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ABSTRACT

Privacy-preserving data mining techniques play a crucial role in analyzing diverse information, such as Internet
of Things data and healthcare data. However, gathering a substantial amount of sensitive personal information
poses a challenge. Additionally, this detail may have missing values, which current methods for collecting
personal information do not addresswhile ensuring data privacy. Failing to consider missing values decreases the
accuracy of data analysis. In this article, we propose a method for privacy-preserving data collection that accounts
for many missing values. The patient data is anonymized and sent to a data collection server. The client then uses
the Harris hawk optimization algorithm integrated with particle swarm optimization to determine which indices
should be taken and passed on to the server side, reducing computation power and increasing accuracy. The
server for data collection constructs a generative model and contingency table specifically designed for multi-
attribute analysis, employing expectation-maximization and Gaussian copula methodologies. An efficient server
and client architecture is implemented to increase the performance and security of the system. Using differential
privacy as a privacy metric, we conduct experiments on synthetic healthcare data, including COVID-19-related

data. The results show a 80 — 90% accuracy compared to existing methods that do not consider missing values.

Keywords : Gaussian Copula , Expectation maximization , Differential Privacy , Harris Hawk

I. INTRODUCTION

To effectively manage a pandemic like COVID-19,
crucial information such as age, gender, family
structure, and medical history of infected individuals is
required [1], [2]. While patients may provide such data
highly

Anonymizing this information would allow it to be

to medical institutions, it is sensitive.

shared among researchers globally without revealing

patient identities, aiding in wunderstanding the

pandemic's status and predicting its trajectory more

accurately. Even after anonymization, acquiring a
substantial amount of sensitive personal information
can be challenging. Additionally, this data often
contains missing values, as some individuals are willing
to provide only partial information. Various methods
have been proposed to collect personal information
while ensuring data privacy, with many of them
relying on differential privacy as the privacy model [3],
[4], [5], [6]. However, these methods often overlook

missing values, leading to a significant reduction in
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data analysis accuracy, especially in multi-attribute

analysis scenarios [7], [8].

In this paper, we introduce a method for privacy-
preserving data collection that addresses the challenge
of missing values. Medical information is rendered
anonymous within the patient's personal device or
computer within authorized healthcare facilities prior
to transmission to a centralized data repository. Each
individual retains the autonomy to select the specific
data elements they wish to disclose, ensuring greater
control over their privacy. Subsequently, the data
collection server employs expectation- maximization
and Gaussian copula techniques to generate a model
and contingency table tailored for multi-attribute
analysis. Our approach recognizes that restoring the
value distribution of one or two attributes can limit
errors in each attribute, even when multiple values are
missing. By leveraging copula, which enables data
generation based on available information like
correlation and mutual information, we combine
copula features with data recovery using differential
privacy. This innovative approach improves the
confidentiality of data collection by employing a

copula model in differentially private data collection,
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particularly in scenarios with numerous missing values.

This represents a substantial technical advancement.

Patients furnish their data, encompassing age, gender,
and medical history, to authorized entities such as
hospitals. Patients have control over what information
is shared with the data collection server, which is then
made available to researchers worldwide. Patients may
also volunteer supplementary information, such as
family composition and income, which is not divulged
to hospitals. The inclusion of detailed patient data
could potentially result in patient identification by
researchers even after the removal of all identifiers.
detailed
significantly reduces the effectiveness of data analysis.
To tackle the

implementation of a differential privacy model.

However, insufficiently information

this challenge, we suggest
Hospitals utilize a mechanism of differential privacy to
handle patient-provided information, encompassing
any supplementary data. The information, processed
differentially private, along with the additional
differentially private data, is then transmitted to the
data collection server, which consolidates this data
from various hospitals. The server then constructs a

generative model to
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approximate a model created using true, undisclosed
information. Researchers can utilize this generative model to
create a contingency table, mine association rules, and employ
machine learning techniques, such as deep neural networks, for
analysis.

Antibody Against
COVID-19

and governance. By promoting transparency, accountability,
and respect for individuals' autonomy, we can uphold the
ethical principles underpinning data-driven healthcare
initiatives and foster public confidence in the responsible use of
sensitive health information.

L Privacy-preserving data collection
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Fig. 1

The Fig.1 portrays a process for collecting data related
to COVID-19 while preserving privacy. It features individuals,
each associated with their personal details as data points. Data
is anonymized as it moves toward a central point called server,
and a contingency model is constructed based on this
anonymized data.

Moreover, it's essential to consider the scalability and
efficiency of the proposed method. Large-scale data collection
and analysis require robust systems capable of handling vast
amounts of information efficiently. Therefore, our approach
incorporatcs scalable algorithms and distributed computing
techniques to cnsurc timely processing of data from various
sources. Additionally, continuous evaluation and refinement of
the privacy-preserving mechanisms are crucial to adapt to
evolving threats and regulatory requirements in the healthcare
data landscape. Thus, our method emphasizes iterative
improvement and collaboration with stakeholders to maintain
the balance between data utility and privacy protection.

