
Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed under
the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use,
distribution, and reproduction in any medium, provided the original work is properly cited

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

ISSN : 2456-3307 (www.ijsrcseit.com)

doi : https://doi.org/10.32628/CSEIT25113346

418

Strengthening AES Encryption: A Novel Approach Using Prime Number-Based

Passwords
Dr. G. Sreedhar

Professor, Department of Computer Science, National Sanskrit University, Tirupati, Andhra Pradesh, India

Article Info

Publication Issue :

Volume 8, Issue 4

July-August-2022

Page Number : 418-421

Article History

Accepted: 20 July 2022

Published: 14 Aug 2022

ABSTRACT

This paper explores the enhancement of Advanced Encryption Standard (AES)

encryption by integrating prime number sequences into password generation.

Prime numbers, known for their mathematical properties, are utilized to create

robust passwords that augment the security of AES encryption. The research

demonstrates the implementation of this approach using the Web Crypto API,

highlighting its effectiveness in strengthening cryptographic operations in web

browsers.

Keywords: Advanced Encryption Standard, Prime numbers, Encryption,

Decryption.

1. INTRODUCTION

The security of digital communications relies heavily

on encryption algorithms, with AES being a widely

adopted standard due to its efficiency and strength.

However, the security of AES is contingent upon the

strength of the encryption key. Traditional methods

of key generation may not provide sufficient

randomness, making them susceptible to attacks. This

paper proposes an innovative approach to enhance

AES encryption by incorporating prime number

sequences into password generation, thereby

increasing the entropy and unpredictability of the

encryption keys.

2. BACK GROUND

2.1 Advanced Encryption Standard (AES)

AES is a symmetric key encryption algorithm that

operates on fixed block sizes and supports key lengths

of 128, 192, or 256 bits. It employs a series of

transformation rounds, including substitution,

permutation, and mixing operations, to convert

plaintext into ciphertext. The strength of AES is

largely determined by the key size and the

complexity of the key schedule, which generates

round keys from the original encryption key.

2.2 Prime Numbers in Cryptography

Prime numbers play a crucial role in various

cryptographic algorithms, such as RSA, due to their

mathematical properties that facilitate secure key

generation and encryption processes. Incorporating

prime numbers into password generation can enhance

the randomness and complexity of the keys, making

them more resistant to attacks.

3. METHODOLOGY

3.1 Prime Number Sequence Generation

A sequence of prime numbers is generated using an

efficient primality test algorithm. These prime

http://ijsrcseit.com/
http://ijsrcseit.com/

Volume 8, Issue 4, July-August-2022| http://ijsrcseit.com

Dr. G. Sreedhar Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., July-August-2022, 8 (4) : 418-421

419

numbers are then mapped to characters to form a

password. The length of the password is determined

based on the desired security level, with longer

passwords providing greater security.

3.2 Password Generation Process

1. Generate a list of prime numbers up to a specified

limit.

2. Map each prime number to a corresponding

character in a predefined character set.

3. Concatenate the characters to form a password of

the desired length.

4. Use this password as the key for AES encryption.

3.3. AES Algorithm Overview

AES operates on fixed-size blocks of 128 bits and

supports key sizes of 128, 192, or 256 bits. The

number of rounds in AES depends on the key size:

• AES-128: 10 rounds

• AES-192: 12 rounds

• AES-256: 14 rounds

Each round involves a series of transformations to

ensure the security of the encrypted data.

3.4. AES Encryption Process

The AES encryption process involves several steps:

1. Initial Round:

o AddRoundKey: XOR the plaintext block with the

first round key.

2. Main Rounds (repeated for 9, 11, or 13 times

depending on key size):

o SubBytes: Substitute each byte in the state using

the S-box.

o ShiftRows: Cyclically shift the rows of the state.

o MixColumns: Mix the columns of the state to

provide diffusion.

o AddRoundKey: XOR the state with the current

round key.

3. Final Round:

o SubBytes

o ShiftRows

o AddRoundKey: No MixColumns in the final

round.

After the final round, the state contains the

ciphertext.

