Utilizing Federated Health Databases and AI-Enhanced Neurodevelopmental Trajectory Mapping for Early Diagnosis of Autism Spectrum Disorder: A Review of Scalable Computational Models
DOI:
https://doi.org/10.32628/IJSRCSEITKeywords:
Autism Spectrum Disorder (ASD), Federated Health Databases, Neurodevelopmental Trajectory Mapping, Scalable AI Models, Early DiagnosisAbstract
Early diagnosis of Autism Spectrum Disorder (ASD) remains a critical challenge in pediatric neurodevelopmental care, with significant implications for intervention effectiveness and lifelong outcomes. Traditional diagnostic methods often rely on subjective behavioral assessments, limiting early detection, especially in resource-limited settings. This review explores the convergence of federated health databases and AI-driven neurodevelopmental trajectory mapping as scalable computational solutions for timely ASD diagnosis. Federated learning frameworks enable collaborative model training across decentralized data silos while preserving patient privacy, thereby overcoming the limitations of fragmented healthcare data ecosystems. Simultaneously, advanced machine learning techniques—including temporal graph networks, multimodal deep learning, and probabilistic modeling—facilitate individualized developmental path prediction. The paper systematically analyzes current architectures, datasets, and computational methods used to infer ASD risk from longitudinal health and behavioral data. It also discusses interpretability, scalability, and ethical considerations surrounding data governance and model transparency. The review concludes with recommendations for improving early ASD diagnosis through integrated AI-federated frameworks in global pediatric healthcare systems.
📊 Article Downloads
References
Abisoye, A., &Akerele, J. I. (2022). Legal perspectives on decentralized health data systems. Journal of Health Law and Ethics, 10(2), 99–112.
Abutu, E. P., Idoko, I. P., Ijiga, O. M., Agbo, D. O., Ezebuka, C. I., &Umama, E. E. (2024). Comparative analysis of Internet of Things (IoT) implementation: A case study of Ghana and the USA. World Journal of Advanced Engineering Technology and Sciences, 11(1), 180–199.
Adanigbo, O. S., Akerele, J. I., &Owolabi, F. (2024). Privacy-aware federated learning for distributed IoT frameworks. International Journal of Cybersecurity and Computing, 12(3), 67–82.
Adebayo, A. S., Ajayi, O. O., &Chukwurah, N. (2024). AI-enhanced modeling for autism trajectory prediction. International Journal of Pediatric Neuroinformatics, 6(1), 33–48.
Adebayo, A. S., Ajayi, O. O., &Chukwurah, N. (2024). Explainable AI in robotics: A critical review and implementation strategies for transparent decision-making. Journal of Robotics and AI Systems, 12(4), 101–118.
Adekunle, B. I., Ayanponle, L. O., &Owolabi, F. (2021). Homomorphic encryption for pediatric health privacy. Journal of Data Science and Medicine, 7(2), 91–108.
Adekunle, B. I., Oyedokun, O., &Ijiga, O. M. (2023). Trust frameworks in AI health systems: A federated approach. Global Health Security Review, 4(3), 133–147.
Adelani, F. A., Ogunwole, O., &Ayanponle, L. O. (2024). FLAME: A federated learning architecture for medical environments. Journal of Federated AI Systems, 5(1), 44–59.
Adepoju, A. H., Afolayan, M. I., &Isong, D. E. (2023). Parent-reported data integration in real-time ASD screening. Digital Pediatric Monitoring Quarterly, 4(4), 77–91.
Ajala, O. A., Ogunwole, O., &Eguagie, M. O. (2024). Explainable AI techniques in federated health modeling. Federated AI Journal, 5(1), 91–108.
Ajala, O. A., Ogunwole, O., &Eguagie, M. O. (2024). Mobile-edge FL for low-resource pediatric diagnostics. International Journal of Digital Health Equity, 4(1), 45–58.
Ajala, O. A., Okoye, C. C., Ofodile, O. C., Arinze, C. A., &Daraojimba, O. D. (2024). Review of AI and machine learning applications to predict and thwart cyber-attacks in real-time. Magna Scientia Advanced Research and Reviews, 10(1), 312–320.
Ajayi, A. A., Ihimoyan, M. K., &Olorunfemi, J. F. (2024). Federated blockchain architectures for healthcare logistics. Journal of Distributed Ledger Technology, 5(1), 99–114.