Furthcrmore, it's imperative to acknowledge the
cthical considerations surrounding data collection and privacy
preservation in healthcare settings. While the aim is to leverage
patient data for public health research and policy-making, it's
crucial to prioritize the protection of individuals' privacy rights
and maintain trust in the healthcare system. Transparency and
informed consent play pivotal roles in ensuring that patients
understand how their data will be used and have control over
its dissemination. Additionally, efforts should be made to
minimize the risk of re-identification, such as implementing
robust anonymization techniques and regularly auditing data
handling processes. Moreover, fostering collaboration between
researchers, policymakers, and advocacy groups can help
establish guidelines and best practices for ethical data sharing

The paper is arranged as follows: Background,
Related works, Proposed Method, Evaluation, Discussion,
Conclusion.

2 BACKGROUND

In the context of COVID-19, we assume that all
patients share their information with the data collection server
through authorized entities like hospitals, mirroring the
approach taken in COVID-19 contact tracing applications [9].
For instance, the Ministry of Health, Labor, and Welfare in
Japan introduced the COVID-19 Contact-Confirming
Application (COCOA), where a user who tests positive for
COVID-19 receives a code from an authorized health center to
input into COCOA, allowing only users with valid codes to
register their infection.

Our proposed approach can be expanded to other
contexts, such as crowd-sensing applications, where
participants contribute data such as location and accelerometer
readings. Since smartphones are capable of health monitoring
and cognitive function assessment [10], they can serve as a
portal for medical information to the data collection server. In
cases where involvement of authorized entities is challenging,
incentive and trustworthiness mechanisms from prior studies
[11], [12] can be applied.

We also consider the presence of many missing values
in the collected data, reflecting the hesitation of many
individuals to provide complete information [13], [14]. The rate
of missing values is reported to range between 25% and 55%,
and may be even higher [15]. Additionally, we assume that the
data collection server is honest-but-curious, meaning it follows
the proposed scheme honestly but aims to reveal as much
personal data as possible. The server is also assumed to
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construct a generative model and a contingency table, requiring
categorical attribute values. Numerical values are classified
into predefined categories in advance.

While some studies on privacy protection assume that
users seek services from a service provider based on their
attribute values, in our case, individuals voluntarily supply
anonymized values to the data collection server and do not
anticipate services based on these values, though the server may
provide incentives such as financial rewards. The primary
objective of the data collection server is to construct a dataset
that can be statistically analyzed without requiring precise
information about each individual's attribute values. The
method incorporates the Harris hawk optimization algorithm
for selecting indices and the implementation of an efficient
server and client architecture for improved performance and
security.

Incorporating the Harris hawk optimization algorithm,
our method optimizes the selection of indices to be passed to
the server, reducing computation power and enhancing
accuracy. This approach is especially beneficial in scenarios
with large datasets or complex computations. Furthermore, we
implement an efficient server and client architecture to bolster
the system's performance and security. This architecture
cnsures smooth data transmission between the client and server,
cnhancing the overall user expericnce and protecting sensitive
information.

3 RELATED WORK
3.1 Differential Privacy

Extensive research in the field of data mining [16], [17]

has focused on differential privacy models [7].
P(A(s1) € R) < e€ * P(A(s2) E R). (1)

The equation (1) encapsulates the concept of e-
differential privacy, a cornerstone of privacy-preserving data
analysis where A represents a randomized algorithm, s1 and
s2 denote individual values or data points in the dataset, R
represents potential outcomes of the algorithm 4, P(A(s1) € R)
denotes the probability that the outcome R falls within some
specified range R when the algorithm A is applied to data point
s1, P(A(sz) € R) denotes the probability that the outcome R
falls within the same specified range R when the algorithm A is
applied to data point sz and & represents a parameter that
quantifics the level of privacy protection provided by the
algorithm A. It is a measure of how much the output of the
algorithm can reveal about any individual data point.

The inequality expresses that for any pair of data
points s1 and sz , and for any possible outcome R of the
algorithm A, the probability that the outcome R falls within the
specified range R when applied to data point s1 is at most e€
times the probability of the same outcome R when applied to
data point s2.

In simpler terms, e-differential privacy ensures that
the likelihood of observing a particular outcome from the

algorithm A for any individual data point is not significantly
affected by the presence or absence of any other individual data
point. This property enables individuals to share their data for
analysis without fear of their privacy being compromised, as
the risk of identifying any single individual's contribution to the
data is controlled within the bounds set by &.

