A Data-Driven Simulation Model for Route Mapping and Warehouse Location Optimization
Keywords:
Route Mapping, Warehouse Location, Simulation Model, Data-Driven Logistics, Optimization, Supply ChainAbstract
The increasing complexity of global supply chains and the demand for faster, cost-efficient, and sustainable delivery services have highlighted the critical importance of route mapping and warehouse location optimization in logistics operations. This paper proposes a data-driven simulation model that integrates real-time traffic, demand forecasting, and operational constraints to optimize route mapping and warehouse location decisions simultaneously. Leveraging a systematic literature review, this study identifies gaps in existing models, particularly their limitations in capturing dynamic demand patterns, real-time traffic data, and sustainability imperatives within logistics planning. The proposed simulation model employs agent-based and discrete-event simulation approaches, coupled with machine learning and metaheuristic optimization techniques, to enable logistics firms to evaluate multiple scenarios for warehouse siting and routing decisions while aligning with environmental, social, and governance (ESG) goals. The study contributes to the logistics and supply chain management literature by providing a scalable, technology-agnostic framework designed to improve operational efficiency, reduce carbon emissions, and enhance last-mile delivery performance. This research supports practitioners and policymakers in making data-driven, resilient, and sustainable logistics network design decisions in an increasingly volatile and competitive market environment.
Downloads
References
A. Silva, L. C. Coelho, M. Darvish, and J. Renaud, “Integrating storage location and order picking problems in warehouse planning,” Transp Res E Logist Transp Rev, vol. 140, Aug. 2020, doi: 10.1016/j.tre.2020.102003.
F. C. Okolo, E. A. Etukudoh, O. Ogunwole, and G. Omotunde, “Strategic Framework for Strengthening AML Compliance Across Cross-Border Transport, Shipping, and Logistics Channels,” International Journal of Advanced Multidisciplinary Research and Studies, vol. 4, 2024.
A. Farooq, A. B. N. Abbey, and E. C. Onukwulu, “A Conceptual Framework for Ergonomic Innovations in Logistics: Enhancing Workplace Safety through Data-Driven Design,” Gulf Journal of Advanced Business Research, vol. 2, no. 6, pp. 435–446, 2024.
O. Ogunwole, E. C. Onukwulu, and M. O. Joel, “Optimizing Supply Chain Operations Through Internet of Things (IoT) Driven Innovations,” Iconic Research and Engineering Journals, vol. 7, no. 8, pp. 471–480, 2024.
P. O. Paul, A. B. N. Abbey, E. C. Onukwulu, N. L. Eyo-Udo, and M. O. Agho, “Sustainable Supply Chains for Disease Prevention and Treatment: Integrating Green Logistics,” International Journal of Multidisciplinary Research and Growth Evaluation, vol. 6, 2024.
E. C. Onukwulu, I. N. Dienagha, W. N. Digitemie, and P. Ifechukwude, “Advanced Supply Chain Coordination for Efficient Project Execution in Oil & Gas Projects,” International Journal of Multidisciplinary Research and Growth Evaluation, vol. 5, 2024.
E. C. Onukwulu, M. O. Agho, N. L. Eyo-Udo, A. K. Sule, and C. Azubuike, “Advances in Automation and AI for Enhancing Supply Chain Productivity in Oil and Gas,” International Journal of Research and Innovation in Applied Science, vol. 9, no. 12, 2024.
“Data-driven simulation methodology for exploring optimal storage location assignment scheme in warehouses - ScienceDirect.” Accessed: Jul. 05, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0360835224007496?casa_token=1rujuow3r-MAAAAA:1GI8WlVz6C_dH-QEtpCm_JMWwUYqHdySyJprPKjWKdagrL9CvEY8lgkTqZBIKneCSSjF6O9ypA
C. Cheng, R. Shan, X. Wu, and S. Lv, “An integrated distributionally robust model for two-echelon patient appointment scheduling,” Comput Ind Eng, vol. 198, Dec. 2024, doi: 10.1016/j.cie.2024.110593.
M. T. Ayumu and T. C. Ohakawa, “Financial Modeling Innovations for Affordable Housing Development in the US,” International Journal of Advanced Multidisciplinary Research and Studies, vol. 4, 2024.
B. Ifechukwude, E. Ogbuefi, S. Nwabekee, J. Chidera, and A. Ayodeji, “The Silent Dealbreaker: Why Organizational Culture Should Be a Due Diligence Priority,” Int J Sci Res Sci Technol, vol. 11, no. 4, pp. 565–586, 2024, doi: 10.32628/ijsrst241151214.
