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Abstract

In the steel industry, even the slightest surface imperfections can critically impact product quality and
performance. Traditional methods for detecting these defects, such as manual inspections and basic image
processing algorithms, have faced significant challenges. Manual inspections are labor-intensive, time-
consuming, and prone to human error, making them unsuitable for large-scale operations. Basic image
processing techniques often struggle with the complexities and variability of steel surfaces, relying on fixed
feature extraction methods that cannot adapt to the diverse and subtle defect patterns. These methods also
falter under varying noise and lighting conditions, leading to inconsistent and unreliable results. Our research
presents a revolutionary technique that integrates Principal Component Analysis (PCA) and Deep
Convolutional Neural Networks (DCNNs). PCA simplifies high-resolution steel surface images by reducing
their dimensionality, capturing essential features, and lowering the computational load. These streamlined
features are then processed by a DCNN, which excels at recognizing and categorizing intricate defect patterns
through its deep learning capabilities. Extensive testing on a diverse dataset demonstrates that our hybrid
PCA-DCNN model significantly enhances defect detection accuracy and efficiency compared to traditional
methods. The model achieves a precision of 0.94 and an Fl-score of 0.97 for defect-free surfaces, and a
precision of 0.98 with an Fl-score of 0.95 for defective surfaces. Overall, it maintains an average precision
and F1-score of 0.96, with recall rates of 0.99 for non-defective surfaces and 0.92 for defective ones, ensuring
comprehensive defect detection. By integrating PCA's effective feature extraction with the robust
classification capabilities of DCNNSs, this approach provides a scalable, real-time solution for steel surface
quality monitoring, overcoming traditional challenges and offering significant improvements in industrial
applications.
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In this paper, we propose a novel CNN-based
approach for detecting defects in steel surfaces. Our
model leverages advanced techniques such as
multi-scale feature extraction and efficient network
architectures to enhance detection performance. We
evaluate our method using standard benchmarks
and compare its performance with state-of-the-art
models to demonstrate its efficacy [3], [4]

I. INTRODUCTION

The detection of surface defects in steel is a critical
aspect of quality control in the manufacturing
industry. These defects can significantly impact the
structural integrity and aesthetic quality of steel
products. Traditional methods of defect detection,
which often rely on manual inspection or classical
image processing techniques, have limitations in
terms of accuracy and efficiency. Recent
advancements in machine learning, particularly in

II. LITERATURE SURVEY

deep learning, have shown great potential in
automating and improving the accuracy of defect
detection. Convolutional Neural Networks (CNNs),
a class of deep learning models, have been
particularly successful in various image recognition
tasks, including defect detection [1], [2].

The application of CNNs in defect detection has
been extensively studied. LeCun et al. pioneered
the use of convolutional networks for image
recognition tasks, which laid the foundation for
subsequent developments in this field [1].
Following this, various CNN architectures have
been proposed to enhance feature extraction and
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improve accuracy. For instance, the YOLO (You
Only Look Once) family of models, including
YOLOV3 and YOLOVS, have shown impressive
results in object detection tasks [3], [4].

In the context of steel defect detection, several
approaches have been explored. Gao et al.
proposed a semi-supervised CNN-based method for
steel surface defect recognition, demonstrating
significant improvements over traditional methods
[2]. Similarly, Lin et al. utilized a Path Aggregation
Network (PANet) to enhance feature fusion and
improve detection accuracy [4].

Batch normalization, introduced by Toffe and
Szegedy, has been a crucial technique in
accelerating the training of deep networks by
mitigating internal covariate shift [6]. This
technique, along with innovations in network

III. METHODOLOGY

Our research methodology employs a novel
approach to enhance steel surface defect detection
through a combination of advanced techniques in
image processing and machine learning. At its
core, our methodology integrates Principal
(PCA) with a Deep

Network  (DCNN),
leveraging the strengths of each component to

Component Analysis
Convolutional ~ Neural

achieve superior defect detection accuracy. Figure
1 flow diagram illustrates the structured approach
of leveraging PCA for efficient feature extraction
and DCNN for precise defect classification,
ensuring robust and reliable detection of steel
surface defects.

Principal Component Analysis (PCA) plays a
crucial role by reducing the dimensionality of
high-resolution steel surface imges while
preserving essential features. By transforming the
original pixel data into a smaller set of orthogonal
components, PCA effectively captures the most
significant variations in the image dataset.

This reduction not only simplifies subsequent
computational tasks but also enhances the efficiency
and effectiveness of defect classification.

Deep Convolutional Neural Networks (DCNNs)
are utilized for their robust ability to learn
hierarchical representations of data. In our
methodology, DCNNs are specifically tailored for
steel surface defect classification, employing
multiple layers of convolutional and pooling
operations to extract intricate features from images.
These features arc then processed through fully

architecture such as ResNet and EfficientNet, has
contributed to the robustness and efficiency of
modern CNNs [1].

The Gray Level Co-Occurrence Matrix (GLCM) is
another method that has been used for texture
analysis in defect detection. Haralick et al.
introduced this method, which has been widely
adopted in various image analysis applications,
including steel defect detection [5].

