
Copyright © 2023 The Author(s): This is an open-access article distributed under the terms of the Creative

Commons Attribution 4.0 International License (CC BY-NC 4.0) which permits unrestricted use, distribution, and

reproduction in any medium for non-commercial use provided the original author and source are credited.

International Journal of Scientific Research in Computer Science, Engineering

and Information Technology

ISSN : 2456-3307

Available Online at : www.ijsrcseit.com

doi : https://doi.org/10.32628/CSEIT25112782

747

Offline-first PWA : Case Study on Efficient Data Handling and Synchronization

Karthik Sirigiri*1, Akhila Narra2, Anurag Sirumalla3
*1Graduate Student, Department of Computer and Information Sciences, Texas Tech University, Lubbock, Texas, USA
2Graduate Student, Department of Computer and Information Sciences, Texas Tech University, Lubbock, Texas, USA
3Graduate Student, Department of Computer and Information Sciences, Texas Tech University, Lubbock, Texas, USA

A R T I C L E I N F O

A B S T R A C T

Article History:

Accepted: 11 June 2023

Published: 25 June 2023

 This work presents in-depth analysis of advanced data handling and

synchronizing methods in Offline-first Progressive Web Applications (PWAs).

Emphasizing the efficient usage of IndexedDB and service workers, the research

investigates technique permitting perfect offline operation while keeping high

speed. We investigate how pre-caching, lazy loading, and pagination could be

coupled to efficiently manage big databases, hence guaranteeing fast UI response

and best use of resources. Furthermore, included in the study are synchronizing

techniques such as delta synchronization and background sync, which provide

precise and timely data updates upon the restoration of connectivity. By

lowering load times, and thus limiting network dependencies, we show via

experimental assessment and benchmarking that these approaches greatly

improve the user experience. The results offer a structure for creating strong,

scalable, and responsive offline web applications free from too much security

concentration, reserved for next research.

Keywords : Progressive Web Applications, Offline-First, Data Synchronization,

IndexedDB, Service Workers, Background Sync.

Publication Issue

Volume 9, Issue 3

May-June-2023

Page Number

747-754

I. INTRODUCTION

Web apps can be installed and distributed without app

marketplaces, work with-out Internet connectivity,

receive push notifications and look like regular apps.

Progressive online apps (PWAs) have revolutionized

web development by combining the best features of

online and native applications to create seamless,

trustworthy experiences even in low connectivity. One

of the main differences between the two is that native

apps are platform-specific. Service workers help

Progressive Web Apps in such a way that they work

offline, or even on networks with low quality. The

offline capabilities of PWAs depend critically on service

workers who intercept network requests and cache

important resources, as well as IndexedDB, a robust

client-side storage system designed to manage large

volumes of structured data. IndexedDB completely runs

in the browser. These technologies together enable

PWAs to give continuous access to content, therefore

enabling users to interact with the application even in

settings with sporadic or nonexistent internet access.

Volume 9, Issue 3, May-June-2023 | http://ijsrcseit.com

Karthik Sirigiri et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., May-June-2023, 9 (3) : 747-754

748

Although many studies have looked at certain elements,

such as indexedDB's speed for data storage or the

effectiveness of service worker caching, integrating

several strategies for data-intensive applications still

presents a difficult task. Usually addressing these

components separately, current studies leave

knowledge gaps on how to efficiently manage and

synchronize big datasets across offline and online states.

Many systems still suffer with slow data retrieval, high

memory consumption, and ineffective synchronization,

especially when advanced techniques such as lazy

loading, pagination, or delta synchronization are

needed.

Figure 1: Service Worker-Based PWA Architecture.

This report attempts to assess current offline data

strategies in PWAs by analyzing the combined use of

IndexedDB and service workers. It specifically evaluates

pre-caching and runtime caching techniques, rates

effective data storage strategies, including insertion and

slow loading, and compares synchronizing methods that

update just-changed data. This paper finds performance

bottlenecks and offers practical tips and best practices

by benchmarking these methods in reasonable settings

to guide developers in creating scalable, high-

performance offline first-web apps.

