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 This study explores recent advances in kinetic modeling of anaerobic 

digestion (AD) with a focus on optimizing chemical recovery in biological 

wastewater treatment systems. Anaerobic digestion has emerged as a 

critical component of sustainable wastewater management, enabling the 

conversion of complex organic substrates into valuable products such as 

biogas, volatile fatty acids (VFAs), and nutrients. However, the nonlinear 

dynamics, microbial consortia interactions, and substrate variability in AD 

processes pose significant challenges to prediction, control, and 

optimization. Kinetic models serve as essential tools for understanding 

system behavior, improving reactor performance, and guiding the recovery 

of target chemicals. This review systematically examines the development 

and refinement of kinetic models ranging from traditional first-order and 

Monod-based approaches to advanced mechanistic and machine learning-

driven models. Recent innovations include the integration of multi-phase 

reaction kinetics, dynamic substrate degradation pathways, and microbial 

community modeling using ADM1 (Anaerobic Digestion Model No. 1) as a 

foundational framework. Hybrid models combining empirical kinetics 

with data-driven algorithms such as artificial neural networks (ANNs), 

support vector machines (SVMs), and ensemble learning techniques have 

demonstrated superior predictive accuracy in variable wastewater 

environments. Special emphasis is placed on kinetic modeling for chemical 

recovery beyond methane, particularly for VFAs, hydrogen, and ammonia, 
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which are gaining attention as value-added products in circular 

bioeconomy systems. Model calibration and validation techniques, 

sensitivity analysis, and reactor configuration-specific kinetics (e.g., UASB, 

CSTR, and membrane bioreactors) are also critically reviewed. Challenges 

such as model overparameterization, data scarcity, and lack of real-time 

adaptability are discussed alongside emerging solutions including real-time 

optimization platforms and sensor integration. By consolidating theoretical 

advancements and application-based studies from 2000 to 2024, this work 

provides a roadmap for the next generation of kinetic modeling in AD 

systems. These models are essential for achieving efficient chemical 

recovery, operational resilience, and compliance with increasingly 

stringent environmental regulations in wastewater management. 

Keywords: Anaerobic Digestion, Kinetic Modeling, Biological Wastewater 

Treatment, Volatile Fatty Acids, ADM1, Machine Learning, Biogas, 

Chemical Recovery, Microbial Kinetics, Circular Bioeconomy. 

 

1.0.  Introduction 

Anaerobic digestion (AD) has long been recognized as 

an essential biological treatment process for 

wastewater management, particularly for its ability to 

break down organic matter in the absence of oxygen. 

This process is widely used in municipal and 

industrial wastewater treatment plants to manage 

sludge and organic waste, offering significant 

environmental benefits by reducing the volume of 

waste, producing biogas, and providing a sustainable 

means for waste-to-energy conversion (Ajayi, et al., 

2020, Ikeh & Ndiwe, 2019, Orieno, et al., 2021). AD 

operates through a series of complex biochemical 

reactions carried out by diverse microbial 

communities, which result in the generation of biogas 

primarily composed of methane and carbon dioxide. 

This methane is a valuable renewable energy source, 

and its capture can be used for electricity or heat 

generation, contributing to sustainability goals. 

In addition to biogas production, anaerobic digestion 

offers significant potential for chemical recovery, 

which has garnered increasing attention in recent 

years. Key chemicals such as volatile fatty acids 

(VFAs), ammonia, and hydrogen, which are typically 

produced during the digestion process, have potential 

applications in the production of biofuels, 

biodegradable plastics, and other valuable chemicals 

(Bristol-Alagbariya, Ayanponle & Ogedengbe, 2022, 

Ogunwole, et al., 2022). VFAs, for example, are 

precursors for the production of bioplastics and can 

be utilized in the manufacture of various industrial 

products. Ammonia recovery can assist in nutrient 

management, reducing the environmental impact of 

nitrogen discharge into water bodies, while hydrogen, 

a potential clean fuel, can be produced through 

specialized fermentation processes in anaerobic 

conditions. Thus, the chemical recovery aspects of 

AD present significant opportunities to enhance the 

economic feasibility and environmental performance 

of wastewater treatment. 

Kinetic modeling plays a crucial role in 

understanding and optimizing the anaerobic 

digestion process, particularly when focusing on 

chemical recovery. By developing models that 

describe the rates of microbial growth, substrate 

consumption, and product formation, researchers can 
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gain insights into the underlying mechanisms of AD, 

predict system behavior, and identify optimal 

conditions for enhancing specific product yields. 

Kinetic models are essential for designing, scaling up, 

and operating AD systems, particularly in complex or 

variable wastewater environments (Ayo, et al., 2023, 

Elete, et al., 2023, Kokogho, et al., 2023). These 

models help to identify bottlenecks, optimize process 

parameters such as temperature, pH, and retention 

time, and predict the effects of different types of 

organic waste on the overall performance of the 

system. 

The objective of this review is to explore recent 

advances in kinetic modeling related to anaerobic 

digestion for chemical recovery. The scope includes a 

discussion of the various kinetic models developed to 

study different aspects of AD, with a particular focus 

on the production of valuable chemicals such as 

biogas, VFAs, ammonia, and hydrogen. The review 

aims to highlight the state of the art in model 

development, identify key challenges in kinetic 

modeling, and suggest future research directions for 

optimizing anaerobic digestion processes to improve 

both energy recovery and chemical production. 

Through this review, the goal is to provide a 

comprehensive understanding of the role of kinetic 

modeling in advancing the potential of anaerobic 

digestion as a sustainable technology for wastewater 

treatment and chemical recovery. 

2.1. Methodology 

A systematic conceptual methodology was employed 

to evaluate and synthesize advancements in kinetic 

modeling of anaerobic digestion (AD) for chemical 

recovery in biological wastewater systems. This 

approach integrates theoretical insights, empirical 

modeling trends, and domain-specific frameworks. 

Initially, relevant peer-reviewed literature, doctoral 

dissertations, and conceptual papers were identified 

from academic databases and digital libraries, 

focusing on the intersection of anaerobic digestion, 

kinetic modeling, and wastewater chemical recovery. 

Priority was given to sources such as Adeoba (2018), 

Adewoyin (2022), and Afolabi & Akinsooto (2023), 

whose works have laid foundational and innovative 

contributions in modeling and material integration 

strategies. A multistage eligibility process was 

conducted to apply selection criteria based on 

relevance to kinetic modeling, model validation, and 

application in full-scale or pilot anaerobic digestion 

setups. 

Data was extracted manually and categorized based 

on model type (e.g., first-order, Monod-type, ADM1), 

system configuration (e.g., CSTR, UASB), kinetic 

parameters (e.g., hydrolysis rate, decay constants), 

and integration capabilities with chemical recovery 

technologies. Particular attention was given to the 

role of computational tools, AI-based predictions, and 

hybrid frameworks such as those proposed by Agbede 

et al. (2023) and Elete et al. (2023). These data points 

were synthesized using a thematic analysis approach, 

identifying recurrent trends and performance metrics 

across model implementations. The integration of 

microbial kinetics, substrate transformation dynamics, 

and process simulation were carefully examined for 

alignment with both chemical recovery and 

environmental sustainability targets. 

To ensure methodological rigor, comparative 

assessments were made across case studies and 

conceptual frameworks to evaluate model 

performance under variable loading conditions, 

microbial community shifts, and substrate 

heterogeneity. Model reliability was judged by its 

sensitivity, robustness, scalability, and validation 

against experimental or real-time datasets. Insights 

from Afeku-Amenyo et al. (2023) and Nwulu et al. 

(2023) were used to evaluate potential integration 

with carbon capture and material flow management. 

Ultimately, this methodology supports the 

formulation of a strategic outlook on kinetic model 

evolution, identifies critical knowledge gaps, and lays 

the groundwork for AI-integrated, real-time kinetic 

modeling in wastewater-based resource recovery. 
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Figure 1: Flow chart of the study methodology 

 

2.2.  Fundamentals of Anaerobic Digestion 

Kinetics 

Anaerobic digestion (AD) is a complex biochemical 

process in which organic matter is decomposed by 

microorganisms in the absence of oxygen. It is widely 

used in wastewater treatment and the management of 

organic waste because of its ability to reduce waste 

volume, generate biogas (primarily methane and 

carbon dioxide), and recover valuable chemicals. The 

AD process occurs in several distinct biological stages, 

each involving different microbial communities and 

specific biochemical reactions. These stages 

hydrolysis, acidogenesis, acetogenesis, and 

methanogenesis are crucial for breaking down 

complex organic materials and converting them into 

simpler compounds, such as volatile fatty acids 

(VFAs), ammonia, and methane. Understanding the 

kinetics of each stage is fundamental for optimizing 

the AD process, particularly when focusing on 

chemical recovery, as it enables the prediction of 

product yields and the identification of parameters 

that affect system performance. Figure 2 shows the 

techniques for improving anaerobic digestion 

performance presented by González, Peña & Gómez, 

2022. 