Ajayi, A. A., Ihimoyan, M. K., &Olorunfemi, J. F. (2024). Federated blockchain architectures for healthcare logistics. Journal of Distributed Ledger Technology, 5(1), 99–114.
Ajayi, A. A., Ugochukwu, U. N., &Idoko, I. P. (2024). Real-time AI in public health surveillance systems. International Journal of Scientific Research in Health and Safety Engineering, 4(1), 30–44.
Ajiga, D., Ayanponle, L., &Okatta, C. G. (2022). AI-powered HR analytics: Transforming workforce optimization and decision-making. International Journal of Science and Research Archive, 5(2), 338–346.
Akerele, S. O., Akinyemi, K., &Ijiga, O. M. (2024). Enhancing secure federated learning for clinical diagnostics. IRE Journals, 8(2), 18–29.
Akinade, A. O., Olumide, F. O., &Ndubuisi, N. L. (2021). Ethical frameworks for mobile ASD diagnostics. Journal of Digital Health Ethics, 3(4), 112–128.
Alozie, C. (2024). Federated frameworks for bias mitigation in predictive diagnostics. Journal of AI Governance and Equity, 4(1), 55–71.
Aminu, M., Oyedokun, O., &Ojika, F. U. (2024). Partnership models in decentralized clinical AI. Journal of AI and Public Health Strategy, 5(2), 100–117.
Ayanponle, L. O., Asuzu, O. F., &Daraojimba, R. E. (2024). Human-centered design for AI-integrated health platforms. Global Health Informatics Journal, 6(2), 118–135.
Ayanponle, L. O., Bristol-Alagbariya, L. A., &Elufioye, O. A. (2024). Digital literacy frameworks for inclusive AI education. International Journal of Educational AI, 3(1), 22–39.
Ayanponle, L. O., Elufioye, O. A., Asuzu, O. F., Ndubuisi, N. L., Awonuga, K. F., &Daraojimba, R. E. (2024). The future of work and human resources: A review of emerging trends and HR's evolving role. International Journal of Science and Research Archive, 11(2), 113–124.
Ayanponle, L. O., Elufioye, O. A., Asuzu, O. F., Ndubuisi, N. L., Awonuga, K. F., &Daraojimba, R. E. (2024). The future of work and human resources: A review of emerging trends and HR’s evolving role. International Journal of Science and Research Archive, 11(2), 113–124.
Azonuche, T. I., &Enyejo, J. O. (2024). Agile transformation in public sector IT projects using lean-agile change management and enterprise architecture alignment. International Journal of Scientific Research and Modern Technology, 3(8), 21–39.
Azonuche, T. I., &Enyejo, J. O. (2024). Agile transformation in public sector IT projects using lean-agile change management and enterprise architecture alignment. International Journal of Scientific Research and Modern Technology, 3(8), 21–39. https://doi.org/10.38124/ijsrmt.v3i8.432
Azonuche, T. I., &Enyejo, J. O. (2024). Evaluating the impact of agile scaling frameworks on productivity and quality in large-scale fintech software development. International Journal of Scientific Research and Modern Technology, 3(6), 57–69.
Azonuche, T. I., Ihimoyan, M. K., &Ijiga, O. M. (2024). Cybersecurity resilience in smart federated environments. International Journal of Advanced Secure Computing, 4(1), 91–106.
Bristol-Alagbariya, B., Ayanponle, O. L., &Ogedengbe, D. E. (2024). Sustainable business expansion: HR strategies and frameworks for supporting growth and stability. International Journal of Management & Entrepreneurship Research, 6(12), 3871–3882.
Bristol-Alagbariya, L. A., Ayanponle, L. O., &Daraojimba, R. E. (2024). Addressing gender bias in AI systems. Global Journal of Inclusive Technology, 6(1), 55–72.
Chibunna, U. B., Ayoola, V. B., &Nwabekee, U. S. (2024). Mobile-based ASD symptom logging and predictive analytics. Journal of Early Childhood Informatics, 6(2), 60–78.
Chukwurah, N., Owolabi, F., & Adebayo, A. S. (2024). Graph-based learning in pediatric autism detection. Journal of Clinical Neural Systems, 8(2), 122–136.
Collins, A., Okoro, B., &Adelani, F. A. (2022). Cloud-based pipelines for integrated neurodevelopmental data. Pediatric Data Infrastructure Journal, 5(3), 155–172.
Daramola, G. O., Ezeh, M. O., Isong, D. E., Agho, M. O., &Iwe, K. A. (2024). Sustainability and carbon capture in the energy sector. Journal of Sustainable Energy Policy, 8(3), 244–263.