3.2 Anonymized Data Analysis With Differential
Privacy

One application of transformed data collection is
mobile crowd-sensing, where privacy-preserving techniques
can encourage participation [18]. Erlingsson et al. [19]
introduced a privacy-preserving method called Randomized
Aggregatable  Privacy-Preserving  Ordinal Response
(RAPPOR). Kairouz et al. [3] further analyzed and extended
this method, creating O-RAPPOR, which outperformed
previous algorithms. O-RAPPOR uses Bloom filters [20],
which arc modified randomly to ensurc differential privacy.
However, these mcthods do not address missing values,
requiring the removal of records with missing values
beforehand.

Sei et al. [4] introduced S2Mb, an enhancement of the
randomized response scheme [21], which offers a technique for
estimating accurate counts from values affected by multiple
errors [5]. Their focus was on a single attribute without missing
values, and they transformed multiple attributes without
missing values into a single attribute beforehand. Numerous
other studies have also addressed privacy-preserving data
collection [22], [23], [24], [25], [26]. Nevertheless,
differentially private anonymized data collection methods are
greatly impacted by the number of records in the database,
leading to a notable decrease in accuracy, especially with small
record counts.

Wang et al. introduced a platform for differentially
private deep neural networks tailored for handling sensitive
crowd-sourced data [27].This platform trains a deep neural
network model using sensitive data and publishes the trained
model. However, attackers can use model inversion [28], [29]
and membership inference attacks [30], [31] to infer sensitive
raw data from the trained model. To protect against these
attacks, the platform adds noisc during the training phasec.
Nevertheless, Wang et al. assumed that the platform is a trusted
entity capable of collecting true information about sensitive
data.

3.3 Missing Value Imputation

Wei et al. conducted a comparative analysis assessing
the imputation accuracies of eight different methods [32],
determining that among them, random forest and quantile
regression imputation demonstrated superior performance,
particularly for handling left-censored data. In another
investigation, Deb and Liew introduced a technique tailored for
handling traffic accident data [33]. Their method employs a
decision tree to identify a cluster of associated records, from
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which missing values are estimated based on the correlation
between absent and present attributes. This approach also
encompasses the process of sampling numerous potential
estimated values characterized by significant similarity.

Many estimation techniques utilize fuzzy clustering
algorithms. Rahman et al. proposed an estimation framework
based on fuzzy expectation-maximization and fuzzy clustering
for missing values [34]. This method identifies and utilizes
records with the highest resemblance to the record with missing
values, employing a general fuzzy c-means clustering
algorithm for the search. The missing values are then estimated
using a fuzzy expectation-maximization algorithm, a variation
of the standard expectation-maximization algorithm. Similarly,
Sefidian and Daneshpour suggested the Gray-based fuzzy c-
means and mutual information feature selection estimation
method [36]. This approach calculates the distance between
records using the gray relational grade during the clustering
algorithm, selecting highly related attributes based on mutual
information. Raja and Thangavel presented a rough k-means
centroid-based estimation method [37] that can handle
inconsistencies and uncertainties in datasets, demonstrating its
superior performance compared to simple k-means and fuzzy
c-means clustering methods.

All of the previously mentioned methods assume that
the acquired values accuratcly represent the truc values.
However, this study posits that the server receives disguised
data duc to differential privacy techniques altering the true
values. The nature of these concealed values is contingent upon
the differential privacy techniques employed, such as a Bloom
filter or a set of dummy values. Therefore, current missing
value estimation methods are not suitable in differential privacy
scenarios.

4 PROPOSED METHOD

In our mecthod, we utilize differential privacy to
anonymize personal data of patients stored on the client's end
before transmitting it to the server. The server then gathers the
anonymized data and reconstructs the distributions of each
attribute, along with all combinations of two attributes. From
these distributions, the mutual information of all pairs of
attributes is computed. Subsequently, a generative model of the
patient personal data is derived from this mutual information
using a Gaussian copula [38], [39]. This approach, which relies
solcly on information about attributec pairs, is resilient to
missing values. To visually represent the generative model, a
contingency table is created from the generative model and the
distribution of each attribute.

For the analysis of the collected differentially private
data, the server develops a copula model that mitigates the
noise introduced by the differentially private technique.
Constructing a copula model necessitates the value distribution
of each attribute and mutual information about all attributes.
Therefore, our method initially estimates single-attribute
distributions and subsequently estimates attribute-pair
distributions. This copula model can generate an arbitrary
number of data samples without missing values arc used to

construct a contingency table. Additionally, the Harris hawk
optimization algorithm is employed to enhance the selection of
attribute indices and reduce computation, further improving the
accuracy of our method We utilize the Harris hawk
optimization algorithm [45], [46] to enhance the selection of
attribute indices, thereby reducing computation and improving
accuracy. This algorithm optimizes the selection process,
determining which indices should be passed to the server for
further analysis. On the server side, the collected data is
processed to reconstruct attribute distributions and calculate
mutual information for all pairs of attributes. This information
is then utilized to construct a generative model using a Gaussian
copula. This model has the capability to generate synthetic data
samples that closely mirror the original data distribution, even
in the presence of missing values.