A. Pegado-Bardayo, A. Lorenzo-Espejo, J. Muñuzuri, and L. Onieva, “A predictive framework for last-mile delivery routes considering couriers’ behavior heterogeneity,” Comput Ind Eng, vol. 198, Dec. 2024, doi: 10.1016/j.cie.2024.110665.
R. Santos, H. Piqueiro, R. Dias, and C. D. Rocha, “Transitioning trends into action: A simulation-based Digital Twin architecture for enhanced strategic and operational decision-making,” Comput Ind Eng, vol. 198, Dec. 2024, doi: 10.1016/j.cie.2024.110616.
F. C. Okolo, E. A. Etukudoh, O. Ogunwole, and G. Omotunde, “Strategic Framework for Enhancing AML Compliance Across Cross-Border Transport, Shipping, and Logistics Channels,” International Journal of Advanced Multidisciplinary Research and Studies, vol. 6, 2024.
O. M. Daramola, C. E. Apeh, J. O. Basiru, E. C. Onukwulu, and P. O. Paul, “Optimizing Reverse Logistics for Circular Economy: Strategies for Efficient Material Recovery and Resource Circularity,” International Journal of Social Science Exceptional Research, vol. 2, no. 1, pp. 16–31, 2023.
E. C. Onukwulu, M. O. Agho, N. L. Eyo-Udo, A. K. Sule, and C. Azubuike, “Integrating Green Logistics in Energy Supply Chains to Promote Sustainability,” International Journal of Research and Innovation in Applied Science, vol. 10, no. 1, 2024.
O. M. Daramola, C. E. Apeh, J. O. Basiru, E. C. Onukwulu, and P. O. Paul, “Optimizing Reverse Logistics for Circular Economy: Strategies for Efficient Material Recovery,” International Journal of Social Science Exceptional Research, vol. 2, no. 1, pp. 16–31, 2023.
K. Thakur, S. Maity, P. Nielsen, T. Pal, and M. Maiti, “A 3D multiobjective multi-item eco-routing problem for refrigerated fresh products delivery using NSGA-II with hybrid chromosome,” Comput Ind Eng, vol. 198, Dec. 2024, doi: 10.1016/j.cie.2024.110644.
I. O. Oluwafemi, T. Clement, O. S. Adanigbo, T. P. Gbenle, and B. I. Adekunle, “A Review of Ethical Considerations in AI-Driven Marketing Analytics: Privacy, Transparency, and Consumer Trust,” International Journal Of Multidisciplinary Research and Growth Evaluation, vol. 2, no. 2, pp. 428–435, 2021.
A. A. Abdul, I. O. Adekuajo, C. A. Udeh, F. C. Okonkwo, C. Daraojimba, and D. E. Ogedengbe, “Climate Resilience in Tourism: A Synthesis of Global Strategies and Implications For U.S Destinations,” Ecofeminism and Climate Change, vol. 4, no. 2, pp. 93–102, 2023.
I. O. Adekuajo, C. A. Udeh, A. A. Abdul, K. C. Ihemereze, O. C. Nnabugwu, and C. Daraojimba, “Crisis Marketing in The FMCG Sector: A Review of Strategies Nigerian Brands Employed During The Covid-19 Pandemic,” International Journal of Management and Entrepreneurship Research, vol. 5, no. 12, pp. 952–977, 2023.
A. A. Abdul, I. O. Adekuajo, C. A. Udeh, F. C. Okonkwo, C. Daraojimba, and D. E. Ogedengbe, “Educational Tourism: A Review of Global Trends and Opportunities For The U.S Market,” Education & Learning in Developing Nations (ELDN), vol. 2, no. 1, pp. 27–36, 2023.
A. T. Ofoedu, J. E. Ozor, O. Sofoluwe, and D. D. Jambol, “Big Data-Driven Framework for Predicting Crude Quality Variations Across Distributed Offshore Production Lines,” [Journal Not Specified], 2024.
I. O. Oluwafemi, T. Clement, O. S. Adanigbo, T. P. Gbenle, and B. I. Adekunle, “A Review of Data-Driven Prescriptive Analytics (DPSA) Models for Operational Efficiency across Industry Sectors,” International Journal Of Multidisciplinary Research and Growth Evaluation, vol. 2, no. 2, pp. 420–427, 2021.
A. Y. Onifade, J. C. Ogeawuchi, A. A. Abayomi, and O. Aderemi, “Systematic Review of Data-Driven GTM Execution Models across High-Growth Startups and Fortune 500 Firms,” Journal of Frontiers in Multidisciplinary Research, vol. 3, no. 01, pp. 210–222, 2022.
K. Patel, “Ethical reflections on data-centric AI: balancing benefits and risks,” Int. J. Artif. Intell. Res. Dev., vol. 2, no. 1, pp. 1–17, 2024.