Daraojimba, A. I., Elufioye, O. A., &Ayanponle, L. O. (2024). SMPC-enhanced diagnosis models for ASD risk prediction. Journal of Pediatric AI Research, 6(1), 72–88.
Daraojimba, A. I., Kisina, D., Adanigbo, O. S., Ubanadu, B. C., Ochuba, N. A., &Gbenle, T. P. (2024). Systematic review of key performance metrics in modern DevOps and software reliability engineering. International Journal of Future Engineering Innovations, 1(1), 101–107. https://doi.org/10.54660/IJFEI.2024.1.1.101-107
Dudu, O. F., Ajayi, A. A., &Imoh, P. O. (2024). Interpretable AI decision systems for autism screening. Journal of AI Transparency in Healthcare, 7(2), 98–114.
Egbuhuzor, N. S., Ajayi, A. A., &Olowookere, T. D. (2023). Genomic risk modeling for early autism detection. Pediatric Health Informatics Journal, 5(2), 144–159.
Eguagie, M. O., Idoko, I. P., Ijiga, O. M., Enyejo, L. A., Okafor, F. C., &Onwusi, C. N. (2024). Geochemical and mineralogical characteristics of deep porphyry systems. International Journal of Scientific Research in Civil Engineering, 8(1), 16–36.
Elufioye, O. A., Ayanponle, L. O., &Daraojimba, R. E. (2024). Cultural considerations in neurodevelopmental disorder diagnostics. Journal of Cross-Cultural Health Informatics, 2(3), 101–115.
Enyejo, L. A., Ijiga, O. M., &Idoko, I. P. (2024). Explainable AI frameworks in mental health diagnostics. Journal of Cognitive Informatics, 2(2), 99–116.
Ezeh, M. O., Daramola, G. O., Isong, D. E., Agho, M. O., &Iwe, K. A. (2023). Real-time monitoring and risk management in geothermal energy production. Energy Systems Advances, 7(2), 200–218.
Fidel-Anyanna, I., Ayanponle, L. O., &Daraojimba, A. I. (2024). Blockchain-governed consent for federated pediatric AI. Journal of Privacy Law and Innovation, 3(2), 87–103.
Hamza, O., Akinyemi, K., &Ajayi, A. A. (2022). AI-based gene-behavior mapping in ASD research. Journal of Computational Neuroscience and Child Health, 7(3), 88–103.
Idoko, I. P., Ijiga, O. M., &Enyejo, L. A. (2024). Harmonizing generative AI models for inclusive medical diagnostics. AI in Medicine Journal, 4(1), 33–50.
Idoko, I. P., Ijiga, O. M., Agbo, D. O., Abutu, E. P., Ezebuka, C. I., &Umama, E. E. (2024). Comparative analysis of Internet of Things (IoT) implementation: A case study of Ghana and the USA. World Journal of Advanced Engineering Technology and Sciences, 11(1), 180–199.
Ihimoyan, M. K., Ajayi, A. A., &Ijiga, O. M. (2024). Adaptive learning in smart infrastructure: A privacy-by-design perspective. International Journal of Civil and Structural Informatics, 3(2), 70–89.
Ihimoyan, M. K., Ibokette, A. I., Olumide, F. O., Ijiga, O. M., &Ajayi, A. A. (2024). The role of AI-enabled digital twins in managing financial data risks for small-scale business projects in the United States. International Journal of Scientific Research and Modern Technology, 3(6), 12–40. https://doi.org/10.5281/zenodo.14598498
Ijiga, A. C., Abutu, E. P., Idoko, P. I., Agbo, D. O., Harry, K. D., Ezebuka, C. I., &Umama, E. E. (2024). Ethical considerations in implementing generative AI for healthcare supply chain optimization. International Journal of Biological and Pharmaceutical Sciences Archive, 7(1), 048–063.
Ijiga, O. M., Ayanponle, L. O., &Okatta, C. G. (2024). Federated knowledge networks for adaptive early diagnosis. Journal of Pediatric AI Systems, 5(1), 23–44.
Ijiga, O. M., Eguagie, M. O., &Enyejo, L. A. (2024). Secure model orchestration for scalable digital health systems. International Journal of Scientific Research in Secure Systems, 4(3), 78–92.