There is a lot of research on offline-first Progressive

Web Applications (PWAs), addressing both the various

elements allowing offline capability and their

performance in actual environments. Early research

mostly concentrated on the deployment of service

workers, who function as background agents

intercepting network demands and cacheable vital

resources. Service Worker is taken as progressive

enhancement of the application or webpage. Pre-

caching techniques often used in libraries like

Workbox—have shown to greatly reduce load times

and offer a strong basis for offline access, according to

studies. These studies underline how service providers

not only control static asset caching but also provide

dynamic, runtime caching and background

synchronization, therefore ensuring that applications

stay responsive even under intermittent connectivity.

Parallel with this, IndexedDB has been extensively

investigated as PWAs' main client-side storage choice.

Its transactional, asynchronous character qualifies it for

storing vast amounts of organized data. Through

indexing, researchers have highlighted IndexedDB's

ability to manage difficult searches as well as methods

such bulk inserts, lazy loading, and pagination that best

maximize data retrieval and resource management.

Although IndexedDB is generally efficient, comparative

studies in the literature indicate that, particularly in

relation to big datasets, its performance can vary greatly

depending on the degree of data organization and

management. These realizations have resulted in

suggestions for better data management techniques to

raise the user experience in offline surroundings even

more.

Table 1: Comparision: Cache Storage vs IndexedDB.

Volume 9, Issue 3, May-June-2023 | http://ijsrcseit.com

Karthik Sirigiri et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., May-June-2023, 9 (3) : 747-754

749

Synchronization methods—which are essential for

preserving data consistency between the offline client

and remote servers once connectivity is restored. For

example, the Background Sync API has been tested

extensively as a means to queue and replay network

request mechanisms. Furthermore, delta

synchronizing—where just updated data is sent has

shown promise as a means of lowering synchronizing

latency and bandwidth usage. The literature does,

however, also highlight difficulties using these

techniques in data-intensive applications, especially

with relation to performance bottlenecks and resource

restrictions during the change from offline to online

forms.

Notwithstanding these developments, there is still a

great discrepancy in the combined assessment of these

elements. Many studies examine service worker caching,

IndexedDB storage, or synchronizing methods

separately without regard for the overall performance of

a PWA that makes use of all three concurrently.

Comprehensive benchmarking comparing these

approaches under reasonable conditions—such as

different network speeds and large-scale data

scenarios—allows one to find optimum practices and

performance trade-offs.

Figure 2: Interaction of Service Worker with Cache,

IndexedDB and Remote Server

This analysis of related studies emphasizes the need of a

consistent method for offline data processing in PWAs.

This case study attempts to close the found research gap

and offer actionable insights for optimizing offline

performance in real-world applications by evaluating

the combined use of service workers and IndexedDB

along with advanced techniques like lazy loading,

pagination, and delta synchronizing.

II. METHODS AND MATERIAL

This article evaluates present offline data strategies in

Progressive Web Applications (PWAs) by an

experimental and analytical method using IndexedDB

and service workers. Instead of creating a new

application, the study emphasizes on benchmarking and

assessing current technologies under controlled

conditions to understand their performance, scalability,

and resource economy. Our experimental design,

approach of research, evaluated techniques, and

performance criteria we use are discussed in the next

sections.

A. Research Approach

We design a series of controlled tests and simulations

replicating real-world usage scenarios based on an

evaluation-based paradigm grounded on thorough

analysis of current offline data management practices

compliant with especially those requiring large datasets

and changing network conditions. Using slow loading,

pagination, and delta synchronizing, this method seeks

the most effective approaches of processing and

synchronizing the data. We must so employ several

approaches to reach this. To ensure that our trials truly

reflect pragmatic settings, we have created a

comprehensive test environment:

Experiments are carried out on desktop computers and

mobile devices using contemporary browsers including

Chrome and Firefox. This diversity helps us to

understand differences in memory, processing

capabilities, and browser speed.

Volume 9, Issue 3, May-June-2023 | http://ijsrcseit.com

Karthik Sirigiri et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., May-June-2023, 9 (3) : 747-754

750

With tools like Chrome DevTools, we can recreate

several network conditions—from fast broadband to

slow 3G and complete offline states. Network throttling

allows us to observe how every approach manages

different connectivity scenarios.

Figure 3: Flow of the data in offline and online modes

through service worker and other components

Synthetic datasets are produced to mirror large volumes

of structured data spanning several thousand records to

many hundred thousand records. These sets are

designed to copy the data-intensive requirements of

useful applications.