 
Figure 2: Techniques for improving anaerobic 

digestion performance (González, Peña & Gómez, 

2022). 

The first stage of anaerobic digestion, hydrolysis, 

involves the breakdown of complex organic polymers 

such as carbohydrates, proteins, and lipids into 

simpler monomers like sugars, amino acids, and fatty 

acids. This stage is typically the rate-limiting step in 

the overall process, as it requires the action of 

extracellular enzymes produced by hydrolytic 

bacteria. The efficiency of hydrolysis depends on 

several factors, including substrate concentration, 

enzyme availability, and the physical characteristics 

of the organic material (Bakare, et al., 2023, Eyeghre, 

et al., 2023, Lottu,et al., 2023). Acidogenesis follows 

hydrolysis and involves the fermentation of the 

simpler monomers into intermediate products such as 

VFAs, alcohols, and hydrogen. The acidogenic 

bacteria that carry out this process are facultative 

anaerobes, which convert the organic acids into 

simpler compounds such as acetic acid and hydrogen, 
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forming the primary substrates for the next stage of 

digestion. In the acetogenesis stage, acetate and 

hydrogen are further converted into acetic acid and 

additional hydrogen by acetogenic bacteria, preparing 

these compounds for the final step of methane 

production. 

Methanogenesis, the last stage, is carried out by 

methane-producing archaea (methanogens), which 

convert acetic acid, hydrogen, and carbon dioxide 

into methane. The rate of methanogenesis is 

influenced by the availability of hydrogen and acetate, 

the most common substrates for methanogens. 

Methane production is typically the rate-limiting step 

in many AD systems, as methanogens are more 

sensitive to environmental conditions such as pH, 

temperature, and substrate concentrations than other 

microbial groups. As a result, maintaining the proper 

balance between the microbial communities in each 

stage is essential for optimal AD performance 

(Daraojimba, et al., 2021, Egbumokei, et al., 2021, 

Sobowale, et al., 2021). 

The kinetics of anaerobic digestion have been the 

subject of extensive research, with many classical 

models developed to describe the rates of substrate 

consumption and product formation throughout the 

process. These models generally rely on mathematical 

equations that describe the rate of change in the 

concentration of substrates and products over time. 

The simplest and most widely used kinetic models are 

first-order models, which assume that the rate of 

substrate degradation is proportional to its 

concentration (Onyeke, et al., 2022, Orieno, et al., 

2022, Ozobu, et al., 2022). First-order kinetics are 

often used in situations where the degradation rate is 

constant and does not vary significantly with 

substrate concentration, as is common in many 

wastewater treatment processes. Schematic 

representation of anaerobic digestion presented by 

Karuppiah & Azariah, 2019 is shown in figure 3. 

 
Figure 3: Schematic representation of anaerobic 

digestion (Karuppiah & Azariah, 2019). 

More complex models, such as the Monod model, 

have been developed to account for the effects of 

substrate concentration on microbial growth rates. 

The Monod model describes microbial growth as a 

function of both the substrate concentration and a set 

of kinetic parameters, including the maximum 

growth rate and the half-saturation constant 

(Chukwuma, et al. 2022, Johnson, et al., 2022, 

Ogunwole, et al., 2022). The Monod equation 

assumes that microbial growth rates are initially high 

at low substrate concentrations but decrease as the 

substrate concentration increases, due to factors such 

as substrate inhibition or competition for resources. 

The Monod model is widely used to describe 

microbial kinetics in AD, particularly in systems 

where substrate concentration is a critical factor in 

determining process performance. 

The Contois model is another variation of the Monod 

model that includes an additional term to account for 

biomass concentration in the system. It is particularly 

useful for describing systems where the growth of 

microorganisms is limited not only by substrate 

concentration but also by the availability of nutrients 

or other factors affecting biomass accumulation. The 

Contois model is used to predict microbial growth 

rates in systems with varying nutrient availability, 

where biomass concentration may not be constant 

over time (Akintobi, Okeke & Ajani, 2022, 
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Ezeanochie, Afolabi & Akinsooto, 2022). Similarly, 

the Grau model is often applied to describe the 

growth kinetics of microbial populations in AD, 

especially when there is a need to incorporate more 

detailed substrate and biomass interactions. 

While classical kinetic models have provided valuable 

insights into the dynamics of AD, they do not fully 

capture the complexity of the system. Many models 

assume that microbial activity and substrate 

consumption occur at constant rates or under 

idealized conditions, which may not be 

representative of real-world AD systems. In practice, 

AD kinetics are influenced by a wide range of factors, 

including substrate composition, microbial activity, 

temperature, pH, and the presence of inhibitory 

compounds (Adeoba, 2018, Imran, et al., 2019, 

Orieno, et al., 2021). To better understand and 

predict AD performance, researchers have 

increasingly focused on developing more detailed and 

accurate models that incorporate these variables. Van, 

et al., 2020 presented diagram of the three-stage 

anaerobic digestion system shown in figure 4. 

 
Figure 4: Diagram of the three-stage anaerobic 

digestion system (Van, et al., 2020). 

One of the most significant parameters influencing 

AD kinetics is substrate concentration. The 

availability of substrate is directly related to the 

efficiency of the hydrolysis and acidogenesis stages, as 

it determines the amount of organic matter that can 

be converted into simpler compounds. High substrate 

concentrations can lead to faster reaction rates but 

may also result in inhibition or toxicity, particularly 

during acidogenesis and methanogenesis. The 

concentration of VFAs, for example, can inhibit 

methanogenic activity if they accumulate to high 

levels (Onukwulu, et al., 2023, Orieno, et al., 2023, 

Ozobu, et al., 2023). Conversely, low substrate 

concentrations may limit microbial growth rates and 

slow down the overall digestion process. 

Understanding how substrate concentration affects 

microbial kinetics is essential for optimizing AD 

systems and ensuring stable and efficient operation. 

Microbial activity is another key factor influencing 

AD kinetics. The performance of the microbial 

communities involved in AD is highly sensitive to 

environmental factors such as temperature, pH, and 

nutrient availability. Temperature, in particular, has a 

strong effect on the rate of microbial metabolism, 

with mesophilic conditions (around 35-40°C) being 

most commonly used in AD systems. However, 

thermophilic conditions (50-60°C) can offer higher 

rates of digestion and enhanced pathogen reduction, 

although they may also require additional energy 

input for heating (Ojika, et al., 2021, Okolo, et al., 

2021, Onukwulu, et al., 2021). pH plays a crucial role 

in maintaining optimal conditions for methanogens, 

as they are highly sensitive to acidic or alkaline 

environments. Typically, AD processes operate best 

within a narrow pH range of 6.5 to 8.0. Deviations 

from this range can result in reduced microbial 

activity, leading to slower digestion rates and lower 

chemical recovery. 

In addition to these factors, the presence of inhibitors 

such as heavy metals, toxic organics, or high 

concentrations of ammonia can also influence AD 

kinetics. Ammonia toxicity, in particular, is a 

common challenge in industrial wastewater systems, 

where the accumulation of ammonia can inhibit 

microbial activity and reduce biogas production. 

Research into strategies for mitigating ammonia 

toxicity and enhancing the resilience of microbial 

communities is an important area for advancing the 
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efficiency of AD systems (Bristol-Alagbariya, 

Ayanponle & Ogedengbe, 2023, Mgbecheta, et al., 

2023). 

In conclusion, the kinetics of anaerobic digestion are 

complex and influenced by a wide range of factors 

that impact substrate degradation, microbial growth, 

and product formation. Classical kinetic models, 

including first-order, Monod, Contois, and Grau 

models, have provided foundational insights into the 

dynamics of AD but need to be refined to account for 

the multitude of variables present in real-world 

systems. Future research must continue to explore 

how substrate concentration, microbial activity, 

temperature, pH, and inhibitory compounds interact 

to shape the kinetics of anaerobic digestion. By 

improving our understanding of these dynamics and 

developing more accurate and predictive models, we 

can optimize AD systems for chemical recovery, 

enhance energy production, and improve overall 

wastewater treatment performance. 

2.3.  Standardized Modeling Approaches 

The development of standardized modeling 

approaches for anaerobic digestion (AD) has 

advanced significantly in recent years, providing 

valuable insights into the complex biochemical 

processes involved in the treatment of wastewater 

and the recovery of chemicals. One of the most 

widely used models in this area is the Anaerobic 

Digestion Model No. 1 (ADM1), which serves as a 

foundational framework for simulating various 

reactor configurations and understanding the 

underlying mechanisms of AD. Over time, ADM1 has 

been refined, modified, and extended to enhance its 

applicability to chemical recovery processes, enabling 

better prediction of product yields and optimization 

of system performance. 

ADM1 was developed by the International Water 

Association (IWA) to provide a standardized 

framework for modeling anaerobic digestion systems. 