25-38
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The Fig.2 depicts data privacy process. It begins with
a collected data from the patients, which undergoes
anonymization. From there, it leads to differential privacy. The
anonymized data is then analyzed using Expectation-
Maximization and Gaussian Copula Methods. These processes
contribute to the creation of a generative model, which is part
of a larger system called the data collection server which also
consists of the contingency table.

To handle missing values, our method focuses on the
combination of attribute pairs, ensuring robustness in data
analysis. The copula model generated by our approach can
efficiently produce data samples without missing values,
allowing for the construction of a comprehensive contingency
table for visualization and further analysis.

Overall, our method offers a comprehensive approach
to anonymizing and analyzing patient data, ensuring privacy
while maintaining the integrity and accuracy of the data for
research and analysis purposes.

Volume 10, Issue 7, May-June-2024 | http://ijsrcseit.com



Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol.,, May-June-2024, 10 (7)

4.1 Anonymization at the Client Side

{s JURan(V¥ }h —1)withprob.p
i VAN ;

Ry={ )

Ran(V)\{s;}, hj)otherwise,

The equation (2) outlines the process of creating a
value set Rij for each attribute 4/ during the anonymization of
patient attribute values where sij denotes the value of attribute
Aj for patient i, fj represents the number of categories for
attributc A4/, Vj significs the domain of attribute 4j and Vjk
represents the kth value in the domain Vj.

It consists of two cases:

If the attribute value s/ is present (i.e., not missing), it
remains unchanged. Additional values are selected randomly
from the domain Fj (excluding si7). The number of additional
values selected is /j—1.

If the attribute value sij is missing, a random value
from the domain Vj (excluding sij) is selected with probability
bj-

The function Ran(S,h) randomly selects / elements
without duplication from the set S. For example, if S={4,8,C}
and A=2, Ran(S,h) could output sets like {4,B}, {B,C}, or
{A,C}.

This anonymization process cnsures that cach non-
missing attributc valuc is replaced or supplemented with
appropriatc values from the domain, maintaining the intcgrity
of the data while anonymizing it. The parameters Aj and pj
control the number of additional values selected and the
probability of selecting random values, respectively,
contributing to the overall anonymization process.

h, = max ([—f’—J , Dand
7 1+e€

e‘h
— P .
fi—hjtech;

pj 3)

The equation (3) outlines the determination of
parameters /4j and pj to achieve e-differential privacy in the
context of anonymizing patient attribute values where Aj
represents the number of additional values selected when
anonymizing attribute 4j, pj denotes the probability of selecting
random values when attribute 4/ values are missing, fj signifies
the number of categories for attribute 4j and ¢ represents the
privacy parameter, controlling the level of differential privacy.
The formula for h; calculates the number of additional
values (A)) to be sclected for attribute A7 during anonymization.
It ensures that the value of 4j is at least 1 and takes into account
the number of categories ( f; ) and the privacy parameter (¢).
The formula for p; calculates the probability (pj) of
sclecting random values when attribute 4/ valucs arc missing. It
considers the number of additional values (%)), the number of
categories (f), and the privacy parameter ().
Each value set Rij should adhere to ¢/g-differential
privacy, where g represents the number of attributes. The
allocation of the privacy budget (e/g) ensures that privacy

guarantees are evenly distributed among attributes.Even when
attributes are identical, achieving c-differential privacy is
possible duc to the composition property of diffcrential privacy
[40], which allows for the aggregation of privacy guarantees
across attributes.

Algorithm 1 runs at client side, which is the anonymization
algorithm.

Algorithm 1. Anonymization Algorithm

Input: Privacy budget for the differential privacy € , Original
data s;3, ..., S;g which is the true attribute value from each jth
attribute of A; from every domain of V;

Output: Disguised version of Original data, R;

Step 1: forj =1 ,..., g (number of attributes) do

Step 2: f; < |V;| size of V; is determined

Step 3: Based on (3), determine p; and h; by substituting €/g
into €

Step 4: Based on (2), obtain R;; from s;; and V;
Step 5: end for
Step 6: return &

4.2 Estimation at the Server Side

The data collection server first estimates the
distribution of each attribute's values, as explained in Section
4.2.1. With these estimated distributions, the server builds a
generative model, specifically a Gaussian copula (see Section
4.2.2). Next, it produces n complete data records and creates a
contingency table of target attributes, as directed by a data
analyzer (Sections 4.2.3).