Furthermore, recent studies have focused on
enhancing the computational efficiency of defect
detection models. The concept of floating point
operations (FLOPs) is often used to measure the
computational complexity of models. This metric
helps in evaluating the trade-off between model
accuracy and computational cost [9].

Capture high-res images of
steel surfaces

Clean and nermalize
the image data

Redu ta dimensionality
whil ning features

Input PCA features
into DENN

Train CCNN on
feature data
Evaluate model
performance
Validate model

on testdata

Implement model
for real-time monitoring

Fig. 1 Mecthodology Flow Diagram for Steel
Surface Defect Detection using PCA and DCNN

connected layers to make predictions about the
presence and type of defects on steel surfaces.

Feature Extraction and Classification are
scamlessly integrated within our approach. PCA
extracts compact yet informative features from the
preprocessed images, which are then fed into the
DCNN for further refinement and classification.
This dual-stage process ensures that the model not
only captures subtle variations indicative of defects
but also generalizes well to unseen data, thereby
improving overall detection accuracy.
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Evaluation and Validation of our methodology
are  conducted rigorously wusing standard
performance metrics such as precision, recall, and
Fl-score. These metrics quantify the model's ability
to correctly identify defects while minimizing false
positives and false negatives. By benchmarking
against traditional methods and alternative
approaches, we demonstrate the superior efficacy
and reliability of our PCA-DCNN framework in
real-world industrial applications.

Algorithm: PCA-DCNN for Steel
Surface Defect Detection

Input: High-resolution steel surface images X
Output: Predicted defect categories ¥

Step. 1 Preprocessing:

e C(Clean images to remove noise and artifacts.

o Normalize pixel values if necessary: X,,mm =
X—

a

where p is the mean and o is the standard deviation.
Step. 2 Principal Component Analysis (PCA):

e Compute the covariance matrix Y, of Xporm:

Z ! Xr X
m norm*tnorm

e Compute the eigenvectors U and eigenvalues S

of ¥:
Zuzus

Select the top k eigenvectors corresponding to the
largest eigenvalues to form matrix U, .gyce

Step. 3 Feature Extraction (PCA Projection):

e Project normalized data onto the reduced
dimensional space:

Z= XnormUreduce

Step. 4 Deep Convolutional Neural Network
(DCNN):

e Initialize parameters for convolutional layers,
pooling layers, and fully connected layers.

e Forward propagation through convolutional
layers:

ZI0 = coN(Al-1, Wil plthy

Where A1l is the activation from the previous
layer, Wlllis the weights, andb!) is the bias of layer
L

In short, our study methodology offers a
substantial step forward in steel surface defect
identification, providing a scalable and efficient

solution for quality assurance in production contexts.

By combining the complementary qualities of PCA
for dimensionality reduction and DCNNs for
complex pattern recognition, our approach not only
improves detection accuracy but also lays the
groundwork for future improvements.

e Apply activation function (e.g., ReLU) and
pooling (¢.g., max pooling):

Al = ReLU(ZI)
Pl = pooL(AlMy
e Flatten the last pooling layer to a vector Py,

e Fully connected layers with parameters
W[fC]PfIaf + plrd

e Output layer with softmax activation for
classification:

Y = Softmax(Z'/l
Step. 5 Training:
e Split data into training, validation, and test sets.

e Minimize the cross-entropy loss using

backpropagation and gradient descent:
m C
1 Z Z Yo7
] - m i,c( i,c)
i-1c-1

where Y, is the ground truth label for class ¢ of

sample i, ?E_C is the predicted probability for class c,
and C is the number of classes.

. . a a
e Update parameters using gradients # and %

Step. 6 Evaluation:

e Calculate precision, recall, and Fl-score on
validation set to assess model performance.

Step. 7 Testing:

¢ Evaluate final model on test set to measure
generalization performance.

Step. 8 Deployment:

e Implement trained model for real-time defect
detection in industrial applications.
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Mathematical Notations:

®  X:Input data matrix of steel surface images,

o X .m Normalized input data matrix.

e i Mean vector of input data.

& g Standard deviation vector of input data.

e 33 Covariance matrix of normalized input data.

e U Eigenvector matrix from PCA.

* S:Eigenvalue diagonal matrix from PCA.

® U, dus: Matrix of selected eigenvectors for dimensionality reduction.
e Z:Feature matrix after PCA projection.

s  Z!: activation matrix of layer [ in DCNN.

o A Activation matrix after applying activation function ReLU.
s P! pooling matrix after applying pooling function POOL.
s Pp,y Flattened vector from the last pooling layer.

s W Weight matrix of layer L.

o bl'l: Bias vector of layer [.

s W weight matrix of the fully connected layer.

s bl Bias vector of the fully connected layer.

» Y Predicted probability matrix of defect categeries.

e .J: Cross-entropy loss function.

e m: Number of samples in the dataset.

e (: Number of classes (defect categories).
This algorithm and notation overview describe the step-by-step process of detecting steel surface defects using

our PCA-DCNN methodology, which combines advanced feature extraction with deep learning techniques to
deliver accurate and rapid defect classification.