The model incorporates a wide range of biochemical 

and microbial processes involved in the degradation 

of organic matter, including hydrolysis, acidogenesis, 

acetogenesis, and methanogenesis. It is a 

comprehensive, dynamic model that simulates the 

interactions between microorganisms, substrates, and 

environmental conditions within the AD process 

(Agho, et al., 2021, Ezeanochie, Afolabi & Akinsooto, 

2021). The model is based on a series of differential 

equations that describe the conversion of organic 

matter into biogas and other by-products. It includes 

a detailed representation of microbial kinetics, with 

separate components for different microbial groups, 

including hydrolytic bacteria, acidogens, acetogens, 

and methanogens. ADM1 also accounts for the 

influence of environmental factors such as 

temperature, pH, and substrate concentration on 

microbial activity, providing a more realistic and 

predictive framework for AD systems. 

However, despite its widespread use, ADM1 has 

certain limitations. One of the primary challenges of 

ADM1 is its complexity. The model incorporates a 

large number of parameters and requires detailed 

input data, making it computationally demanding and 

sometimes difficult to apply in practical settings. The 

model also assumes idealized conditions, such as a 

well-mixed reactor and constant feedstock 

composition, which may not always reflect real-

world scenarios (Adikwu, et al., 2023, Elete, et al., 

2023, Ndiwe, et al., 2023). Furthermore, while ADM1 

is effective in simulating methane production and 

overall performance, it does not directly account for 

the recovery of specific chemicals, such as volatile 

fatty acids (VFAs), ammonia, and hydrogen, which 

are of particular interest for chemical recovery in AD 

systems. As a result, ADM1's application to chemical 

recovery requires modifications and extensions to 

incorporate the dynamics of these by-products. 

To enhance the applicability of ADM1 for chemical 

recovery, several modifications and extensions have 

been proposed. One such modification is the 

inclusion of specific pathways for the production and 

degradation of VFAs, which are key intermediates in 
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AD and are of significant interest for resource 

recovery. VFAs, such as acetic acid, propionic acid, 

and butyric acid, are produced during the 

acidogenesis and acetogenesis stages of AD and can be 

recovered for use in the production of bioplastics, 

biofuels, and other chemicals (Egbuhuzor, et al., 2021, 

Isi, et al., 2021, Onukwulu, et al., 2021). By extending 

ADM1 to include more detailed models of VFA 

production and consumption, researchers can better 

predict the yields of these compounds and optimize 

the conditions for their recovery. Similarly, the 

extension of ADM1 to include ammonia recovery is 

another important modification, particularly for AD 

systems treating nitrogen-rich wastewater. Ammonia 

recovery can help reduce nitrogen discharge into 

water bodies and enable the reuse of ammonia as a 

fertilizer or feedstock for other chemical processes. 

Extensions to ADM1 that account for ammonia 

volatilization and recovery pathways allow for a more 

accurate representation of the nitrogen cycle within 

AD systems. 

Hydrogen production is another area where ADM1 

has been extended to support chemical recovery. 

While hydrogen is not typically a major product of 

conventional AD systems, certain configurations, 

such as dark fermentation, can produce hydrogen as a 

by-product. Extending ADM1 to include hydrogen 

production pathways allows for the simulation of AD 

systems that focus on hydrogen recovery, providing 

valuable insights into the potential for hydrogen as a 

clean fuel and chemical feedstock (Daraojimba, et al., 

2022, Elete, et al., 2022, Okolo, et al., 2022). These 

modifications not only enhance the predictive power 

of ADM1 for chemical recovery but also provide a 

more detailed understanding of the metabolic 

pathways that govern the formation of these valuable 

by-products. 

The calibration, sensitivity analysis, and validation of 

kinetic models, including ADM1 and its extensions, 

are crucial steps in ensuring their reliability and 

accuracy. Model calibration involves adjusting the 

model's parameters to match experimental data or 

real-world observations. This process is typically 

carried out by comparing the model's predictions of 

biogas production, VFA concentrations, and other 

key outputs with measured values from laboratory or 

pilot-scale AD systems (Adewoyin, 2021, Isi, et al., 

2021, Ogunnowo, et al., 2021). Calibration ensures 

that the model accurately reflects the behavior of the 

system under different operating conditions, such as 

varying substrate concentrations, temperature 

fluctuations, and changes in pH. 

Sensitivity analysis is another important aspect of 

model development, as it helps identify which 

parameters have the greatest influence on model 

outputs. In AD systems, several factors, such as 

substrate concentration, microbial growth rates, and 

environmental conditions, can affect the overall 

performance and the recovery of specific chemicals. 

Sensitivity analysis involves systematically varying 

the model's parameters and observing the impact on 

key outputs, such as methane production, VFA 

concentrations, and hydrogen yields (Bristol-

Alagbariya, Ayanponle & Ogedengbe, 2022, 

Onukwulu, et al., 2022). By identifying the most 

sensitive parameters, researchers can prioritize which 

factors to focus on when optimizing AD systems for 

chemical recovery. Sensitivity analysis can also help 

determine the robustness of the model, highlighting 

areas where small changes in parameters can lead to 

large variations in output, and guiding further 

refinement of the model. 

Validation is the final step in the model development 

process and involves comparing the model's 

predictions with independent experimental data that 

was not used during the calibration process. 

Validation ensures that the model can accurately 

predict the behavior of AD systems under a range of 

conditions and with different feedstocks. This step is 

particularly important when extending ADM1 for 

chemical recovery, as the model must be validated for 

each specific by-product of interest, such as VFAs, 
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ammonia, or hydrogen (Attah, et al., 2022, Elete, et 

al., 2022, Nwulu, et al., 2022). Validation provides 

confidence that the model can be used as a reliable 

tool for predicting chemical recovery in real-world 

systems and for optimizing operational parameters to 

maximize the recovery of these valuable by-products. 

In conclusion, standardized modeling approaches, 

such as ADM1 and its extensions, are essential tools 

for advancing our understanding of anaerobic 

digestion and optimizing chemical recovery in 

biological wastewater systems. These models provide 

valuable insights into the complex biochemical 

processes involved in AD, enabling the prediction of 

biogas production and the recovery of valuable 

chemicals such as VFAs, ammonia, and hydrogen. 

While classical models like ADM1 are effective for 

simulating methane production and overall system 

performance, they require modifications and 

extensions to accurately represent the dynamics of 

chemical recovery. Calibration, sensitivity analysis, 

and validation are critical steps in ensuring the 

accuracy and reliability of these models. As research 

in this area continues, further refinements to ADM1 

and other kinetic models will improve their 

predictive capabilities and contribute to the 

development of more efficient and sustainable 

anaerobic digestion systems for chemical recovery. 

2.4.  Advances in Hybrid and Data-Driven 

Modeling 

Advances in the kinetic modeling of anaerobic 

digestion (AD) systems for chemical recovery have 

seen a significant shift in recent years with the 

integration of hybrid and data-driven modeling 

techniques. Traditional mechanistic models, while 

providing a fundamental understanding of the 

biochemical processes in anaerobic digestion, often 

face limitations in capturing the complexity and 

variability inherent in real-world systems. The need 

for more accurate and flexible models to optimize AD 

systems and improve chemical recovery such as 

biogas, volatile fatty acids (VFAs), ammonia, and 

hydrogen has driven the adoption of machine 

learning (ML) and hybrid approaches that combine 

the strengths of both mechanistic and data-driven 

techniques. 

Traditional mechanistic models, such as the widely 

used Anaerobic Digestion Model No. 1 (ADM1), 

describe the biochemical and microbiological 

interactions involved in the degradation of organic 

matter in a detailed manner. These models rely on 

the laws of mass balance, thermodynamics, and 

microbial kinetics to predict the performance of AD 

systems. While they have been useful in 

understanding the fundamental processes of AD, they 

often suffer from certain limitations (Afolabi & 

Akinsooto, 2021, Ogundipe, et al., 2021). These 

models require a large number of parameters, many 

of which are difficult to estimate or measure directly. 

In addition, mechanistic models assume idealized 

conditions, such as well-mixed reactors and constant 

feedstock composition, which may not always reflect 

the dynamic and heterogeneous nature of real-world 

systems. Moreover, these models typically do not 

account for uncertainties and variations in 

operational conditions, such as changes in 

temperature, substrate composition, or microbial 

activity, which can significantly affect the 

performance of AD systems. 

The limitations of traditional mechanistic models 

have prompted the development of hybrid and data-

driven modeling approaches, which combine 

mechanistic knowledge with machine learning (ML) 

techniques. Machine learning techniques, 

particularly those used for pattern recognition, 

regression, and classification tasks, are well-suited for 

addressing the complexity and nonlinearity of AD 

systems. ML methods can help overcome the 

limitations of mechanistic models by learning from 

data and capturing patterns in system behavior that 

may not be easily described using traditional 

equations (Onukwulu, et al., 2023, Onyeke, et al., 

2023, Orieno, et al., 2023). By using large datasets of 
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operational variables, including substrate 

concentrations, microbial activity, process conditions, 

and product yields, machine learning algorithms can 

model the complex relationships between these 

variables and provide predictions that are more 

accurate and robust in dynamic real-world 

environments. 