4.2.a) Optimization algorithm :

Integrating the Harris Hawk Optimization (HHO)
algorithm with the Particle Swarm Optimization (PSO)
technique aims to create a robust optimization strategy that
leverages the strengths of both algorithms. The objective is to
develop an approach that effectively explores the search space
while exploiting promising regions, leading to improved
convergence speed and solution quality. Inspired by the hunting
behavior of Harris's Hawks, HHO simulates the interaction
between prey and predators to update the population's positions
iteratively. Meanwhile, PSO draws inspiration from bird
flocking behavior, where cach particle adjusts its position based
on its own experience and the flock's best performer. By
combining these algorithms, the objective is to enhance
optimization performance, making it applicable to various
optimization problems such as function optimization, feature
selection, and parameter tuning in machine learning algorithms.
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The integration of the Harris Hawk Optimization
(HHO) algorithm with the Particle Swarm Optimization (PSO)
[47] technique provides a promising optimization strategy.
HHO [46] mimics the hunting behavior of Harris's Hawks,
updating positions based on prey-predator interactions. In
contrast, PSO [48] is inspired by bird flocking, with particles
adjusting positions according to personal and collective
experiences. By merging these methods, the exploration-
cxploitation tradc-off is balanced, potentially lcading to faster
convergence and higher-quality solutions. The formulas
provided facilitate the implementation of these algorithms,
governing particle movements based on their current positions,
velocities, and social influences.

np.sum(solution ** 2) (©))

The equation (4) calculates the sum of squares of
elements in the solution array. It's commonly used in
optimization algorithms as part of the fitness evaluation process,
where the objective is to minimize this sum to reach the optimal
solution.

(self.global best position -
(5)

social_weight * 2 *
sclf.particles[i])

The equation (5) represents the update rule for the
velocity component in the PSO algorithm. It adjusts the
velocity of each particle based on the difference between the
global best position (self.global_best_position) and the current
position of the particle (self.particles[i]), scaled by the social
weight and a random factor r2.

move_vector = self.hawks[rand_hawk_idx] - self.-hawks][i]
self.hawks[i] += move_vector * np.random.rand() 6)

The cquation (6) calculates the movement vector for
cach hawk (move_vector) bascd on the difference between the
position of a randomly selected hawk
(self-hawks[rand_hawk idx]) and the current hawk's position
(self-hawks[i]). Then, the position of the current hawk is
updated by adding a fraction of the movement vector, scaled by
a random factor. This process mimics the hunting behavior of
hawks in the HHO algorithm.

4.2.1 Separated Estimation: Estimation of a Value
Distribution of Each Attribute :

_pihy=1) | (A=pph;  hi=p;
i = + =5 (7
fi—1 fi—1 fi—1
le ujl
w; U;
CH=mMC, ®)
Wifi Ujs;

=M1 (9)
Zjf; Wifj

Each client sends its true value and /j—1 randomly
selected values (other than the true value) with probability p;
for attribute j. The probability of sending another value instead
of the true value is calculated using the equation (7) where
q; represents the probability of sending another value instead
of the true value.

The equations (8) and (9) depict transformations
involving matrices M and M~1. These transformations likely
play a role in data proccessing or analysis.

Due to the limitations of matrix M's estimation
accuracy and the computational complexity of its inverse
function, an EM-based algorithm is employed. The EM
algorithm is utilized for maximum a posteriori estimation,
treating certain variables (1 ) as unobserved latent variables.
By iteratively estimating the unobserved latent variables (wy ),
the EM algorithm identifies the variables that best explain the
observed values (wjg).

Expectation-Maximization (EM) algorithm ensures
likelihood improvement with each iteration [41], [42]. The
equation (10) calculates the estimated count of value
occurrences within attributes. The approach combines EM with
other techniques for exploration and exploitation. The
introduction of zj, denotes estimated value occurrences,
enhancing the estimation process.

.
B = Dp=1 Wik- (10)
zji < zji ;D + q;(e — D)), 11D
where
h._ g
= s 12
W= s (12)
-
Dk = e (13)

= ’
PjZjk+q;(hjr=2zjk)

This outlines a process for obtaining estimated
occurrences ( zj ) of value combinations Vjk in attribute Aj
using an expectation-maximization (EM)-based algorithm.

The equation (11) updates the cstimated occurrences
of Vjk (zjk) iteratively based on substitution. It involves a
weighted sum of two terms, with coefficients p;Dy and
q;(¢ — Dy), influencing the update. . _

The equation (12) defines gqj, representing the
probability of sclecting a value other than the truc one from the
domain Vj. It depends on parameters hj, pj, and f;, reflecting
the number of categories, the probability of selecting the true
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value, and the total number of categories for attribute Aj,
respectively.

The equation (13) computes Dy, which involves the
ratio of observed occurrence (wji) to the expected occurrences
under the current estimate of zjy. It incorporates parameters h;,
pj, q; and %, where § represents the estimated count of
occurrences for attributc A;.

This refers to estimating the occurrence of each
combination of attribute values for n patients, enabling the
estimation of value distributions for all attribute pairs A;
and Ajr .These outline a systematic approach for updating
estimated occurrences of attribute value combinations using an
EM-based algorithm.