IV. RESULTS AND DISCUSSIONS

According to Song and Yan [8], the NEU 360
dataset serves as the foundation for developing a
diagnostic model for steel surface defects. This M0
dataset encompasses six distinct types of defects:
rolled-in scale, patches, crazing, pitted surface,
inclusion, and scratches and provides visual
examples of these defect cases used in the study.
Each class consists of 300 samples, where each

Sample

” 300 0 300 A0 300 00
300 == & { L i !

£

(=]

sample is represented by an image measuring 200 20
x 200 pixels, as detailed in Figure 2. For the
experiment, the dataset is randomly divided into
training, validation, and testing sets, with 70% of
the images allocated to training, and 20% and 10% : : :
to testing and validation respectively. A significant Rolled-in scal®atches  CrazingPitted surfacknclusion Seratches
challenge posed by this dataset is the intricate
spatial characteristics of the images. Spatial
information can vary greatly within the same class; Fig. 2 Description of the dataset.
for instance, scratch patterns may range from

horizontal to vertical stripes. Additionally,

variations in grayscale due to lighting conditions

further complicate the image analysis [8].

Number

(Ulass
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The evaluation of our hybrid PCA-DCNN
model for detecting steel surface defects yielded
promising results across different defect categories.
For the "0.0" category, which represents defect-free
surfaces, the model achieved a precision of 0.94 and
a recall of 0.99 Precision (P) measures the
proportion of correctly identified defect-free

surfaces among all surfaces classified as defect-free
( — TPoo
TPy.o+FPoo

(correctly identified defect-free surfaces) and
FPy, are false positives (non-defective surfaces
incorrectly classified as defective). Recall (R)
measures the proportion of correctly identified

defect-free surfaces among all actual defect-free
TPo.o

TPo,o+FNoo
negatives (defective surfaces incorrectly classified
as non-defective).

) where TPyq are true positives

surfaces (F = ) .Owhere FNy, are false

Similarly, for the "1.0" category, indicating the
presence of defects, the model exhibited a precision
of 0.98 and a recall of 0.92. This means that the
model correctly identified 98%98\%98% of the

surfaces classified as defective

_ TP1o ) . -
(P TPLo+FPin)” with TPy, true positives and

TP false positives, with .92 achieved.

Our hybrid PCA-DCNN model achieved
significant advancements in detecting and
classifying steel surface defects. For comparison,
traditional machine learning methods such as SVM
utilizing GLCM achieved an accuracy of 88.06%
with a corresponding precision of 0.87. In contrast,
our PCA-DCNN model surpassed this performance
with an average precision and Fl-score of 0.96,
showcasing its superior ability to accurately identify
both defect-free surfaces and surfaces with defects
in Figure 3.

The PCA-DCNN model demonstrated a
precision of 0.94 and a recall of 0.99 for defect-free
surfaces, ensuring robust identification of non-
defective arcas. Moreover, for surfaces with defects,
the model achieved a precision of 0.98 and a recall
of 0.92, highlighting its effectiveness in accurately
detecting and categorizing defects. These results
underscore the model's capability to minimize false
positives and false negatives, crucial for
maintaining  high product quality in steel
manufacturing.
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Fig. 3: Comparison of performance metrics between SVM + GLCM and
PCA-DCNN. The SVM + GLCM method achieved an accuracy of 88.06% with
a precision of 0.87, whereas the PCA-DCNN model surpassed this performance
with an average precision and F1-score of 0.96, demonstrating superior accuracy

in identifying steel surface defects.

Overall, our approach combining PCA for feature
extraction and DCNN for defect classification not
only enhances detection accuracy but also provides
a scalable solution for real-time quality monitoring
in industrial settings. These findings represent a
significant step forward in automated defect
detection systems, promising improved efficiency
and reliability in steel surface quality control
applications. Future research could explore further
optimizations and integrations to enhance the
model's performance in practical manufacturing

environments.

V. CONCLUSION

The PCA-DCNN model represents a significant
advancement in the field of automated defect
detection in steel manufacturing. By integrating
Principal Component Analysis (PCA) for efficient
feature extraction and Deep Convolutional Neural
Networks (DCNNSs) for precise defect classification,

our model achieves remarkable accuracy with an
average precision and Fl-score of 0.96, surpassing
traditional methods like SVM with GLCM. This
capability is crucial for maintaining high product
quality by minimizing false positives and negatives,
thereby enhancing overall manufacturing efficiency
and reducing operational costs. The model's robust
performance, exemplified by its ability to achieve a
precision of 0.94 and recall of 0.99 for defect-free
surfaces, and a precision of 0.98 and recall of 0.92
for defective surfaces, underscores its reliability in
identifying subtle defects across diverse steel
surface textures. Furthermore, its scalability and
suitability for real-time quality monitoring make it a
valuable tool in industrial settings, promising
improved quality control and production reliability.
Continued research and development in this area are
essential to further optimize and integrate such
advanced models into mainstream manufacturing
processes, ensuring continued advancements in
product quality and operational efficiency.
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