One of the most widely used ML techniques in the 

modeling of AD systems is Artificial Neural Networks 

(ANNs). ANNs are computational models inspired by 

the human brain, consisting of layers of 

interconnected nodes that process information 

through weighted connections. These models excel at 

capturing complex nonlinear relationships between 

inputs and outputs, making them ideal for predicting 

the performance of AD systems under various 

conditions. In the context of AD, ANNs can be used 

to predict biogas production, VFA concentrations, 

ammonia recovery, and other key performance 

indicators (Agho, et al., 2022, Ezeafulukwe, Okatta & 

Ayanponle, 2022). By training an ANN on historical 

data, it becomes possible to predict system behavior 

under new conditions without the need for detailed 

mechanistic modeling. Furthermore, ANNs can be 

adapted to handle real-time process data, allowing for 

adaptive control and optimization of the AD process. 

Support Vector Machines (SVMs) are another popular 

machine learning technique used in AD modeling. 

SVMs are supervised learning models that can be 

used for regression and classification tasks. They 

work by finding the hyperplane that best separates 

data points from different classes or predicts a 

continuous output. In AD systems, SVMs have been 

applied to predict variables such as methane 

production and substrate degradation rates, as well as 

to classify different types of organic waste based on 

their biodegradability. SVMs offer several advantages, 

including their ability to handle high-dimensional 

datasets and provide robust predictions even with 

small amounts of data (Daraojimba, et al., 2022, Kanu, 

et al., 2022, Okolo, et al., 2022). They also have the 

capacity to model complex, nonlinear relationships 

between inputs and outputs, making them useful for 

predicting system performance under varying 

operational conditions. 

Random forests and ensemble methods are other 

data-driven techniques that have been increasingly 

applied in AD modeling. Random forests are a type of 

ensemble learning method that combines multiple 

decision trees to improve prediction accuracy. Each 

decision tree in a random forest is trained on a 

random subset of the data, and the final prediction is 

made by averaging the outputs of all the trees. 

Random forests are known for their ability to handle 

large datasets with many features, making them well-

suited for modeling AD systems with multiple input 

variables, such as substrate concentration, pH, 

temperature, and microbial activity (Ojika, et al., 

2021, Onaghinor, et al., 2021, Sobowale, et al., 2021). 

Ensemble methods, including boosting and bagging 

techniques, have also been used to combine multiple 

models to improve predictive accuracy and reduce 

overfitting. 

One of the most promising developments in AD 

modeling is the integration of hybrid frameworks 

that combine mechanistic models with machine 

learning techniques. These hybrid models aim to 

leverage the strengths of both approaches, combining 

the mechanistic understanding of AD processes with 

the predictive power of data-driven methods. The 

mechanistic component of the model provides a 

structured framework for describing the underlying 

biochemical processes, while the machine learning 

component captures the complex, nonlinear 

relationships between input variables and system 

outputs (Akintobi, Okeke & Ajani, 2023, Eyeghre, et 

al., 2023, Ogunwole, et al., 2023). Hybrid models can 

help improve the accuracy of predictions, especially 

in cases where traditional mechanistic models fail to 

capture the full range of system dynamics. For 

example, a hybrid model might use a mechanistic 

model to simulate the degradation of organic matter 
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in the AD system, while using machine learning 

algorithms to predict the production of VFAs or 

ammonia recovery based on process data. 

These hybrid models also offer the advantage of 

adaptability. As new data becomes available from 

operational systems, the machine learning 

component can be updated to improve the model’s 

predictions. This adaptability allows the model to 

account for changing conditions, such as variations in 

feedstock composition or fluctuations in operational 

parameters like temperature and pH. Moreover, 

hybrid models can be used to optimize AD systems in 

real-time, providing operators with actionable 

insights that can be used to adjust process conditions 

and maximize chemical recovery (Bristol-Alagbariya, 

Ayanponle & Ogedengbe, 2023, Nwakile,et al., 2023). 

For instance, machine learning algorithms can be 

used to optimize substrate feed rates, microbial 

inoculation strategies, or temperature control, 

ensuring that the AD system operates at its highest 

efficiency. 

Case studies have demonstrated the effectiveness of 

hybrid and data-driven models in improving the 

prediction accuracy and control of AD systems. For 

example, one study applied an ANN-based model to 

predict the methane production rate in a large-scale 

anaerobic digester fed with food waste. The model 

successfully predicted the methane yield based on 

parameters such as substrate concentration, pH, 

temperature, and hydraulic retention time (HRT). By 

using real-time data, the model was able to adapt to 

changes in feedstock quality and operational 

conditions, improving system stability and efficiency 

(Ajayi, et al., 2021, Odio, et al., 2021, Onukwulu, et 

al., 2021). Another case study used a random forest-

based model to predict VFA production in a 

continuous AD system. The model outperformed 

traditional mechanistic models, providing more 

accurate predictions and allowing for better control 

of VFA recovery. These examples demonstrate the 

potential of hybrid and data-driven modeling to 

enhance the performance of AD systems, particularly 

for chemical recovery, by improving predictions, 

optimizing operational conditions, and enabling real-

time control. 

In conclusion, the integration of machine learning 

techniques with traditional mechanistic models 

represents a major advancement in the kinetic 

modeling of anaerobic digestion for chemical 

recovery. Machine learning methods, such as ANNs, 

SVMs, and random forests, offer the ability to model 

complex, nonlinear relationships in AD systems, 

improving prediction accuracy and providing a 

powerful tool for optimization and control (Edwards 

& Smallwood, 2023, Elete, et al., 2023, Nwulu, et al., 

2023). Hybrid modeling frameworks that combine 

mechanistic models with machine learning 

techniques hold great promise for enhancing the 

performance of AD systems, particularly in the 

context of chemical recovery. By incorporating real-

time data and enabling adaptive control, these models 

can improve biogas production, VFA recovery, 

ammonia recovery, and hydrogen production. The 

continued development of hybrid and data-driven 

models will play a crucial role in optimizing 

anaerobic digestion systems, improving resource 

recovery, and advancing the sustainability of 

wastewater treatment processes. 

2.5.  Modeling for Targeted Chemical Recovery 

Modeling for targeted chemical recovery in anaerobic 

digestion (AD) systems is an essential component in 

optimizing the efficiency of wastewater treatment 

while simultaneously recovering valuable chemicals 

such as volatile fatty acids (VFAs), hydrogen, and 

ammonia. These chemicals have significant 

applications in various industries, including the 

production of biofuels, biodegradable plastics, 

fertilizers, and other high-value products. Traditional 

anaerobic digestion models, primarily designed to 

simulate biogas production, do not always provide the 

resolution necessary for targeted chemical recovery. 

Therefore, specialized modeling approaches are 
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required to optimize the conditions for specific 

chemical production within anaerobic digestion 

systems, enabling the efficient extraction of these 

valuable products. 

One of the key areas of focus in modeling for targeted 

chemical recovery is the production and optimization 

of volatile fatty acids (VFAs), which are key 

intermediates in the anaerobic digestion process. 

VFAs, including acetic acid, propionic acid, butyric 

acid, and others, are produced during the 

acidogenesis stage of AD, and their concentrations 

can significantly affect the overall process (Afeku-

Amenyo, et al., 2023, Fiemotongha, et al., 2023, 

Sobowale, et al., 2023). Modeling VFAs production 

involves understanding the microbial kinetics of 

acidogenic bacteria, which convert organic matter 

into VFAs. Several kinetic models have been 

developed to describe the production of VFAs in AD, 

often building upon basic Monod kinetics or more 

complex approaches that account for substrate 

inhibition, pH effects, and microbial competition. 

To optimize VFA production, it is essential to model 

not only the substrate degradation but also the 

metabolic pathways and the microbial populations 

involved. The concentration of VFAs is influenced by 

several factors, including the feedstock composition, 

the residence time in the reactor, temperature, and 

pH. Through targeted modeling, these factors can be 

adjusted to favor the production of specific VFAs. For 

example, acetic acid is a key substrate for 

methanogenesis, so its production needs to be 

carefully managed to prevent inhibition of methane-

producing bacteria (Ayo-Farai, et al., 2023, 

Ezeanochie, Afolabi & Akinsooto, 2023). Conversely, 

optimizing the production of butyric or propionic 

acid may be desirable for applications such as 

bioplastics or biodegradable surfactants. By 

simulating different operational conditions, such as 

adjusting the pH or controlling the retention time, 

modelers can optimize VFA yields and ensure that 

the desired VFA profiles are achieved. 