Ijiga, O. M., Idoko, I. P., Ebiega, G. I., Olajide, F. I., Olatunde, T. I., &Ukaegbu, C. (2024). Harnessing adversarial machine learning for advanced threat detection: AI-driven strategies in cybersecurity risk assessment and fraud prevention. Open Access Research Journals. https://doi.org/10.53022/oarjst.2024.11.1.0060I
Ijiga, O. M., Okolo, J. N., &Ukaegbu, C. (2024). Ethical AI governance in real-time health systems. International Journal of Scientific Research and Policy Ethics, 2(1), 67–85.
Ikwuanusi, U. F., Onwusi, C. N., &Elufioye, O. A. (2024). Real-time edge computing in autism screening platforms. Child-Centered AI Systems, 3(1), 88–102.
Imoh, P. O., &Idoko, I. P. (2022). Gene-environment interactions and epigenetic regulation in autism etiology. International Journal of Scientific Research and Modern Technology, 1(8), 1–16.
Imoh, P. O., &Idoko, I. P. (2023). Evaluating the efficacy of digital therapeutics and virtual reality interventions in ASD treatment. International Journal of Scientific Research and Modern Technology, 2(8), 1–16.
Imoh, P. O., Adeniyi, M., Ayoola, V. B., &Enyejo, J. O. (2024). Advancing early autism diagnosis using multimodal neuroimaging and AI-driven biomarkers. International Journal of Scientific Research and Modern Technology, 3(6), 40–56. https://doi.org/10.38124/ijsrmt.v3i6.413
Imoh, P. O., Ayoola, V. B., &Enyejo, J. O. (2024). Multimodal predictive modeling in ASD diagnosis. AI & Healthcare Review, 3(4), 188–202.
Iwe, K. A., Daramola, G. O., Isong, D. E., Agho, M. O., &Ezeh, M. O. (2023). Real-time monitoring and risk management in geothermal energy production. Journal of Energy Informatics and Sustainability, 5(2), 144–163.
Kisina, D., Imoh, P. O., &Ajayi, A. A. (2024). A review of differential privacy techniques in mobile health applications. Mobile Health Informatics Review, 3(1), 77–94.
Ogunwole, O., Ayanponle, L. O., &Ojika, F. U. (2023). Ethical transparency in digital ASD diagnostics. Journal of Neurodevelopmental Policy and Ethics, 5(3), 118–136.
Ojika, F. U., Adeniyi, M., &Forkuo, A. Y. (2023). Encryption-based data handling for pediatric mobile apps. Journal of Pediatric Digital Security, 5(4), 91–106.
Ojika, F. U., Eguagie, M. O., &Imoh, P. O. (2022). Smart contracts and dynamic consent in pediatric AI. Blockchain Health Journal, 6(1), 40–55.
Ojika, F. U., Owobu, W. O., Abieba, O. A., Esan, O. J., Ubamadu, B. C., &Daraojimba, A. I. (2023). Integrating TensorFlow with cloud-based solutions. AI Retail Systems Journal, 4(1), 112–126.
Ojukwu, P. U., Imoh, P. O., &Ayanponle, L. O. (2024). Cross-population generalization in federated ASD models. Pediatric Computational Intelligence Journal, 6(2), 135–152.
Okeke, R. O., Ibokette, A. I., Ijiga, O. M., Enyejo, L. A., Ebiega, G. I., &Olumubo, O. M. (2024). Reliability assessment of power transformers using federated sensor networks. Engineering Science & Technology Journal, 5(4), 1149–1172.
Owoade, S. J., Enyejo, J. O., &Okeke, R. O. (2024). Neuro-symbolic AI frameworks for early ASD intervention. Journal of Pediatric Intelligence Systems, 9(1), 55–70.
Oyedokun, O. O. (2019). Green human resource management practices and its effect on the sustainable competitive edge in the Nigerian manufacturing industry (Dangote). (Doctoral dissertation, Dublin Business School).
Oyedokun, O., Ewim, S. E., &Oyeyemi, O. P. (2024). Leveraging advanced financial analytics for predictive risk management and strategic decision-making in global markets. Global Journal of Research in Multidisciplinary Studies, 2(2), 016–026.
Ozobu, C. O., Obasi, T. C., &Ojukwu, P. U. (2023). Audio-based neural modeling for preschool diagnostics. Cognitive Audio Systems in Pediatrics, 4(2), 117–134.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 International Journal of Scientific Research in Computer Science, Engineering and Information Technology

This work is licensed under a Creative Commons Attribution 4.0 International License.