Bounds on Rayleigh-Benard-Marangoni Convection in a Composite Layer with Conducting Plates

Authors

  • Ananda K.  Department of Mathematics, New Horizon College of Engineering, Bengaluru-560103, India
  • Gangadharaiah Y. H.  Department of Mathematics, Sir M. Visvesvaraya Institute of Technology, Bengaluru-562157, India

Keywords:

Thermal Conductivity: Rayleigh-Benard-Marangoni Convection: Boundary Slab.

Abstract

Boundary effects on Rayleigh-Benard-Marangoni stability in a layer of composite scheme in which a liquid layer overlies a saturates porous material bounded by slabs of finite thermal conductivity and finite thickness has been investigated by means of linear stability analysis. The eigen value problem resulting from the stability analysis is solved by regular perturbation technique. It has been found the stability characteristics in terms of the critical Rayleigh number critical Marangoni number is profoundly influenced by the conductivity and slab thickness. Dependency of thermal conductivity ratio, and depth ratio is graphically discussed. The current findings may provide useful data in the solidification phase of alloys to understand the convective movement of the melt.

References

  1. Nield, D. A. & Bejan, A. 2006 Convection in porous media, 3rd edn. New York, NY: Springer-Verlag.
  2. Chen, F.: Throughflow effects on convective instability in superposed fluid and porous layers. J. Fluid. Mech. 231, 113–133 (1990)
  3. Chen, F. & Chen, C. F. 1988 Onset of finger convection in a horizontal porous layer underlying a fluid layer. J. Heat Transfer 110, 403–409.
  4. Ewing, E. & Weekes, S. 1998 Numerical methods for contaminant transport in porous media.
  5. Comput. Math. 202, 75–95.
  6. Blest, C., Duffy, B. R., Mckee, S. & Zulkfle, A. K. 1999 Curing simulation of thermoset composites.
  7. Composites Part A 30, 1289–1309. (doi:10.1016/S1359-835X(99)00032-9)
  8. Straughan, B. 2002 Sharp global nonlinear stability for temperature-dependent viscosity
  9. convection. Proc. R. Soc. Lond. A 458, 1773–1782. (doi:10.1098/rspa.2001.0945)
  10. Straughan, B. 2008 Stability and wave motion in porous media. Appl. Math. Sci. Series, vol. 165.
  11. New York, NY: Springer.
  12. Carr, M. 2004 Penetrative convection in a sup erp osed p orous-medium-fluid layer via internal
  13. heating. J. Fluid Mech. 509, 305–329. (doi:10.1017/S0022112004009413)
  14. Chang, M. H. 2004 Stability of convection induced by selective absorption of radiation in a fluid
  15. overlying a porous layer. Phys. Fluids 16, 3690–3698. (doi:10.1063/1.1789551)
  16. Chang, M. H. 2005 Thermal convection in superposed fluid and porous layers subjected to a
  17. horizontal plane Couette flow. Phys. Fluids 17, 064106-1–064106-7.
  18. Chang, M. H. 2006 Thermal convection in superposed fluid and porous layers subjected to a plane
  19. Hirata, S. C., Goyeau, B., Gobin, D., Carr, M. & Cotta, R. M. 2007 Linear stability of natural
  20. convection in superposed fluid and porous layers: influence of the interfacial modelling. Int. J.
  21. Heat Mass Transfer 50, 1356–1367. (doi:10.1016/j.ijheatmasstransfer.2006.09.038)
  22. Hoppe, R. H. W., Porta, P. & Vassilevski, Y. 2007 Computational issues related to iterative coupling
  23. of subsurface and channel flows. Calcolo 44, 1–20. (doi:10.1007/s10092-007-0126-z)
  24. Mu, M. & Xu, J. C. 2007 A two-grid method of a mixed Stokes–Darcy model for coupling fluid
  25. flow with porous medium flow. SIAM J. Numer. Anal. 45, 1801–1813. (doi:10.1137/050637820)
  26. Hill, A. A. & Straughan, B. 2009 Global stability for thermal convection in a fluid overlying a
  27. highly porous material. Proc. R. Soc. A 465, 207–217. (doi:10.1098/rspa.2008.0303)
  28. Chen, F. & Chen, C. F. 1988 Onset of finger convection in a horizontal porous layer underlying a
  29. fluid layer. J. Heat Transfer 110, 403–409.
  30. Nield, D. A.: “Throughflow effects on the Rayleigh-Benard convective instability problem”, J. Fluid Mech. 185, 353–360, 1987.
  31. X. Nicolas, Bibliographic review on the Poiseuillee Rayleigh Bénard flows; the mixed convection flows in horizontal rectangular ducts heated from below, International Journal of Thermal Sciences 41 (2002) 961e1016.
  32. Ruan, X. Ye., Chen., Doona, T., Yang, T.: Developments in Ohmic heating, in: P.S. Richardson (Ed.), Improving the Thermal Processing of Foods, Woodhead Publishing in Food Science and Technology, CRC Press, 224-252, 2004.
  33. Hill, A. A.: Penetrative convection induced by the absorption of radiation with nonlinear internal heat source, Dyn. Atmos. Oceans 38, 57–67, 2004.
  34. Straughan, B.,: “Stability and wave motion in porous media”, Appl. Math. Sci. Ser.vol. 165. Springer, New York, 2008.
  35. Generalis, S. C., Busse, F. H.: Transition in inclined internally heated fluid layers: G.G.M. Stoffels, T.H. van der Meer, A.A. van Steenhoven (Eds.), Proceedings 5th European Thermal-Sciences Conference (18-21) 1-8 Eindhoven (NL), 2008.

Downloads

Published

2019-12-30

Issue

Section

Research Articles

How to Cite

[1]
Ananda K., Gangadharaiah Y. H., " Bounds on Rayleigh-Benard-Marangoni Convection in a Composite Layer with Conducting Plates" International Journal of Scientific Research in Computer Science, Engineering and Information Technology(IJSRCSEIT), ISSN : 2456-3307, Volume 4, Issue 9, pp.200-206, November-December-2019.