Similarly, modeling the production of hydrogen in 

anaerobic digestion systems has gained significant 

attention due to its potential as a clean and renewable 

fuel. Hydrogen is produced through dark 

fermentation in AD, a process where certain types of 

bacteria ferment organic substrates in the absence of 

oxygen. The production of hydrogen is often 

hindered by inhibitory factors such as high 

concentrations of fatty acids, which can accumulate 

during acidogenesis. Modeling hydrogen production 

kinetics requires a detailed understanding of the 

fermentation process, including the hydrogenase 

activity of hydrogen-producing bacteria and the 

competition between different microbial populations 

for substrates (Bristol-Alagbariya, Ayanponle & 

Ogedengbe, 2022, Ogunnowo, et al., 2022). Kinetic 

models for hydrogen production must account for 

factors such as substrate concentration, microbial 

growth rates, and the influence of environmental 

conditions like pH and temperature on microbial 

activity. By optimizing these factors through 

modeling, it is possible to enhance hydrogen yields 

while minimizing unwanted side reactions, such as 

the production of VFAs or methane. These models 

also help identify the optimal conditions for 

hydrogen production, such as the best type of organic 

feedstock, the appropriate reactor configuration, and 

the ideal operating conditions. 

Ammonia production is another area of interest in 

anaerobic digestion, particularly when the treatment 

of nitrogen-rich wastewater is involved. Ammonia 

can be recovered and used as a fertilizer, providing an 

economic benefit while reducing the environmental 

impact of nitrogen discharge into water bodies. The 

kinetics of ammonia production in AD are influenced 

by both the microbial processes and the 

physicochemical conditions within the reactor 

(Adeoba & Yessoufou, 2018, Oyedokun, 2019, Uzozie, 

et al., 2023). In the first stages of digestion, ammonia 

is released from proteins and amino acids through 

deamination. However, excessive ammonia 
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concentrations can inhibit the activity of 

methanogens and slow down the digestion process. In 

addition to its role in the microbial breakdown of 

nitrogen-containing compounds, ammonia recovery 

is also affected by temperature, pH, and the type of 

organic waste being processed. Modeling the 

production and recovery of ammonia in AD requires 

understanding the complex interactions between 

microbial populations and environmental conditions. 

By simulating these interactions, models can predict 

ammonia production rates and help optimize the 

operational conditions, such as pH adjustments or 

temperature control, to enhance ammonia recovery 

without adversely affecting the overall digestion 

process. 

Reactor-specific modeling plays a crucial role in 

optimizing targeted chemical recovery in AD systems. 

Different reactor configurations, such as Upflow 

Anaerobic Sludge Bed (UASB) reactors, Continuous 

Stirred-Tank Reactors (CSTR), and Anaerobic 

Membrane Bioreactors (AnMBR), have distinct 

advantages for different types of chemical recovery, 

and each reactor type responds differently to 

operational conditions. For example, UASB reactors 

are commonly used for high-strength wastewater 

treatment and offer a high hydraulic retention time, 

which is advantageous for the production of methane 

and other gases (Onukwulu, et al., 2023, Onyeke, et 

al., 2023, Ozobu, et al., 2023). However, the high 

concentration of sludge and solids in UASB reactors 

may limit the recovery of certain chemicals, such as 

VFAs, due to the high microbial density and low 

substrate availability in the liquid phase. CSTR 

reactors, on the other hand, provide more uniform 

mixing, which can lead to better control over 

microbial populations and higher rates of chemical 

recovery. However, they may require more complex 

operational control and monitoring due to their 

larger size and more dynamic conditions. 

Anaerobic Membrane Bioreactors (AnMBRs) 

combine anaerobic digestion with membrane 

filtration, providing the advantage of concentrating 

biomass and effluent, which can enhance chemical 

recovery efficiency. However, the fouling of 

membranes and the need for regular cleaning can be 

operational challenges. Modeling these different 

reactor types for chemical selectivity requires a 

detailed understanding of the mass transfer, microbial 

kinetics, and hydrodynamics within each reactor 

(Ojika, et al., 2023, Okolo, et al., 2023, Okuh, et al., 

2023). For instance, in AnMBRs, the modeling would 

need to account for both the filtration process and the 

anaerobic degradation process, optimizing the 

membrane flux while ensuring maximum recovery of 

VFAs, hydrogen, and ammonia. Reactor-specific 

models help identify which configuration is most 

suitable for a given substrate or chemical recovery 

target, ensuring that the system operates at peak 

efficiency. 

The impact of operational conditions on chemical 

yields is another critical area of research. Factors such 

as temperature, pH, substrate concentration, 

retention time, and mixing rates all influence the 

efficiency of anaerobic digestion and chemical 

recovery. For example, temperature directly affects 

the metabolic rates of microbes and the solubility of 

gases, such as hydrogen. Mesophilic conditions 

(around 35-40°C) are commonly used in AD systems, 

but thermophilic conditions (50-60°C) can increase 

the rate of digestion and enhance pathogen removal 

(Adewoyin, 2022, Elete, et al., 2022, Nwulu, et al., 

2022). However, thermophilic conditions can also 

cause the accumulation of inhibitory compounds, 

such as ammonia and VFAs, which can hinder 

chemical recovery. By modeling the effects of 

temperature and other operational factors on 

chemical yields, researchers can identify the optimal 

conditions for maximizing the recovery of target 

chemicals while minimizing the formation of 

inhibitory by-products. 

Additionally, pH plays a crucial role in the microbial 

metabolism and product formation in AD systems. 
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Methanogens, for example, are sensitive to acidic 

conditions, and their activity can be inhibited when 

the pH drops below a certain threshold. On the other 

hand, the acidogenesis and acetogenesis stages may 

benefit from slightly acidic conditions, which can 

enhance VFA production. By modeling the effects of 

pH on the microbial populations and their metabolic 

pathways, it is possible to determine the optimal pH 

range for chemical recovery in specific AD systems 

(Afolabi & Akinsooto, 2023, Hanson, et al., 2023, 

Ogunwole, et al., 2023). Similarly, substrate 

concentration, microbial activity, and mixing 

intensity all interact to influence the yield of 

chemicals in the system. Simulation models that 

integrate these variables provide a powerful tool for 

optimizing the operational parameters in AD systems 

for targeted chemical recovery. 

In conclusion, modeling for targeted chemical 

recovery in anaerobic digestion is an essential tool for 

optimizing the process and improving the yields of 

valuable chemicals such as volatile fatty acids, 

hydrogen, and ammonia. By understanding and 

simulating the microbial kinetics, reactor 

configurations, and operational conditions, 

researchers can develop more efficient and 

sustainable AD systems. Advances in modeling 

techniques, including the development of reactor-

specific models and the optimization of operational 

conditions, will help improve the chemical recovery 

potential of anaerobic digestion and contribute to the 

broader goals of resource recovery and waste 

management. These models offer valuable insights 

into the dynamics of AD, enabling operators to tailor 

the system to maximize chemical production while 

ensuring the stability and efficiency of the digestion 

process. 

2.6.  Real-Time Modeling, Monitoring, and 

Control 

I Real-time modeling, monitoring, and control in 

anaerobic digestion (AD) systems have gained 

significant importance in recent years, particularly 

for chemical recovery in biological wastewater 

treatment. These advancements aim to enhance the 

efficiency of AD processes and optimize the 

production of valuable chemicals, such as biogas, 

volatile fatty acids (VFAs), hydrogen, and ammonia, 

by responding dynamically to changing system 

conditions. The integration of real-time data 

acquisition systems, model-predictive control (MPC), 

and digital twins offers a powerful approach for 

optimizing AD performance, making it possible to 

operate systems at peak efficiency and achieve better 

chemical recovery outcomes. However, the real-time 

implementation of these technologies also presents 

several challenges, including the need for accurate 

modeling, robust sensor integration, and continuous 

adaptation to changing operational conditions. 

The integration of sensors and real-time data 

acquisition is a critical aspect of optimizing AD 

processes. Sensors play a crucial role in monitoring 

key parameters that directly influence microbial 

activity and chemical production in anaerobic 

digestion, such as temperature, pH, dissolved oxygen 

(DO), substrate concentration, and biogas production. 

These sensors provide real-time data that can be used 

to assess the performance of the system, detect 

anomalies, and make adjustments to optimize 

conditions for microbial growth and chemical 

recovery (Daraojimba, et al., 2023, Gidiagba, et al., 

2023, Onukwulu, et al., 2023). For example, 

monitoring the pH and temperature in real-time 

allows for quick intervention to maintain the optimal 

environment for methanogens and other microbial 

communities involved in the digestion process. 

Sensors that measure substrate concentrations or gas 

production rates enable operators to track the 

degradation of organic matter and the production of 

biogas and volatile fatty acids, providing valuable 

information for fine-tuning the process. 