B. Experimental Setup

We utilize Lighthouse and Chrome DevTools

benchmarking tools to evaluate network performance

and load times. Furthermore tailored JavaScript scripts

are benchmarking IndexedDB activities (bulk insertion,

lazy loading searches, and pagination efficiency).

Monitoring cache events and syncing systems helps to

log inside service providers with comprehensive

performance data.

C. Techniques Evaluated

The paper assesses many fundamental methods essential

to offline data handling:

We evaluate how pre-caching key assets during the

service worker installation process improves first load

times and offline availability. Search of optimal

configurations tests several cache sizes and expiration

policies.

To efficiently handle large volumes in IndexedDB, we

apply lazy loading—that is, data loading on demand and

pagination—that is, splitting of the dataset into

manageable chunks. As more data is being loaded, these

techniques are evaluated in terms of their capacity to

reduce memory usage, shorten starting load times, and

guarantee flawless user interactions.

We evaluate full data refresh techniques against delta

synchronizing methods, which update just changed data.

Measuring the time needed to synchronize offline

changes once connectivity is restored helps one assess

the Background Sync API's performance as well.

Beyond pre-caching, we investigate runtime caching

techniques whereby service workers cache dynamic

API replies and user interactions.This approach aims to

maintain the responsiveness of apps during offline times,

therefore reducing the occurrence of active network

searches.

D. Performance Metrics

We statistically assess every technique using the

following success criteria. Digital and physical

environments were used to assess the time required for

the preliminary visit to get basic objects from the cache.

Data Insertion and Query Speed: Particularly when lazy

loading and pagination are used, the latency of searches

Volume 9, Issue 3, May-June-2023 | http://ijsrcseit.com

Karthik Sirigiri et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., May-June-2023, 9 (3) : 747-754

751

as well as the time required for bulk data insertion into

IndexedDB.

Synchronization latency: The delay between the time

offline changes are made and upon restoration of

network connectivity, when they are effectively synced

with the distant server.

Metrics including CPU use during data operations and

memory consumption provide understanding of the

scalability and efficiency of the offline techniques. The

ratio of cache hits to misses shows the effectiveness of

the caching method used by the service worker: it

shows the percentage of network requests satisfied by

the cache with respect to those that return to the

network.

This work intends to comprehensively gather and

evaluate offline data management solutions in

Progressive Web Applications (PWAs) by means of

several situations underlined by specific criteria. The

results will offer developers trying to improve the

scalability and performance of offline-first web apps

useful knowledge and best practices.

III.RESULTS AND DISCUSSION

The results of our studies are presented in this part

together with an analysis of offline data handling

methods in PWAs under several scenarios. We

methodically gathered measurements under several

settings—varying dataset sizes, network conditions, and

caching strategies—then evaluated pre-caching, lazy

loading, pagination, and delta synchronizing efficacy.

The diffenetiating analysis of the efficiency and

scalability of several methods can be obtained by the

results.

A. Data Collection and Analysis

The tests were executed within network configurations

replicated by Chrome DevTools, employing a variety of

devices and browsers in a meticulously controlled

environment. To recreate data-intensive scenarios, we

created synthetic datasets spanning few thousand to

several hundred thousand records. Recording the

following performance measures:

Initial Load Time: Measured under both normal and

throttled network settings, the time needed for the

application to load necessary assets via pre-caching.

Data Insertion and Query Speed: Benchmarked the time

required to run searches against IndexedDB utilizing

lazy loading and pagination strategies, then do bulk

insertions against IndexedDB.

Synchronization Latency: Particularly comparing full

data refreshes with delta synchronizing, evaluate the

latency between offline data changes and effective

synchronizing with the server following network

restoration.

Resource Utilization: Monitored CPU and memory use

during data processing to determine how each method

affected system performance generally.

Cache Hit/ Miss Ratio: Calculating the ratio of requests

handled from cache against those falling back to

network fetches helped one assess the effectiveness of

the caching technique.

The collected data was investigated using statistical

techniques; graphs and tables then showed the results.

When utilized instead of a baseline network fetch, pre-

caching, for example, clearly lowered initial load

times—up to 40% faster. Similarly, lazy loading and

pagination significantly lower query latency and

memory consumption especially with larger datasets.

