Stability of L - Periodic Equilibrium Solutions of Navier-Stokes Equations on Infinite Strip
DOI:
https://doi.org/10.32628/CSEIT1953116Keywords:
Navier-Stokes equations, Fourier series, Stability, RegularityAbstract
In this paper, we assume that a smooth equilibrium solution U_0,p_0 of Navier-Stokes equations is given on an infinite strip ?= I R ×]-1/2,1/2[, the problem of stability that arises in the infinite plate (?= I R ^2×]-1/2,1/2[) disappears in our case using the same tools in [7].<
References
- J. Dixmier, Les algebres d'operateurs dans l'espace hilbertien, Academic Press, New york, 1978.
- K.Kirchga ̈ssner, H.Kielhofer, Stability and bifurcation in fluid dynamics, Rocky mountain J. of Math. Vol. 3, no. 2, 275-318 (1973).
- Pazy, A., Semigroupes of linear operators and applications to partial differential equations, Appl. Math. Sci. 44, Springer, New York, 1983.
- M.Reed and B.Simon, Methods of Math. Physics IV. Analysis of operators. Gouthier-villars, Paris, 1957.1995.
- D.Sattinger, Bifurcation and symmetry breaking in applied mathematics, Bull. Amer. Math. Soc., 3, 1980, pp. 779-819.
- V.A.Romanov, Stability of plane parallel couette flows, Functional analysis and its applications 7, 137-146. (1973).
- B.Scarpellini, Stability, Instability and direct integrals. Chapman & Hall/CRC, Boca Raton, London, 1999.
Downloads
Published
2019-06-30
Issue
Section
Research Articles
License
Copyright (c) IJSRCSEIT

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
[1]
S. Khabid, "
Stability of L - Periodic Equilibrium Solutions of Navier-Stokes Equations on Infinite Strip" International Journal of Scientific Research in Computer Science, Engineering and Information Technology(IJSRCSEIT), ISSN : 2456-3307,
Volume 5, Issue 3, pp.575-582, May-June-2019. Available at doi : https://doi.org/10.32628/CSEIT1953116