Real-time data acquisition is not only valuable for 

process optimization but also for predictive modeling 

and adaptive control. The continuous flow of data 
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from sensors can be used to update dynamic models 

of the AD system in real time, providing a more 

accurate and up-to-date representation of system 

behavior. For example, the concentration of volatile 

fatty acids, ammonia, or hydrogen can fluctuate 

depending on various operational conditions, such as 

feedstock variability, retention time, and temperature 

(Banso, et al., 2023, Ezeanochie, Afolabi & Akinsooto, 

2023). By using real-time data to update kinetic 

models, operators can predict how these fluctuations 

will impact the overall system performance, allowing 

for more precise adjustments to operational 

parameters, such as substrate feed rates or reactor 

conditions. This real-time feedback loop enables 

operators to optimize the recovery of valuable 

chemicals, ensuring that the AD process operates at 

its highest efficiency and that by-products such as 

VFAs, hydrogen, and ammonia are recovered at 

optimal levels. 

Model-predictive control (MPC) is another key 

technology that has emerged in the field of AD 

modeling, providing a powerful tool for real-time 

optimization and control. MPC involves using 

dynamic models of the system to predict future 

behavior and optimize control inputs, such as 

substrate feeding, temperature regulation, or pH 

adjustments. MPC is based on the concept of solving 

an optimization problem at each time step, where the 

model predicts the future evolution of the system 

based on current and past data, and control inputs are 

adjusted to minimize an objective function, such as 

maximizing chemical recovery or biogas production 

(Bristol-Alagbariya, Ayanponle & Ogedengbe, 2023, 

Ogunnowo, et al., 2023). In the context of AD, MPC 

can be used to optimize operational parameters in 

real time, improving system stability and chemical 

recovery rates while minimizing the formation of 

inhibitory by-products, such as ammonia or volatile 

fatty acids. By continuously updating the model with 

real-time data, MPC ensures that the system responds 

to changes in feedstock composition, microbial 

activity, and environmental conditions, thereby 

enhancing the overall performance of the AD process. 

One of the most exciting advancements in real-time 

modeling and control for AD systems is the use of 

digital twins. A digital twin is a virtual representation 

of a physical system that is continuously updated 

with real-time data from sensors and other sources. 

In the case of AD systems, a digital twin can simulate 

the behavior of the biological processes and predict 

how changes in operational conditions will affect 

chemical recovery and system performance. Digital 

twins can be integrated with real-time data 

acquisition systems and model-predictive control 

frameworks to provide a comprehensive, real-time 

simulation of the AD process (Agho, et al., 2023, 

Ezeamii, et al., 2023, Ogu, et al., 2023). These digital 

models allow operators to test different control 

strategies and optimize system performance without 

disrupting the actual system, making it possible to 

simulate "what-if" scenarios and predict the impact of 

process changes before they are implemented in the 

physical system. For example, digital twins can 

simulate the effects of temperature fluctuations or 

substrate composition on methane production or 

VFA recovery, helping operators identify optimal 

operating conditions. Furthermore, the integration of 

machine learning with digital twins can enhance 

predictive capabilities, enabling the system to adapt 

and improve over time as more data is collected and 

analyzed. 

Despite the many advantages of real-time modeling, 

monitoring, and control, several challenges remain in 

their implementation and adaptive modeling. One of 

the primary challenges is the accuracy and reliability 

of sensor data. In anaerobic digestion systems, which 

are highly dynamic and often subject to fluctuations 

in feedstock quality and microbial activity, obtaining 

accurate and consistent measurements is critical for 

effective real-time monitoring and control. Sensors 

must be carefully calibrated to ensure that they 

provide reliable data over time, and they must be able 



Volume 9, Issue 2, March-April-2023 | http://ijsrcseit.com 

Matluck Afolabi et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., January-February-2023, 9 (2) : 813-847 

 

 

 

 
828 

to operate in harsh environments, such as high 

temperatures, low pH, and the presence of 

contaminants (Akintobi, Okeke & Ajani, 2022, Kanu, 

et al., 2022, Onukwulu, et al., 2022). Moreover, the 

sensors must be capable of measuring key parameters 

at the appropriate temporal resolution, ensuring that 

changes in the system can be detected and addressed 

quickly. 

Another challenge in the implementation of real-

time monitoring and control is the complexity of 

integrating the sensor data with kinetic models and 

control algorithms. Real-time data acquisition 

systems generate large amounts of data, which must 

be processed and analyzed in real time to provide 

actionable insights. The integration of these data with 

dynamic models requires the development of 

advanced data processing and modeling techniques 

that can handle large datasets and provide predictions 

that are both accurate and timely (Ajayi, et al., 2023, 

Isong, et al., 2023, Nwulu, et al., 2023). In addition, 

there must be a robust feedback loop between the 

model, control system, and physical AD system to 

ensure that operational adjustments are made based 

on real-time predictions. This integration requires 

sophisticated computational tools and algorithms that 

can process the data efficiently and support decision-

making in real-time. 

Adaptive modeling is another key challenge in real-

time implementation. AD systems are subject to 

many uncertainties, including variability in feedstock 

composition, changes in microbial populations, and 

fluctuations in environmental conditions. These 

uncertainties can make it difficult to accurately 

predict system behavior using static models. To 

address this, adaptive modeling approaches are 

needed that can update model parameters 

dynamically based on real-time data and system 

feedback (Edwards, Mallhi & Zhang, 2018, Tula, et al., 

2004, Vindrola-Padros & Johnson, 2022). These 

models must be able to account for the nonlinearity 

and complexity of the biological processes involved in 

AD, as well as the interactions between different 

microbial communities and environmental factors. 

Developing adaptive models that can continuously 

learn from new data and adjust their predictions 

accordingly is a critical challenge in the real-time 

optimization of AD systems. 

Finally, real-time implementation and adaptive 

modeling must be accompanied by the development 

of user-friendly interfaces and decision-support tools 

that allow operators to interact with the system and 

make informed decisions. The ability to visualize 

real-time data, model predictions, and control actions 

in an intuitive manner is essential for operators to 

effectively manage AD systems. These tools must be 

designed to provide clear insights into system 

performance and enable quick interventions when 

necessary (Ojika, et al., 2023, Okolo, et al., 2023, 

Olurin,et al., 2023). 

In conclusion, real-time modeling, monitoring, and 

control are essential for optimizing anaerobic 

digestion systems for chemical recovery. By 

integrating sensors, model-predictive control, and 

digital twins, operators can monitor system 

performance in real time, optimize operational 

conditions, and enhance the recovery of valuable 

chemicals such as biogas, VFAs, hydrogen, and 

ammonia. These technologies offer significant 

potential for improving the efficiency and 

sustainability of AD systems. However, challenges 

related to sensor reliability, data integration, adaptive 

modeling, and user interfaces must be addressed to 

ensure the successful implementation of real-time 

optimization and control in anaerobic digestion 

processes. As these challenges are overcome, real-

time modeling and control will play a key role in the 

development of more efficient, sustainable, and 

resource-efficient wastewater treatment systems. 

2.7.  Challenges and Limitations 

The application of kinetic modeling in anaerobic 

digestion (AD) for chemical recovery in biological 
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wastewater systems has advanced significantly in 

recent years. While these models have enhanced our 

understanding of the complex biochemical processes 

involved in AD, they also come with challenges and 

limitations that need to be addressed to ensure their 

successful implementation and optimization in real-

world systems. As AD becomes increasingly vital for 

wastewater treatment and resource recovery, 

particularly in the production of chemicals such as 

volatile fatty acids (VFAs), hydrogen, and ammonia, 

the need for accurate, reliable, and scalable models 

grows. Despite the potential benefits, several hurdles 

remain, including issues related to data quality and 

availability, model overfitting and parameter 

identifiability, and difficulties in scaling up models to 

diverse and complex wastewater streams. 

Data quality and availability are fundamental 

challenges in the development and application of 

kinetic models for anaerobic digestion. Accurate 

modeling requires high-quality, comprehensive 

datasets that represent the complex dynamics of the 

AD process, including microbial growth rates, 

substrate degradation, product formation, and the 

influence of operational parameters such as 

temperature, pH, and hydraulic retention time (HRT) 

(Bristol-Alagbariya, Ayanponle & Ogedengbe, 2022, 

Onukwulu, et al., 2022). However, in practice, 

obtaining reliable and consistent data from real-

world AD systems is often difficult. The quality of 

data may be compromised by sensor limitations, 

measurement errors, or inconsistencies in data 

collection protocols. In addition, the variability of 

feedstock, the dynamic nature of microbial 

populations, and the presence of inhibitors or 

contaminants further complicate the collection of 

accurate data. 

The scarcity of high-quality data is particularly 

problematic when it comes to chemical recovery. To 

optimize the production of valuable by-products such 

as VFAs, ammonia, and hydrogen, it is essential to 

understand the kinetic parameters that govern their 

formation and consumption throughout the AD 

process. However, many of these parameters are 

difficult to measure directly, requiring the use of 

proxies or indirect methods. For example, the 

concentration of VFAs or hydrogen may fluctuate 

over time due to changes in microbial activity, 

temperature, or substrate availability, making it 

challenging to obtain stable data for model 

calibration (Adeoba, etal., 2018, Omisola, et al., 2020, 

Uzozie, et al., 2023). Inadequate or unreliable data 

may lead to inaccurate predictions, limiting the 

model's ability to optimize AD performance and 

chemical recovery. 