M. Bar-Sinai, L. Sweeney, and M. Crosas, “DataTags, Data Handling Policy Spaces and the Tags Language,” Proceedings - 2016 IEEE Symposium on Security and Privacy Workshops, SPW 2016, pp. 1–8, Aug. 2016, doi: 10.1109/SPW.2016.11.
P. M. Hartmann, M. Zaki, N. Feldmann, and A. Neely, “Capturing value from big data–a taxonomy of data-driven business models used by start-up firms,” International Journal of Operations & Production Management, vol. 36, no. 10, pp. 1382–1406, 2016, doi: 10.1108/ijopm-02-2014-0098.
J. C. Ogeawuchi, O. E. Akpe, A. A. Abayomi, and O. A. Agboola, “Systematic Review of Business Process Optimization Techniques Using Data Analytics in Small and Medium Enterprises,” IRE Journals, vol. 5, no. 4, pp. 251–259, 2021.
J. O. Omisola, D. Bihani, A. I. Daraojimba, G. O. Osho, and B. C. Ubamadu, “Blockchain in Supply Chain Transparency: A Conceptual Framework for Real-Time Data Tracking and Reporting Using Blockchain and AI,” International Journal of Multidisciplinary Research and Growth Evaluation, vol. 4, 2023.
A. Hamdan, S. Sonko, A. Fabuyide, C. D. Daudu, and E. A. Etukudoh, “Real-time energy monitoring systems: Technological applications in Canada, USA, and Africa,” World Journal of Advanced Research and Reviews, vol. 21, no. 1, pp. 2053–2063, 2024, doi: 10.30574/wjarr.2024.21.1.0255.
B. I. Ashiedu, E. Ogbuefi, U. S. Nwabekee, J. C. Ogeawuchi, and A. A. Abayomi, “Designing Financial Intelligence Systems for Real-Time Decision-Making in African Corporates,” Journal of Frontiers in Multidisciplinary Research, vol. 4, no. 02, pp. 68–81, 2023.
R. Odogwu, J. C. Ogeawuchi, A. A. Abayomi, O. A. Agboola, and S. Owoade, “Real-Time Streaming Analytics for Instant Business Decision-Making: Technologies, Use Cases, and Future Prospects,” [Journal Not Specified], 2023.
E. Ogbuefi, A. C. Mgbame, O. E. Akpe, A. A. Abayomi, and O. O. Adeyelu, “Operationalizing SME Growth through Real-Time Data Visualization and Analytics,” International Journal of Advanced Multidisciplinary Research and Studies, vol. 4, 2024.
A. Sharma, B. I. Adekunle, J. C. Ogeawuchi, A. A. Abayomi, and O. Onifade, “IoT-enabled Predictive Maintenance for Mechanical Systems: Innovations in Real-time Monitoring and Operational Excellence,” Iconic Research and Engineering Journals, vol. 2, no. 12, pp. 270–279, 2024, [Online]. Available: https://www.irejournals.com/paper-details/1708643
J. O. Ojadi, E. C. Onukwulu, C. S. Odionu, and O. A. Owulade, “Leveraging IoT and Deep Learning for Real-Time Carbon Footprint Monitoring and Optimization in Smart Cities and Industrial Zones,” IRE Journals, vol. 6, no. 11, pp. 946–964, 2023.
A. A. Abayomi, B. C. Ubanadu, A. I. Daraojimba, O. A. Agboola, and S. Owoade, “A Conceptual Framework for Real-Time Data Analytics and Decision-Making in Cloud-Optimized Business Intelligence Systems,” Iconic Research and Engineering Journals, vol. 5, no. 9, pp. 713–722, 2022, [Online]. Available: https://www.irejournals.com/paper-details/1708317
F. C. Okolo, E. A. Etukudoh, O. Ogunwole, G. O. Osho, and J. O. Basiru, “Advances in Integrated Geographic Information Systems and AI Surveillance for Real-Time Transportation Threat Monitoring,” Journal of Frontiers in Multidisciplinary Research, vol. 3, no. 01, pp. 130–139, 2022.
A. A. Abayomi, B. C. Ubanadu, A. I. Daraojimba, O. A. Agboola, and S. Owoade, “A Conceptual Framework for Real-Time Data Analytics and Decision-Making in Cloud-Optimized Healthcare Intelligence Systems,” Healthcare Analytics, vol. 45, no. 45 SP 45–45, 2022, [Online]. Available: https://www.irejournals.com/paper-details/1708317
E. O. Alonge, N. L. Eyo-Udo, B. C. Ubamadu, A. I. Daraojimba, and E. D. Balogun, “Real-Time Data Analytics for Enhancing Supply Chain Efficiency,” vol. 3, 2023.