B. Comparative Analysis

Our analysis of the different tried approaches revealed

several really significant trade-offs:

Pre-caching improves the offline experience relative to

runtime caching by ensuring that key resources are

ready immediately during the initial load. On the other

hand, if not updated frequently, it could generate

somewhat outdated content. On the other hand,

runtime caching allows more dynamic content

Volume 9, Issue 3, May-June-2023 | http://ijsrcseit.com

Karthik Sirigiri et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., May-June-2023, 9 (3) : 747-754

752

management, but, in situations when the cache is not

sufficiently warm, more latency and resource usage may

follow.

Lazy loading and pagination obviously help with huge

databases. Data on demand let slow loading reduce

starting data footprint; pagination helped arrange data

into reasonable chunks. For devices with limited

resources, this method not only sped searches but also

reduced memory consumption—which is very critical.

The disadvantage was a small increase in complexity

brought about by smooth user interfaces allowing

increasing data loading.

Delta synchronizing which just sends the updated

records—much less synchronizing time and bandwidth

use as compared to ways of full data refreshing. Still,

keeping data consistency and managing expected

conflicts in delta sync is a difficulty that can demand

more sophisticated conflict resolution methods.

C. Discussion of Findings

Successful coupling of the indexedDB with the service

providers which determine the strong capability of

offline feature in PWAs can be determined by the

experimental results. Pre-caching has shown to be a

strong basis for fast, consistent offline access, even if

sluggish loading and pagination are required for

managing large volumes without draining system

resources. Delta synchronizing shows promise as a low-

resource overhead technique to maintain data

consistency, even if it takes careful implementation to

manage conflicting updates.

Figure 4: Comparison of load times with and without

IndexedDB

Figure 5: Speed of synchronization following network

connectivity restoration

Our results imply that the scalability of offline-first apps

can be significantly improved as well as the user

experience by means of an integrated approach utilizing

several methods in concert. Particularly in terms of

lowered load times and improved query speeds, the

performance gains hint to the possibilities of these

techniques to be best practices for developers.

Furthermore, the collected data indicates that their

combined use generates a more strong and efficient

offline architecture even if every technique has

advantages and shortcomings.

Volume 9, Issue 3, May-June-2023 | http://ijsrcseit.com

Karthik Sirigiri et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., May-June-2023, 9 (3) : 747-754

753

Figure 6: Data retrieval speed analysis under several

contexts

These results usually validate the use of current offline

data handling techniques in PWAs as well as highlight

places where future research and optimization can offer

even better performance. The information gained by

this study provides developers aiming to produce

scalable and high-performance offline web apps useful

guidance.

IV. CONCLUSION

With particular attention to the cooperative application

of IndexedDB and service workers, this case study

thoroughly examined the existing offline data

techniques applied in Progressive Web Applications.

We have demonstrated by means of considerable

experimentation that strategies including pre-caching,

lazy loading, pagination, and delta synchronization can

dramatically improve the scalability and performance of

offline-first Progressive Web Applications (PWAs). Our

analysis shows that pre-caching for key assets greatly

reduces starting load times. Moreover, by lowering both

memory usage and query latency, lazy loading and

pagination help to deftly manage large datasets.

Moreover, delta synchronizing shows great promise for

the effective updating of just changed data, hence

reducing bandwidth consumption and accelerating the

synchronizing procedure upon reestablishment of the

connection.

These methods offer great improvements, but our

analysis also emphasizes the challenges of dynamic

content management and the complexities in creating

successful dispute resolution for synchronizing.

Moreover, it is crucial to realize that our controlled

studies might not cover all the variation found in actual

settings.

In the future, research should concentrate on the

improvement of these synchronization techniques by

utilizing more sophisticated dispute resolution

techniques and by investigating the potential of

machine learning to predict data changes. Additional

field experiments that integrate real-world user data

and diverse network scenarios would also be beneficial

in order to verify and expand these findings. Moreover,

a careful analysis of the way improved security

measures are combined with other storage options could

result in notable enhancements in the offline data

management. User experience studies are ultimately

essential to determine how these technologies affect

end-user happiness, hence guiding the development of

ever more responsive offline-first apps.

V. REFERENCES

[1] John M Wargo. Learning progressive web apps.

Addison-Wesley Professional, 2020.