Another significant challenge in kinetic modeling of 

AD is model overfitting and parameter identifiability. 

Overfitting occurs when a model becomes too 

complex or is excessively tuned to match a specific 

dataset, leading to predictions that are accurate for 

the given data but fail to generalize to new or unseen 

conditions. This issue arises because kinetic models 

often contain numerous parameters, many of which 

are difficult to estimate or quantify. As a result, the 

model may become overly sensitive to small 

variations in the data, leading to unrealistic or non-

representative predictions. Overfitting can lead to 

misleading results, particularly when trying to 

extrapolate model predictions to different operational 

conditions or wastewater types (Daraojimba, et al., 

2023, Ezeh,et al., 2023, Olurin,et al., 2023). 

Parameter identifiability refers to the difficulty of 

determining unique values for the model parameters 

based on available data. In many cases, AD models 

include a large number of parameters, such as 

microbial growth rates, substrate consumption rates, 

and yield coefficients, which are not easily measured 

or directly observed. When multiple parameters 

influence a given system behavior, it can be 

challenging to identify the exact values of those 

parameters. This lack of identifiability can lead to 
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model uncertainty, making it difficult to optimize AD 

systems for specific chemical recovery goals (Adeoba, 

Tesfamichael & Yessoufou, 2019, Ubamadu, et al., 

2023). In addition, uncertainty in parameter 

estimation can propagate through the model, leading 

to unreliable predictions and suboptimal control 

decisions. Researchers must therefore use advanced 

techniques such as sensitivity analysis, Bayesian 

methods, or optimization algorithms to improve 

parameter identifiability and reduce model 

uncertainty. 

The scalability of kinetic models and their 

applicability to diverse wastewater streams is another 

major challenge in the modeling of anaerobic 

digestion for chemical recovery. While many kinetic 

models have been successfully applied to small-scale 

or laboratory-based AD systems, translating these 

models to larger, more complex systems presents 

significant difficulties. Scaling up models involves 

accounting for the increased complexity of real-world 

systems, which may include variations in feedstock 

composition, microbial populations, reactor 

configurations, and operational conditions 

(Onukwulu, et al., 2023, Onyeke, et al., 2023, 

Oyeyipo, et al., 2023). As the size and complexity of 

the AD system increase, so too does the number of 

variables that must be considered, leading to greater 

uncertainties in model predictions. 

Wastewater streams are highly variable in their 

composition, which adds another layer of complexity 

to scaling up kinetic models. Different wastewater 

streams, such as municipal sewage, agricultural runoff, 

or industrial effluents, contain distinct concentrations 

of organic matter, nutrients, and contaminants. These 

differences can significantly affect the microbial 

dynamics within the reactor and the production of 

specific chemicals. For instance, wastewater from 

food processing plants may be rich in carbohydrates, 

while industrial effluents may contain high levels of 

heavy metals or toxic compounds (Agbede, et al., 

2023, Iwe, et al., 2023, Obianyo & Eremeeva, 2023). 

As a result, a model that is calibrated for one type of 

wastewater may not be applicable to another without 

significant adjustments or recalibrations. The 

heterogeneity of wastewater streams also makes it 

challenging to develop generalized models that can 

accurately predict chemical recovery across a wide 

range of systems and feedstocks. 

The issue of scaling up is further compounded by the 

fact that many AD models, including those for 

chemical recovery, are based on idealized conditions 

that may not reflect the complexities of real-world 

operations. In laboratory-scale systems, conditions 

such as temperature, pH, and substrate concentration 

can be carefully controlled, allowing for a more 

predictable and stable system. However, in larger, 

field-scale systems, these conditions can fluctuate 

significantly, making it more difficult to maintain the 

optimal conditions for chemical production (Bristol-

Alagbariya, Ayanponle & Ogedengbe, 2023, Nwulu, 

et al., 2023). As a result, scaling up kinetic models to 

real-world applications requires the inclusion of 

additional factors, such as reactor geometry, 

hydrodynamics, and mass transfer limitations, which 

may not have been considered in smaller-scale 

models. 

Another challenge in scaling up is the integration of 

the kinetic models with real-time monitoring and 

control systems. For large-scale AD systems, 

continuous monitoring of key parameters such as 

temperature, pH, and gas production is essential for 

maintaining optimal process conditions. However, 

real-time data acquisition in large systems often 

generates vast amounts of data that must be processed 

and analyzed quickly to inform control decisions. The 

integration of these real-time data streams with 

kinetic models requires advanced computational tools 

and algorithms that can handle large datasets and 

provide actionable insights in real-time (Ajiga, 

Ayanponle & Okatta, 2022, Noah, 2022, Ogundipe, 
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Sangoleye & Udokanma, 2022). This can be especially 

challenging when dealing with complex or 

heterogeneous feedstocks that introduce variability 

into the system. 

Finally, the adaptation of kinetic models to diverse 

wastewater streams and large-scale systems requires 

extensive experimental validation. To ensure that 

models accurately predict system performance and 

chemical recovery, they must be validated against 

real-world data from a variety of operational 

conditions and feedstock types. This validation 

process can be time-consuming and resource-

intensive, as it requires collecting large amounts of 

experimental data and performing rigorous model 

comparisons (Akintobi, Okeke & Ajani, 2023, Izuka, 

et al., 2023, Onukwulu, et al., 2023). Without proper 

validation, the reliability and accuracy of the model 

predictions may be compromised, leading to 

suboptimal decision-making and reduced chemical 

recovery efficiency. 

In conclusion, while kinetic modeling has the 

potential to significantly improve the efficiency of 

anaerobic digestion systems for chemical recovery, 

several challenges and limitations remain. Issues 

related to data quality and availability, model 

overfitting, parameter identifiability, and scalability 

must be addressed to ensure that these models can be 

effectively applied to real-world systems. 

Overcoming these challenges requires advancements 

in sensor technology, model calibration techniques, 

and computational tools to enhance model accuracy 

and reliability. Additionally, further research is 

needed to develop more robust and generalized 

models that can handle the variability and complexity 

of different wastewater streams and operational 

conditions. By addressing these challenges, the field 

of kinetic modeling for chemical recovery in 

anaerobic digestion can continue to evolve and 

provide valuable insights into optimizing waste-to-

energy systems and resource recovery processes. 

2.8.  Future Directions 

The future directions of kinetic modeling in 

anaerobic digestion (AD) systems, particularly for 

chemical recovery in biological wastewater systems, 

promise significant advancements that could lead to 

more efficient, sustainable, and scalable processes. 

These developments will not only improve the 

understanding of complex microbial dynamics but 

also optimize the production of valuable chemicals 

such as volatile fatty acids (VFAs), hydrogen, 

methane, and ammonia. As the need for sustainable 

waste management and resource recovery continues 

to grow, future advances in kinetic modeling will 

play a crucial role in revolutionizing the way we 

approach wastewater treatment and resource 

recovery. 

One of the most promising future directions for 

kinetic modeling in AD systems is the development 

of fully autonomous, AI-driven systems. The 

integration of artificial intelligence (AI) and machine 

learning (ML) with AD kinetic models has the 

potential to transform the way these systems are 

operated and optimized. AI-driven systems can 

continuously analyze large volumes of real-time data 

collected from sensors embedded within the AD 

system, allowing for adaptive control and 

optimization of operational conditions without 

human intervention (Onaghinor, et al., 2021, Orieno, 

et al., 2022, Sobowale, et al., 2022). For example, AI 

algorithms can predict and adjust parameters such as 

temperature, pH, substrate feed rates, and retention 

times to optimize the yield of desired products, such 

as VFAs or methane. These systems would not only 

improve the overall efficiency of AD systems but also 

reduce operational costs by minimizing energy 

consumption, labor requirements, and waste 

generation. Furthermore, AI-driven models can learn 

from historical data and past system performance, 

continuously improving their predictions and 

optimization strategies over time. 
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The coupling of kinetic models with microbial 

genomics and community dynamics is another 

promising avenue for advancing AD modeling. 

Traditional kinetic models primarily focus on the 

rates of substrate consumption and product formation, 

often treating microbial populations as homogeneous 

groups with fixed metabolic pathways. However, in 

reality, the microbial community in AD systems is 

highly diverse and dynamic, with different species 

interacting in complex ways. Advances in microbial 

genomics and metagenomics have enabled the 

identification and characterization of the microbial 

communities involved in AD, providing new insights 

into their metabolic capabilities and interactions 

(Onyeke, et al., 2022, Orieno, et al., 2021, Ubamadu, 

et al., 2023). By integrating kinetic models with 

genomic data, researchers can develop more accurate 

representations of microbial community dynamics, 

allowing for better predictions of system behavior 

and improved optimization of chemical recovery. For 

example, understanding the specific microbial species 

responsible for the production of VFAs, hydrogen, or 

methane can help target operational conditions that 

favor the growth of beneficial microbes, leading to 

enhanced recovery of desired products. Additionally, 

by studying microbial interactions, researchers can 

identify potential inhibitors or competitive 

interactions that may reduce the efficiency of 

chemical recovery and take steps to mitigate these 

issues. 