Mutual information measures the dependency
between two random variables, indicating how much knowing
one variable reduces uncertainty about the other. Mutual
information quantifies the amount of information obtained
about one attribute by observing the other. A higher mutual
information value indicates a stronger relationship or
dependency between the two attributes. If the mutual
information is zero, it suggests that the attributes are
independent.

F
p(k, k) log P&

PP (34]

ZI{EV,‘ ZICFEVjF

The equation (14) calculates mutual information by
summing over all possible values of attributes A/ and 4;'. For
cach combination of attribute values Vjk and Vj'k’, it computes
the joint probability p(k,k) and compares it to the product of
the marginal probabilities p(k) and p(k'). The logarithm of the
ratio of joint probability to the product of marginal probabilitics
is multiplied by the joint probability, and this product is
summed over all possible combinations where p(k,k’)
represents the joint probability that Vie and Veer occur for
attribute Ay, and p(k) represents the probability that Vj;, occurs
for attribute A;.

4.2.2 Generative Model Construction: Using a
Gaussian Copula Constructing a Generative Model

We created n complete datasets by employing both the
Gaussian copula € and the reconstructed data as described in
Section 4.2.1. The number of instances n for each attribute Aj
was determined based on the estimated attribute distribution
outlined in Section 4.2.1. Additionally, random values
x1, .. , xg were generated from a multivariate Gaussian
distribution with a covariance matrix X . Subscquently, for
cach instance i = 1, ..., g, we computed ui = P (xj). Finally,
leveragin%hthe reconstructed data detailed in Section 4.2, 1, we

obtaingd the inverse cumulative distribution function F-T for
uj
each attribute value, where Fj denotes the estimated attribute

distribution.

25-38

4.2.3 Contingency Table Creation: Counting Each
Combination of the Target Attributes

After complcting the aforementioned procedure, we
obtained n complete data records comprising g attributes.
When dealing with a contingency table involving numerous
attributes, its core utility may diminish [43], [44]. As a result,
analysts typically opt for a subset of attributes. Subsequently,
the target contingency table is generated by tallying the
occurrences of each combination of attribute values from the n
complete data records generated.

To mitigate computational demands and enhance
precision, the client employs an amalgamated version of
Particle Swarm Optimization and Harris Hawk Optimization
algorithms [45] to select and relay indices to the server. The
data collection server formulates a generative model and
contingency table for multi-attribute analysis utilizing
cxpectation-maximization and Gaussian copula techniqucs.

A streamlined  server-client  architecture  is
implemented to bolster system efficiency and security.
Leveraging differential privacy as a privacy metric,
experiments are conducted on synthetic healthcare data. This
approach is instrumental in fortifying the model's resilience,
thereby facilitating the generation of an effective contingency
model.

Algorithm 2 runs at server side.

Algorithm 2. Creation of Gaussian Coupla and Contingency
Table

Input: Privacy Parameter € , From (3) the parameters p; and
h; , algorithm 1 result R; and a sct of target names for
contingency table

Output: Contingency table for the target attributes
Step 1: for j=1,...,g (number of attributes) do

Step 2 : Z; < Based on Equation (8) , which is estimated
value distribution of 4;

Step 3: end for

Step 4: forj=1,...,g do
Step 5: forj' = 1,...,g do
Step 6: if j # j' then

Step 7: Z;; « Based on Equations (12) , (13), and (8) which is
cstimated value distribution of combination of Aj and A ¥
Step 8: end if

Step 9: end for
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Step 10: end for

Step 11: forj=1,...,g do

Step 12: Construct the cumulative distribution function F;
Step 13: end for

Step 14: forj=1,...,g do

Step 15: forj' = 1,...,g do

Step 16: if j # ' then

Step 17: do change of ) converges

Step 18: Cumulative distribution function Fj , F and 3
(maximum likelihood estimator) From Equation (10)

Step 19: Based on the mutual information of Z;

Step 20: end for

Step 21: end if

Step 22: end for

Step 23: end while

Step 24: 0 < @ (standard Gaussian distribution)

Step 25: fori=1,...,ndo

Step 26: { ic,.x ; } < gaussian distribution with covariance

matrix
Step 27: forj=1,...,g do

Step 28: u; < ®(x;) represents the probability density
function of a standard Gaussian distribution

Step 29: z; <« F 71(u}-) represents the marginal distribution of
attribute A;

Step 30: 0 « O U {{zy, ..., z4}}
Step 31: end for
Step 32: end for

Step 33: return Contingency table for the target attributes with
the combination of attribute values in O.