[2] Andreas Biørn-Hansen, Tim A. Majchrzak, and

Tor-Morten Gronli. Progressive web apps: The

possible web-native unifier for mobile

development. In Proceedings of the 13th

International Conference on Web Information

Systems and Technologies - Volume 1: WEBIST,,

pages 344–351. INSTICC, SciTePress, 2017.

[3] VS Magomadov. Exploring the role of progressive

web applications in modern web development. In

Journal of Physics: Conference Series, volume

1679, page 022043. IOP Publishing, 2020.

[4] Sayali Tandel and Abhishek Jamadar. Impact of

progressive web apps on web app development.

International Journal of Innovative Research in

Volume 9, Issue 3, May-June-2023 | http://ijsrcseit.com

Karthik Sirigiri et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., May-June-2023, 9 (3) : 747-754

754

Science, Engineering and Technology, 7(9):9439–

9444, 2018.

[5] Chris Love. Progressive Web Application

Development by Example: Develop fast, reliable,

and engaging user experiences for the web. Packt

Publishing Ltd, 2018.

[6] Tal Ater. Building progressive web apps: bringing

the power of native to the browser. ” O’Reilly

Media, Inc.”, 2017.

[7] Alonge Oluwatobi Josephe, Christos Chrysoulas,

Taoxin Peng, Brahim El Boudani, Ioannis

Iatropoulos, and Nikolaos Pitropakis. Progressive

web apps to support (critical) systems in low or no

connectivity areas. In 2023 IEEE IAS Global

Conference on Emerging Technologies

(GlobConET), pages 1–6. IEEE, 2023.

[8] Bayya, Anil Kumar. (2022). Advocating Ethical

Data Management and Security. International

Journal of Computer Science Engineering

Techniques. 8. 396-417. 10.32628/CSEIT225541.

[9] Phunon Koysawat, Chayanon Boonprakob,

Khwantri Saengprachatanarug, Arnut Chaosakul,

Panupong Wanjantuk, Mahisorn Wongphati,

Santawat Santiteerakul, Adulwit Chinapas, and

Kanda Runapongsa Saikaew. Progressive web app

for crop field data collection. In IOP Conference

Series: Materials Science and Engineering,

volume 1163, page 012018. IOP Publishing, 2021.

[10] Frank Mittelbach. A general framework for

globally optimized pagination. In Proceedings of

the 2016 ACM Symposium on Document

Engineering, pages 11–20, 2016.

[11] N van den Wouw, Alexey Pavlov, and Henk

Nijmeijer. Controlled synchronisation of

continuous pwa systems. Group coordination and

cooperative control, pages 271–289, 2006.

[12] Kashish Behl and Gaurav Raj. Architectural

pattern of progressive web and background

synchronization. In 2018 International

Conference on Advances in Computing and

Communication Engineering (ICACCE), pages

366–371. IEEE, 2018.

[13] Ramdoss, V. S. (2021). Optimizing database

queries: Cost and performance analysis.

International Journal of Science and Research

Archive, 2(2), 293–297.

https://doi.org/10.30574/ijsra.2021.2.2.0025.

[14] He Xiao, Zhenhua Li, Ennan Zhai, Tianyin Xu,

Yang Li, Yunhao Liu, Quanlu Zhang, and Yao Liu.

Towards web-based delta synchronization for

cloud storage services. In 16th USENIX

Conference on File and Storage Technologies

(FAST 18), pages 155–168, 2018.

[15] Giwon Lee, Haneul Ko, and Sangheon Pack. An

efficient delta synchronization algorithm for

mobile cloud storage applications. IEEE

Transactions on Services Computing, 10(3):341–

351, 2015.

[16] Fabian Johannsen. Progressive web applications

and code complexity: An analysis of the added

complexity of making a web application

progressive, 2018.

[17] Felipe Rˆego, Filipe Portela, and Manuel Filipe

Santos. Towards pwa in healthcare. Procedia

Computer Science, 160:678–683, 2019.

[18] Azzam Sleit et al. Evaluating indexeddb

performance on web browsers. In 2017 8th

International Conference on Information

Technology (ICIT), pages 488–494. IEEE, 2017.

[19] Sang Hyuk Son. Synchronization of replicated

data in distributed systems. Information Systems,

12(2):191–202, 1987.