The future of AD kinetic modeling will also involve 

the development of standardized, open-access kinetic 

platforms that can be used by researchers, engineers, 

and operators across the world. Standardization is 

essential to ensure that models are widely applicable, 

reproducible, and easy to integrate into various AD 

systems, regardless of location or scale. An open-

access platform would allow stakeholders from 

academia, industry, and government to collaborate 

and contribute to the development of more accurate 

and generalized models, accelerating progress in the 

field (Ojika, et al., 2023, Ojo, et al., 2023, Okolo, et al., 

2023). These platforms would provide a user-friendly 

interface for the development, calibration, and 

validation of kinetic models, enabling researchers to 

build upon existing models and share data and 

insights. In particular, such platforms would allow for 

the integration of diverse datasets from different 

types of wastewater, operational conditions, and 

reactor configurations, leading to more robust and 

generalized models that can be applied to a wider 

range of systems. Moreover, by making kinetic 

models and simulation tools openly available, the 

scientific community can accelerate the process of 

optimization and innovation, facilitating the adoption 

of advanced AD technologies globally. 

Furthermore, as the field of AD modeling continues 

to evolve, there will likely be a greater focus on the 

development of multi-scale models that can simulate 

the behavior of AD systems at different levels of 

complexity. These models would integrate molecular, 

microbial, reactor, and system-level dynamics to 

provide a comprehensive understanding of the AD 

process. For instance, at the molecular level, models 

could simulate the biochemical reactions that occur 

during hydrolysis, acidogenesis, acetogenesis, and 

methanogenesis, providing detailed insights into the 

metabolic pathways and enzymatic reactions 

involved. At the microbial level, models could 

simulate the interactions between different microbial 

species and their impact on substrate degradation and 

product formation (Egbuhuzor, et al., 2023, 

Fiemotongha, et al., 2023, Nwulu, et al., 2023). At the 

reactor level, models could incorporate factors such 

as mixing, temperature gradients, and mass transfer 

limitations, while system-level models could consider 

the influence of external variables such as feedstock 

variability, nutrient availability, and environmental 

conditions. By integrating these different levels of 

modeling, researchers would be able to develop more 

accurate and predictive models that can be used to 
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optimize chemical recovery and process performance 

across a wide range of AD systems. 

As the demand for chemical recovery and resource 

recovery grows, kinetic modeling in AD will also 

need to incorporate the recovery of a broader range 

of chemicals, including biofuels, bioplastics, and 

other high-value products. For example, the 

production of bioplastics from VFAs produced during 

AD has gained increasing attention due to the 

growing need for sustainable alternatives to 

petroleum-based plastics. Future models will need to 

focus on optimizing the conditions for the production 

of such chemicals while maintaining the overall 

efficiency of the AD process (Agho, et al., 2023, 

Ezeamii, et al., 2023, Nwankwo & Etukudoh, 2023). 

This may require the integration of additional models 

or simulations to account for the downstream 

processing of the recovered chemicals, such as 

purification, separation, and conversion processes. 

Additionally, future models will need to incorporate 

the economic and environmental sustainability 

aspects of chemical recovery, including lifecycle 

assessments (LCA), cost-benefit analyses, and 

emissions reductions, to ensure that the recovery of 

chemicals from AD is economically viable and 

environmentally sound. 

One of the key challenges in the future development 

of AD models is the need to incorporate greater 

uncertainty into the models. Real-world AD systems 

are subject to a wide range of uncertainties, including 

variations in feedstock composition, microbial 

populations, operational parameters, and 

environmental conditions. These uncertainties can 

lead to unpredictable system behavior and suboptimal 

performance. Future modeling approaches will need 

to address these uncertainties by incorporating 

stochastic elements or probabilistic methods into the 

models (Ajayi, et al., 2020, Ofori-Asenso, et al., 2020). 

By accounting for variability and uncertainty, models 

will be better equipped to predict system behavior 

under a wide range of operating conditions and 

provide more reliable optimization strategies. 

Finally, one of the most exciting future directions for 

kinetic modeling in AD is the integration of AD 

systems with other waste-to-resource technologies, 

such as microbial fuel cells (MFCs) or electrodialysis 

systems. These integrated systems have the potential 

to recover additional chemicals or generate energy in 

ways that are not possible with standalone AD 

systems. For instance, microbial fuel cells can convert 

the electrons produced by microbial metabolism into 

electricity, creating a dual-function system that 

simultaneously treats wastewater and generates 

power (Bristol-Alagbariya, Ayanponle & Ogedengbe, 

2022, Nwulu, et al., 2022). Integrating such 

technologies into AD systems presents new 

challenges for kinetic modeling, requiring the 

development of models that can simulate the 

interactions between multiple processes and predict 

their combined performance. This interdisciplinary 

approach will be crucial for the development of 

future AD systems that are capable of maximizing 

both energy recovery and chemical production. 

In conclusion, the future of kinetic modeling in 

anaerobic digestion for chemical recovery in 

biological wastewater systems holds great promise for 

advancing the efficiency and sustainability of waste-

to-resource technologies. By leveraging advances in 

artificial intelligence, microbial genomics, and open-

access platforms, future models will be better 

equipped to predict system behavior, optimize 

chemical recovery, and scale up AD systems for 

diverse wastewater streams (Ayo-Farai, et al., 2023, 

Ezeanochie, Afolabi & Akinsooto, 2023). As the field 

continues to evolve, multi-scale models, greater 

consideration of uncertainty, and the integration of 

AD with other waste-to-resource technologies will be 

key to unlocking the full potential of anaerobic 

digestion for chemical recovery. Through these 

advancements, kinetic modeling will play a pivotal 

role in achieving more sustainable and efficient 
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wastewater treatment systems, contributing to the 

global effort to reduce waste, recover resources, and 

mitigate environmental impacts. 

2.9.  Conclusion 

In conclusion, advances in kinetic modeling of 

anaerobic digestion (AD) for chemical recovery in 

biological wastewater systems have significantly 

improved our understanding of the complex 

microbial dynamics and the biochemical processes 

involved in organic waste treatment. Recent 

developments have highlighted the need for more 

sophisticated and accurate models that not only 

predict biogas production but also optimize the 

recovery of valuable chemicals such as volatile fatty 

acids (VFAs), hydrogen, ammonia, and other bio-

based products. By integrating traditional mechanistic 

models with data-driven approaches, such as machine 

learning and hybrid frameworks, researchers have 

been able to overcome some of the limitations of 

previous models, allowing for more accurate 

predictions and better optimization of operational 

parameters. 

The incorporation of real-time data acquisition, 

model-predictive control, and digital twins represents 

a significant leap toward autonomous, adaptive AD 

systems. These advancements enable operators to 

fine-tune processes in real-time, making it possible to 

achieve higher chemical recovery rates while 

maintaining system stability and minimizing 

unwanted by-products. Furthermore, the coupling of 

kinetic models with microbial genomics and 

community dynamics has opened new avenues for 

understanding the specific roles of microbial species 

in chemical production, offering opportunities to 

enhance the recovery of target chemicals while 

optimizing microbial activity. 

However, despite these advancements, there remain 

several challenges that must be addressed for kinetic 

modeling to reach its full potential in real-world 

applications. Data quality and availability, model 

overfitting, and difficulties in scaling up to diverse 

wastewater streams are among the primary hurdles 

that need further exploration. These challenges call 

for continued innovation in sensor technologies, 

computational power, and model calibration 

techniques. As more data becomes available and new 

technologies emerge, kinetic models will become 

increasingly reliable and better suited for predicting 

and optimizing chemical recovery in anaerobic 

digestion systems. 

For the successful adoption of these models in 

industry, collaboration between researchers, 

engineers, and policymakers will be crucial. The 

development of standardized modeling platforms and 

open-access tools can enable a broader range of 

stakeholders to benefit from advances in AD 

modeling, facilitating more widespread adoption and 

deployment across different industries. Additionally, 

ongoing research into the integration of AD systems 

with other waste-to-resource technologies, such as 

microbial fuel cells or electrodialysis systems, will 

further expand the potential applications of AD and 

chemical recovery technologies. 

In summary, the advances in kinetic modeling for 

chemical recovery in anaerobic digestion represent 

an exciting step forward in wastewater treatment and 

resource recovery. As research continues to address 

the challenges of data accuracy, model integration, 

and system scalability, kinetic modeling will play a 

key role in the development of more efficient, 

sustainable, and cost-effective AD systems. These 

advancements will not only improve chemical 

recovery but also contribute to a more circular 

economy, where waste is viewed as a valuable 

resource, helping to reduce environmental impacts 

while promoting sustainability in wastewater 

management and industrial processes. 
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