Totally Umbilical Slant Submanifolds of S - Manifolds
Keywords:
Slant submanifold, totally umbilical, S-manifold.Abstract
In this paper, we study slant submanifolds of S-manifolds which are totally umbilical. We show that every totally umbilical proper slant submanifold of a S-manifold is either totally geodesic or if submanifold is not totally geodesic then we derive a formula for slant angle.
References
- D.E. Blair, Contact manifolds in Riemannian geometry, Lecture notes in Math., 509, Springer-Verlag, Berlin (1976).
- D.E. Blair, Geometry of manifolds with structural group U (n)O(s),, J. Diff. Geometry 4 (1970), 155-167.
- D.E. Blair, T. Koufogiorgos and B. J. Papantoniou Contact metric manifolds satisfyng a nullity condition, Israel J. Math., 91 (1995), 189-214.
- E. Boeckx, A full classification of contact metric (k, µ)-spaces, Illinois J. Math., 44 (2000), 212-219.
- A. Carriazo, Bi-slant immersions, in Proceedings of the Integrated Car Rental and Accounts Management System, Kharagpur, West Bengal, India (2000), 88-97.
- A. Carriazo, L. M. FernAndez and M. B. Hans-Uber1 Some slant submanifolds of s-manifolds, Acta Math. Hungar. 107 (4) (2005), 267-285.
- J.L. Cabrerizo, A. Carriazo and L.M. Fernandez, Slant submanifolds in Sasakian manifolds, Glasgow Math. J., 42 (2000), 125-138.
- J.L. Cabrerizo, A. Carriazo and L.M. Fernandez, Semi-slant submanifolds of a Sasakian manifold, Geom. Dedicata 78 (1999), 183-199.
- B.V. Chen, Slant immersions, Bull. Aust. Math. Soc., 41 (1990), 135-147.
- B.V. Chen Geometry of slant submanifolds, Katholieke Universiteit Leuven, (1990).
- B.V. Chen and V. Tazawa, Slant surfaces with codimension 2, Ann. Fac. Sci. Toulouse Math., XI(3) (1990), 29-43.
- B.V. Chen and V. Tazawa, Slant submanifolds in complex Euclidean spaces, Tokyo J. Math., 14(1) (1991), 101-120.
- S. Deshmuk and S.I. Hussain, Totally umbilical CR-submanifolds of a Kaehler manifold, Kodai Math. J., 9(3) (1986), 425-429.
- Fereshteh Malek and Mohammad Bagher Kazemi Balgeshir, Slant submanifolds of almost contact metric 3-structure manifolds, Mediterr. J. Math. 10 (2013), 10231033.
- M.A. Khan, Siraj Uddin and K. Singh, A classifcation on totally umbilical proper slant and hemi-slant submanifolds of a nearly trans-Sasakian manifold, Differential Geometry-Dynamical Systems, 13 (2011), 117-127.
- M. Kon, Remarks on anti-invariant submanifolds of a Sasakian manifold, Tensor (N.S.), 30 (1976), 239-245.
- M.A. Lone, M.S. Lone and M.H. Shahid, Hemi-Slant submanifolds of cosymplectic manifolds, arXiv:1601.04132v2 [math.DG] 4 Mar 2016.
- A. Lotta, Slant submanifolds in contact geometry, Bull. Math. Soc. Roum., 39 (1996), 183-198.
- N. Papaghiuc, Semi-slant submanifolds of Kahlerian manifold, An. Stiint. Univ. AI. I. Cuza. Iasi. Inform. (N.S.) 9 (1994), 55-61.
- D.G. Prakasha and Kakasab Mirji, On the m-projective curvature tensor of a (k, µ) contact metric manifold, Facta Universitatis (NIS) Ser. Math. Inform., 32(1) (2017), 117-128.
- Ram Shankar Gupta, S. M. Khursheed Haider and Mohd. Hasan Shahid, Slant submanifolds of a Ken- motsu manifold, Radovi Matematicki, 12 (2004), 205-214.
- B. Sahin, Warped product submanifolds of a Kaehler manifold with a slant factor, Ann. Pol. Math., 95 (2009), 107-226.
- Shiv Sharma Shukla, Mukesh Kumar Shukla and Rajendra Prasad, Slant Submanifolds of (LCSn- manifolds, Differential Geometry-Dynamical Systems, 18 (2016), 123-131.
- M.S. Siddesha and C.S. Bagewadi, On slant submanifolds of (k, µ) manifold, Differential Geometry- Dynamical Systems, 18 (2016), 123-131.
- M.S. Siddesha and C.S. Bagewadi, Semi-slant submanifolds of (k, µ)-contact manifold, Commun. Fac. Sci. Univ. Ser. A1 Math. Stat., 67(2) (2018), 116-125.
- M.S. Siddesha and C.S. Bagewadi, Submanifolds of a (k, µ)-contact manifold, CUBO A Mathematical Journal, 18 (01) (2016), 59-68.
- Siraj Uddin, Zafar Ahsan and A.H. Yaakub, Classification of totally umbilical slant submanifolds of a Kenmotsu manifold, arXiv:1404.3791v2 [math.DG] 18 Apr 2014.
- V.A. Khan, M.A. Khan and K.A. Khan, Slant and semi-slant submanifolds of a Kenmotsu manifold, Mathematica Slovaca 57 (5) (2007), 483-494.
- K. Yano, On a structure defined by a tensor field f of type (1, 1) satisfying f 3 + f = 0, Tensor, 14 (1963), 99-109.
- K. Yano, M. Kon, Structures on manifolds, World Scientific, 1984.
Downloads
Published
2019-12-30
Issue
Section
Research Articles
License
Copyright (c) IJSRCSEIT

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
[1]
M. S. Siddesha, "
Totally Umbilical Slant Submanifolds of S - Manifolds
" International Journal of Scientific Research in Computer Science, Engineering and Information Technology(IJSRCSEIT), ISSN : 2456-3307,
Volume 4, Issue 9, pp.229-333, November-December-2019.