5 EVALUATION
5.1 Evaluation Setting

In this study, a contingency table is considered as a
representation of the probability distribution of attribute values.
To measure the difference between these distributions, the
Jensen—Shannon (JS) divergence was chosen over the more

commonly used Kullback—Leibler (KL) divergence. This
decision was made because the KL divergence requires all
probabilities to be non-zero; if any probabilities are zero, the
KL divergence cannot be calculated due to division-by-zero
crrors. In contrast, the JS divergence, which is derived from the
KL divergence, does not have this constraint.

The study tested various missing value rates, m,
ranging from 0.3 to 0.8, and considered analyses with different
numbers of attributes, ¢, ranging from 1 to 5. The reported
results are averages of 100 experiments for each setting, with
default parameters m=0.5, ¢=3, and €=5. It is important to note
that the missing value rate m is used only for experimental
purposes, and the proposed algorithm is not dependent on it.
The number of attributes, c, targeted for analysis can be chosen
frecly by the data analyst based on the specific goals of the
analysis. In our healthcare project, you are addressing the
challenge of missing values in synthetic diabetes, COVID-19,
and heart disease prediction datasets, while creating a
generative model. To handle missing values, you can employ
advanced machine learning techniques such as Generative
Adversarial Imputation Nets (GAIN), which has shown
promising results in imputing missing data accurately and
efficiently. GAIN has been proven to outperform other
commonly used methods like MICE and missForest,
particularly when dealing with high missingness rates and
skewed or imbalanced variables.

In addition to GAIN, you can also explore the use of
other methods tailored for mixed-type datasets, such as
missForest, which is based on the random forest algorithm.
Although missForest has demonstrated superior performance in
certain scenarios, it may suffer from long computation times,
making it less practical for big data research.

By employing these advanced techniques, you can
ensure that your generative model is trained on high-quality,
complete datasets, ultimately improving its predictive
capabilities and generalizability in healthcare applications. This
approach not only addresses the pervasive problem of missing
data but also leverages the power of machine learning to create
more robust and reliable models for diabetes, COVID-19, and
heart discase prediction.

In this specific synthetic diabetes, COVID-19, and
heart disease datasets, JS divergence can be employed to assess
the similarity between the original and synthetic datasets. By
comparing the distributions of various features, such as age,
gender, or clinical measurements, researchers can ensure that
the synthetic datasets maintain the essential characteristics of
the original datasets.

5.2 Evaluation Metrics

To thoroughly assess the algorithm’s efficiency, we
utilized the following performance evaluation metrics:

Accuracy: Accuracy mecasurcs the proportion of correctly
classificd instances among all instances in the datasct. It's a
general measure of the model's correctness and is calculated as:
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True positives + True Negatives

Accuracy = =
Total Population
5.3 Results
TABLE 1
Informative Data
Healthcare RGNS ot Noise
dataset Percentage
Heart 299 13 12.80%
Stroke 584 12 26.60%
Diabetes 768 9 14.77%
COVID-19 569 32 19.36%
Breast Cancer 188 11 18.85%
Heart: It includes various attributes like age, anaemia, (a)

creatinine_phosphokinase,diabetes,ejection_fraction,
high_blood_pressure,platelets,serum_creatinine,
serum_sodium, sex, smoking, time and the target attribute
death_event.

Stroke: It includes attributes like id, gender, age, hypertension,
heart_disease, ever _married, work type, residence type,
avg_glucose_level, bmi, smoking_status and target attribute as
stroke.

Diabetes: It includes attributes like Pregnancies, Glucose,
Blood Pressure, SkinThickness, Insulin, BMI,
DiabetesPedigreeFunction,Age and target attribute as Outcome.

COVID-19: It include attributes like Confirmed, Deaths,
Recovered, Active, New cases, New deaths, New recovered,
Deaths/100 cases, Recovered/100 cases, Deaths/100 recovered (b) 2 0
with target attribute as no. of countries.

Breast Cancer: It includes attributes like radius mean,
texture_mean, perimeter_mean, area_mean, smoothness_mean,
compactness _mean, concavity mean, concave points mean,
symmetry mean, fractal dimension mean and target attribute
as diagnosis.

(©
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Stroke: This graph depicts how the dataset stroke has
changed with the addition of white noise after the
process of anonymization with id and age being
plotted against frequency.

Diabetes: This graph depicts how the dataset diabetes
has changed with the addition of white noise after the
process of anonymization with Glucose and
BloodPressure being plotted against frequency.
COVID-19: This graph depicts how the dataset
COVID-19 has changed with the addition of white
noisc after the process of anonymization with a plot
showing confirmed against dcaths with frequency.
Heart: This graph depicts how the dataset heart has
changed with the addition of white noise after the
process of anonymization age and anaemia being
plotted aginst frequency.

Breast Cancer: This graph depicts how the dataset
breast cancer has changed with the addition of white
noisc after the process of anonymization with
perimeter mean  and arca_mcan plotted aginst
accuracy.

