Predicting the Stages of Dementia Using the Oasis Dataset
Keywords:
Dementia, Open Access Series of Imaging Studies (OASIS), Machine Learning (ML), deep learning (DL), Alzheimer’s disease, predictive modeling, neuroimaging, classification, early diagnosis, brain volume, cognitive testingAbstract
The research utilizes the OASIS dataset to predict various stages of dementia beginning from normal cognition and ending at advanced Alzheimer's disease. Neuroimaging data collected in the OASIS dataset provide suitable resources for model prediction using ML algorithms. Research methods based on DL operated on the provided dataset for dementia onset prediction. The important features for prediction included age along with gender and brain volume size and cognitive testing outcomes. Both training and testing sets of data were isolated for model performance evaluation in the provided dataset through the evaluation of accuracy together with precision and recall and F1-score metrics.
Downloads
References
Abdelminaam, D. S., Madbouly, M. M., Farag, M. S., Gomaa, I. A., Abd-Elghany Zeid, M., & Abualigah, L. (2023). ML_Alzheimer: Alzheimer Disease Prediction Using ML. 3rd International Mobile, Intelligent, and Ubiquitous Computing Conference, MIUCC 2023, 409–414. https://doi.org/10.1109/MIUCC58832.2023.10278361
Aggarwal, S., & Sharma, V. (2023). Dementia Identification Using ML Algorithms: Comparative Analysis. 4th International Conference on Intelligent Engineering and Management, ICIEM 2023. https://doi.org/10.1109/ICIEM59379.2023.10165739
Alshamlan, H., Alwassel, A., Banafa, A., & Alsaleem, L. (2024). Improving Alzheimer’s Disease Prediction with Different ML Approaches and Feature Selection Techniques. Diagnostics 2024, Vol. 14, Page 2237, 14(19), 2237. https://doi.org/10.3390/DIAGNOSTICS14192237
Anand, P., Zhang, Y., Ngan, K., Mahesri, M., Brill, G., Kim, D. H., & Lin, K. J. (2024). Identifying Dementia Severity Among People Living With Dementia Using Administrative Claims Data. Journal of the American Medical Directors Association, 25(9), 105129. https://doi.org/10.1016/J.JAMDA.2024.105129
Balamurali, A., Harish Kumar, R., & Haritheesathan, S. (2024). Early Detection of Dementia: ML for Predictive Analysis. 2nd International Conference on Intelligent Data Communication Technologies and Internet of Things, IDCIoT 2024, 973–980. https://doi.org/10.1109/IDCIOT59759.2024.10467316
Cheung, E. Y. W., Wu, R. W. K., Chu, E. S. M., & Mak, H. K. F. (2024). Integrating Demographics and Imaging Features for Various Stages of Dementia Classification: Feed Forward Neural Network Multi-Class Approach. Biomedicines 2024, Vol. 12, Page 896, 12(4), 896. https://doi.org/10.3390/BIOMEDICINES12040896
Gupta, S., Parikh, J., Jain, R., Kashi, N., Khurana, P., Mehta, J., & Hemanth, J. (2024). Dementia detection using parameter optimization for multimodal datasets. Intelligent Decision Technologies, 18(1), 343–369. https://doi.org/10.3233/IDT-230532
Han, S., Sun, Z., Zhao, K., Duan, F., Caiafa, C. F., Zhang, Y., & Solé-Casals, J. (2024). Early prediction of dementia using fMRI data with a graph convolutional network approach. Journal of Neural Engineering, 21(1), 016013. https://doi.org/10.1088/1741-2552/AD1E22
Harshini, V., Sweatha, S. M., Shunmugam, S. K., & Meena, S. R. (1 C.E.). Alzheimer’s Diagnosis: Harnessing ML and DL for Enhanced Prediction and Understanding. Https://Services.Igi-Global.Com/Resolvedoi/Resolve.Aspx?Doi=10.4018/979-8-3693-7462-7.Ch004, 54–100. https://doi.org/10.4018/979-8-3693-7462-7.CH004
Hashmi, A., & Barukab, O. (2023). Dementia Classification Using Deep Reinforcement Learning for Early Diagnosis. Applied Sciences 2023, Vol. 13, Page 1464, 13(3), 1464. https://doi.org/10.3390/APP13031464
Jadhao, P., Palsodkar, P., Raut, R., Chaube, K., Rathod, D., & Palsodkar, P. (2023). Prediction of Early Stage Alzheimer’s using ML Algorithm. 2023 4th International Conference for Emerging Technology, INCET 2023. https://doi.org/10.1109/INCET57972.2023.10170583
Jahan, S., Taher, K. A., Kaiser, M. S., Mahmud, M., Rahman, M. S., Hosen, A. S. M. S., & Ra, I. H. (2023). Explainable AI-based Alzheimer’s prediction and management using multimodal data. PLOS ONE, 18(11), e0294253. https://doi.org/10.1371/JOURNAL.PONE.0294253
Kandula, N., Chakravarty, S., Kandula, A., & Mohapatra, S. K. (2024). Towards Precision Dementia Detection: Integrating ML and Clinical Data. Proceedings of 2nd International Conference on Advancements in Smart, Secure and Intelligent Computing, ASSIC 2024. https://doi.org/10.1109/ASSIC60049.2024.10507984
Niyas, K. P. M., & Thiyagarajan, P. (2024). Improving Dementia Prediction Using Ensemble Majority Voting Classifier. Annals of Data Science, 1–21. https://doi.org/10.1007/S40745-024-00550-3/METRICS
Peng, C. C., Lin, G. W., Lin, J. M., Chen, G. T., & Liu, W. C. (2023). Predicting ALzheimer’s Disease with AI and Brain Imaging Data. IFIP Advances in Information and Communication Technology, 675 IFIP, 291–301. https://doi.org/10.1007/978-3-031-34111-3_25
Praveena, G., & Ramesh, G. P. (2024). Early detection of Alzheimer’s Disease and Dementia Using Deep Convolutional Neural Networks. 3rd IEEE International Conference on Distributed Computing and Electrical Circuits and Electronics, ICDCECE 2024. https://doi.org/10.1109/ICDCECE60827.2024.10548493
Ramyasri, M. M., Yoga, M., Vetri Vendhan, S., Pramoth Kumar, M., & Karthickeyan, S. (2024). Detection of Dementia using ML Algorithms. 2024 International Conference on Cognitive Robotics and Intelligent Systems, ICC - ROBINS 2024, 382–386. https://doi.org/10.1109/ICC-ROBINS60238.2024.10534009
Shrivastava, R. K., Singh, S. P., & Kaur, G. (2023). ML Models for Alzheimer’s Disease Detection Using OASIS Data. Cognitive Technologies, Part F7, 111–126. https://doi.org/10.1007/978-981-99-2154-6_6
Downloads
Published
Issue
Section
License
Copyright (c) 2025 International Journal of Scientific Research in Computer Science, Engineering and Information Technology

This work is licensed under a Creative Commons Attribution 4.0 International License.