulation and segmentation are 

crucial. 

 

TreapAnalyzer: Analyzing Time Complexity for Treap 

Operations 

Introduction to the TreapAnalyzer Class: 

The TreapAnalyzer class serves as a critical tool for 

evaluating the time complexity associated with key 

operations within the Treap data structure. Its primary 

objective is to provide quantitative insights into the 

efficiency of Treaps by systematically measuring the 

elapsed time during critical operations. 

 

Purpose of the Analyzer in Measuring Time 

Complexity: 

TreapAnalyzer plays a pivotal role in offering a 

quantitative understanding of time complexity for 

fundamental Treap operations. By measuring the time 

taken for each operation, it facilitates the identification 

of performance patterns and potential areas for 

optimization. This analytical approach is instrumental 

in assessing the scalability and efficiency of Treaps in 

real-world applications. 

 

Key Operations Analyzed: 

 

1. Insert: 

   - The `insert` operation involves adding a new key 

to the Treap with a randomly assigned priority. This 

operation is essential for expanding the Treap 

dynamically. 

   - Note: All insert operations mirror those in the Treap 

class. 

 

2. Find: 

   - The `find` operation searches for a specific key 

within the Treap and returns its priority if found. This 

operation is crucial for retrieving information 

efficiently. 
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   - Note: All find operations mirror those in the Treap 

class. 

 

3. Split: 

   - The `split` operation divides the Treap into two 

separate Treaps based on a given key. This is useful for 

partitioning the Treap into subsets. 

   - Note: All split operations mirror those in the Treap 

class. 

 

4. Join: 

   - The `join` operation combines two Treaps into a 

single Treap, maintaining the Treap properties. This is 

useful for merging subsets or Treaps. 

   - Note: All join operations mirror those in the Treap 

class. 

 

5. Remove: 

   - The `remove` operation deletes a specified key 

from the Treap, adjusting the structure to maintain the 

Treap properties. 

   - Note: All remove operations mirror those in the 

Treap class. 

These key operations, while conceptually explained, 

align closely with their implementations in the Treap 

class. The TreapAnalyzer class serves as a vital 

instrument for quantifying the time complexity and 

efficiency of these operations, providing valuable 

insights into the practical applicability of Treaps in 

computational tasks. 

 

III. Experimental Setup and Results 

 

Description of Experiment: Randomized Operations on 

Treaps 

In this experiment, we subjected the Treap data 

structure to a sequence of randomized operations. The 

operations included insertion, deletion, search, split, 

and join, each with random keys and priorities. This 

randomness emulates real-world scenarios where data 

arrives in an unpredictable manner. The goal was to 

evaluate the Treap's ability to dynamically adapt and 

maintain its balanced structure during varying 

operations. 

 

Measurement of Time Complexity 

To gauge the performance of Treaps, we measured the 

time complexity for each operation. For this purpose, 

the `System.nanoTime()` method was utilized to 

record the elapsed time before and after executing each 

operation. The recorded times allowed us to analyze 

how the time complexity of each operation evolves as 

the size and structure of the Treap change over the 

course of the experiment. 

long startTime = System.nanoTime(); 

// Execute Treap operation 

long endTime = System.nanoTime(); 

long elapsedTime = endTime - startTime; 

 

Presentation of Results in Tables and Graphs 

The results of the experiment were presented visually 

through tables and graphs. Tables displayed average 

time complexities for each operation, providing a 

concise summary of the performance. Graphs, such as 

line charts or bar graphs, visually represented the time 

complexities over the course of the experiment, 

offering a more intuitive understanding of how the 

Treap adapted to dynamic operations. 
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Analysis of Average Time Complexity for Each 

Operation 

The analysis of average time complexities provides 

insights into the efficiency of Treap operations. 

Notably, Treaps demonstrate logarithmic time 

complexity (O(log n)) for key operations like insertion, 

deletion, and search due to their inherent balanced 

structure. This logarithmic behavior signifies their 

suitability for scenarios requiring efficient dynamic 

data manipulation. 

double avgInsertTime = totalInsertTime / (double) 

numberOfInsertions; 

This experimental approach contributes to a thorough 

evaluation of Treap performance, shedding light on 

their practical efficiency and adaptability to varying 

data scenarios. The logarithmic time complexity 

underlines Treaps' efficacy in handling dynamic 

operations with speed and precision. 

IV. Conclusion 

 

Summary of Findings: 

Throughout the exploration of Treaps in this research, 

key insights have been uncovered. Treaps exhibit a 

unique ability to balance search and prioritize elements 

efficiently. The implementation demonstrated the 

successful integration of BST and Heap properties, 

ensuring logarithmic time complexity for essential 

operations. 

Advantages and Limitations of Treap Data Structure: 

Advantages: 

1. Efficient Balance: Treaps inherently maintain 

balance, thanks to the random priority assignments 

during insertion. This ensures a logarithmic height, 

leading to efficient search operations. 

2. Versatility: Treaps excel in scenarios requiring both 

searching and prioritization. The split and join 

operations allow for dynamic adjustments, making 

them versatile in various applications. 

 

Limitations: 

 

1. Randomized Nature: While the randomness in 

priority assignment aids in balancing, it introduces 

unpredictability. In some scenarios, this might result in 

less predictable tree structures. 

 

Potential Areas for Further Research: 

1. Optimizations in Priority Assignment: Investigate 

strategies to enhance the random priority assignment 

process. This could involve exploring alternative 

randomization techniques or assessing the impact of 

deterministic priorities. 

2. Concurrency and Parallelism: Assess the concurrent 

and parallel aspects of Treap operations. Investigate 

techniques to make Treaps more adaptable to multi-

threaded environments, potentially improving 

performance in such scenarios. 

3. Dynamic Prioritization Strategies: Experiment with 

different prioritization strategies based on the evolving 

characteristics of the dataset. Adaptive prioritization 
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mechanisms might enhance overall efficiency in 

specific use cases. 

In conclusion, Treaps stand as a compelling data 

structure with notable advantages in terms of balance 

and efficiency. While their randomized nature 

introduces an element of unpredictability, potential 

research avenues could lead to optimizations and 

broader applications. 
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