Accuracy comparision for Heart dataset

08

06

Accuracy

0.4

02

o
O-RAPPOR s2Mb MON POEETE DF4+Copula Differential Privacy  Proposed

Methods
Fig. 3
Fig. 3 depicts the comparison of accuracy with our proposed
method to all the other methods for Heart dataset showing
higher accuracy for our result.

Accuracy comparision for Diabetes dataset

o8

POE/ETE DF+Copula Differential Privacy Proposed

Fig. 4
Fig. 4 depicts the comparison of accuracy with our proposed
method to all the other methods for Diabetes dataset showing
higher accuracy for our result.

0.0
O-RAPPOR S2Mb MON

Accuracy comparision for COVID-19 dataset

061

#sccuracy

041

00
POE/ETE DF4COpUla Differential Privacy  Proposed

Methods

0
O-RAPPOR s2Mb MON

Fig. 5
Fig. 5 depicts the comparison of accuracy with our proposed
mecthod to all the other methods for COVID-19 datasct showing
higher accuracy for our result.
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Accuracy comparision for Breast Cancer dataset

0.2

0.0

O-RAPPOR S2Mb MDN PDE/ETE

Methods
Fig. 6
Fig. 6 depicts the comparison of accuracy with our proposed
method to all the other methods for Breast Cancer dataset
showing higher accuracy for our result.

DF+Copula Differential Privacy Propose

Accuracy comparision for Stroke dataset

1o
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Accuracy
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a2

0
O RAPPOR S2Mb MON POE/ETE DF { Copula Differential Privacy  Proposed

Methods
Fig. 7
Fig. 7 depicts the comparison of accuracy with our proposed
method to all the other methods for Stroke dataset showing
higher accuracy for our result.

The other methods include O-RAPPOR, S2Mb, MDN,
PDE/ETE, DF+Copula, Differential Privacy. Comparing with
these methods, our proposed method produces higher accuracy
for all healthcare datasets.

6 DISCUSSION

6.1 Extensions of €-Differential Privacy

This study primarily concentrates on e-differential
privacy and e-local differential privacy. However, several
modifications and expansions of e-differential privacy (and e-
local differential privacy) have been proposed in the literature.
These extensions include Gaussian differential privacy,
concentrated differential privacy, Bayesian differential privacy,
and Renyi differential privacy. Despite these extensions, many
studies, especially those involving differentially private

federated learning (which constructs a machine-learning model
based on distributed data), still predominantly aim for €- or (e,
§)-differential privacy.

e-Differential privacy is considered the foundational
concept underpinning various definitions of differential privacy,
offering stronger privacy assurances compared to these
relaxation techniques. Consequently, e-differential privacy
remains a popular choice in recent research. Hence, our focus
in this study remains on e-differential privacy (and e-local
differential privacy). In future investigations, we may delve
into (¢, 8)-differential privacy and other extensions.

7 Conclusion

Patient information, crucial for monitoring infections
like COVID-19, is often shared with researchers. While privacy
protection is vital, an excessive focus on it can hinder data
analysis. Many patients withhold personal information or
provide only some attributes due to privacy concerns, resulting
in datasets with numerous missing values. Existing privacy-
protection data mining methods often overlook these missing
values, significantly reducing data analysis accuracy.

This study presents a novel approach that deduces the
value distributions of individual attributes and pairs of
attributes to construct a Gaussian copula. By leveraging
information from attribute combinations, this method proves
robust against missing values. The constructed Gaussian copula
integrates information from all pairs of attributes, thereby
improving data reproducibility. Through the utilization of
actual COVID-19 data, we illustrate that our approach
substantially diminishes the Jensen-Shannon divergence in
comparison to existing methods.

While this study assesses the proposed method using
publicly available data, future endeavors aim to gather more
sensitive attribute values utilizing this approach. Additionally,
this study integrates the Particle Swarm Optimization (PSO)
and Harris Hawk (HH) algorithms on the client-side to select
essential attributes, reducing computation power and increasing
accuracy in data analysis.

In future endeavors, the proposed method could be
extended to incorporate real-world healthcare datasets beyond
COVID-19 data, potentially through collaborations with
healthcare institutions to gather more comprehensive and
diverse patient attribute values while cnsuring privacy
protection. Additionally, cfforts could focus on adapting the
method to handle more complex data structurcs, such as
longitudinal or hierarchical data, to increase its applicability
across  various healthcare domains. Optimizing the
computational efficiency of the Particle Swarm Optimization
(PSO) and Harris Hawk (HH) algorithms, or exploring
alternative optimization techniques, would enhance scalability
for larger datasets. Evaluating the method across diverse
healthcare domains beyond infectious diseases, validating its
effectiveness using independent datasets, and assessing its
generalizability across different populations and geographic
regions would further validate its utility. Integration with
additional privacy-preserving techniques and the development
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of user-friendly software tools or platforms would facilitate
widespread adoption and ensure robust data security and
privacy protection in real-world healthcare applications.
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