3.4.1 AES Encryption Algorithm (Pseudocode)

function AES_Encrypt(plaintext, key):

state = ConvertToState(plaintext)

 state = AddRoundKey(state, key[0..3])

 for round = 1 to Nr-1:

 state = SubBytes(state)

 state = ShiftRows(state)

 state = MixColumns(state)

 state = AddRoundKey(state,

key[4*round..4*round+3])

 end for

 state = SubBytes(state)

 state = ShiftRows(state)

 state = AddRoundKey(state, key[4*Nr..4*Nr+3])

 return state

end function

Figure 1: AES Encryption using Prime Numbers

based password

Volume 8, Issue 4, July-August-2022| http://ijsrcseit.com

Dr. G. Sreedhar Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., July-August-2022, 8 (4) : 418-421

420

3.5 AES Decryption Process

The AES decryption process is the reverse of

encryption, applying the inverse of each

transformation in reverse order:

1. Initial Round:

o AddRoundKey: XOR the ciphertext block with

the last round key.

2. Main Rounds (repeated for 9, 11, or 13 times

depending on key size):

o InvSubBytes: Substitute each byte in the state

using the inverse S-box.

o InvShiftRows: Cyclically shift the rows of the

state in the opposite direction.

o InvMixColumns: Apply the inverse of the

MixColumns transformation.

o AddRoundKey: XOR the state with the current

round key.

3. Final Round:

o InvSubBytes

o InvShiftRows

o AddRoundKey: No InvMixColumns in the final

round.

After the final round, the state contains the original

plaintext.

3.5.1 AES Decryption Algorithm (Pseudocode)

function AES_Decrypt(ciphertext, key):

 state = ConvertToState(ciphertext)

 state = AddRoundKey(state, key[4*Nr..4*Nr+3])

 for round = Nr-1 downto 1:

 state = InvShiftRows(state)

 state = InvSubBytes(state)

 state = AddRoundKey(state,

key[4*round..4*round+3])

 state = InvMixColumns(state)

 end for

 state = InvShiftRows(state)

 state = InvSubBytes(state)

 state = AddRoundKey(state, key[0..3])

 return state

end function

Figure 2: AES Decryption using Prime Numbers based

Password

4. CONCLUSION

The implementation of prime number-based

password generation demonstrates a significant

improvement in the security of AES encryption. By

increasing the entropy of the encryption key, the

system becomes more resistant to brute-force and

dictionary attacks. Integrating prime number

sequences into password generation offers a novel

approach to enhancing the security of AES encryption.

This method increases the unpredictability and

complexity of the encryption keys, thereby

strengthening the overall security of cryptographic

systems. Future research may explore the application

of this approach in other cryptographic algorithms

and its potential in post-quantum cryptography

scenarios. The integration of prime numbers into

password generation not only enhances security but

also aligns with modern cryptographic practices that

emphasize the importance of key unpredictability and

resistance to attacks. Future work may explore the

Volume 8, Issue 4, July-August-2022| http://ijsrcseit.com

Dr. G. Sreedhar Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., July-August-2022, 8 (4) : 418-421

421

application of this method in various cryptographic

protocols and its potential in post-quantum

cryptography scenarios.

REFERENCES

[1]. Maurer, U. (1995). Fast Generation of Prime

Numbers and Secure Public-Key Cryptographic

Parameters. Journal of Cryptology, 8(3), 123–

155.(crypto.ethz.ch)

[2]. Bach, E. (1988). How to generate factored

random numbers. SIAM Journal on Computing,

17(5), 904–916. (Wikipedia)

[3]. Daemen, J., & Rijmen, V. (2002). The Design of

Rijndael: AES – The Advanced Encryption

Standard. Springer.(TechNewsWorld)

[4]. Elliptic Curve Primality Proving (ECPP). (1986).

Mathematics of Computation. (Wikipedia)

[5]. Koblitz, N. (1987). Elliptic curve cryptosystems.

Mathematics of Computation, 48(177), 203–209.

[6]. Miller, V. S. (1986). Use of elliptic curves in

cryptography. In Advances in Cryptology –

CRYPTO '85 Proceedings (pp. 417–426).

Springer.

[7]. NIST. (2001). FIPS PUB 197: Announcing the

Advanced Encryption Standard (AES). National

Institute of Standards and

Technology.(Wikipedia)

[8]. Rivest, R. L., Shamir, A., & Adleman, L. (1978). A

method for obtaining digital signatures and

public-key cryptosystems. Communications of

the ACM, 21(2), 120–126.

[9]. Shoup, V. (2008). A Computational Introduction

to Number Theory and Algebra. Cambridge

University Press.(Wikipedia)