F. U. Ojika, O. Onaghinor, O. J. Esan, A. I. Daraojimba, and B. C. Ubamadu, “Designing a Business Analytics Model for Optimizing Healthcare Supply Chains during Epidemic Outbreaks: Enhancing Efficiency and Strategic Resource Allocation,” 2024.
E. O. Alonge, N. L. Eyo-Udo, B. C. Ubanadu, A. I. Daraojimba, E. D. Balogun, and K. O. Ogunsola, “Real-time data analytics for enhancing supply chain efficiency,” International Journal of Multidisciplinary Research and Growth Evaluation, vol. 2, no. 1, pp. 759–771, 2021, doi: 10.54660/.IJMRGE.2021.2.1.759-771.
F. C. Okolo, E. A. Etukudoh, O. Ogunwole, G. O. Osho, and J. O. Basiru, “Systematic Review of Cyber Threats and Resilience Strategies Across Global Supply Chains and Transportation Networks,” IRE Journals, vol. 4, no. 9, 2023.
Y. He and X. Zhao, “Coordination in multi-echelon supply chain under supply and demand uncertainty,” Int J Prod Econ, vol. 139, no. 1, pp. 106–115, Sep. 2012, doi: 10.1016/j.ijpe.2011.04.021.
C. Hensley, P. C. Heaton, R. S. Kahn, H. R. Luder, S. M. Frede, and A. F. Beck, “Poverty, transportation access, and medication nonadherence,” Pediatrics, vol. 141, no. 4, Apr. 2018, doi: 10.1542/PEDS.2017-3402.
A. Kychkin, O. Vikenteva, L. Mylnikov, and I. Chernitsin, “A predictive model for the estimation of industrial PM2.5 emissions for IoT-based devices,” Comput Ind Eng, vol. 198, Dec. 2024, doi: 10.1016/j.cie.2024.110662.
A. Sharma, B. I. Adekunle, J. C. Ogeawuchi, A. A. Abayomi, and O. Onifade, “IoT-enabled Predictive Maintenance for Mechanical Systems: Innovations in Real-time Monitoring and Operational Excellence,” Iconic Research And Engineering Journals, vol. 2, no. 12, pp. 270–279, 2024, [Online]. Available: https://www.irejournals.com/paper-details/1708643
A. Odeshina, O. Reis, F. Okpeke, V. Attipoe, and O. Orieno, “A Digital Resilience Model for Enhancing Operational Stability in Financial and Compliance-Driven Sectors,” International Journal of Social Science Exceptional Research, vol. 3, pp. 365–386, 2024, [Online]. Available: https://www.researchgate.net/publication/390720644
O. M. Oluoha, A. Odeshina, O. Reis, F. Okpeke, V. Attipoe, and O. Orieno, “A Privacy-First Framework for Data Protection and Compliance Assurance in Digital Ecosystems,” Iconic Research and Engineering Journals, vol. 7, no. 4, pp. 620–646, 2023, [Online]. Available: https://www.irejournals.com/paper-details/1705171
Olufunke Anne Alabi, Funmilayo Aribidesi Ajayi, Chioma Ann Udeh, and Christianah Pelumi Efunniyi, “Data-driven employee engagement: A pathway to superior customer service,” World Journal of Advanced Research and Reviews, vol. 23, no. 3, pp. 923–933, Sep. 2024, doi: 10.30574/wjarr.2024.23.3.2733.
A. C. Mgbame, O. E. Akpe, A. A. Abayomi, E. Ogbuefi, and O. O. Adeyelu, “Building data-driven resilience in small businesses: A framework for operational intelligence,” Iconic Research and Engineering Journals, vol. 5, no. 9, pp. 695–712, 2022, [Online]. Available: https://www.irejournals.com/paper-details/1708219
E. O. Alonge, N. L. Eyo-Udo, C. B. Ubamadu, and A. I. Daraojimba, “Data-Driven Risk Management in US Financial Institutions: A Theoretical Perspective on Process Optimization,” 2023.
A. Abisoye and J. I. Akerele, “A High-Impact Data-Driven Decision-Making Model for Integrating Cutting-Edge Cybersecurity Strategies into Public Policy, Governance, and Organizational Frameworks,” International Journal of Multidisciplinary Research and Growth Evaluation, vol. 2, no. 1, pp. 623–637, 2021, doi: 10.54660/.IJMRGE.2021.2.1.623-637.
F. U. Ojika, W. O. Owobu, O. A. Abieba, O. J. Esan, B. C. Ubamadu, and A. I. Daraojimba, “AI-Driven Models for Data Governance: Improving Accuracy and Compliance through Automation and Machine Learning,” 2022.
J. E. Ozor, O. Sofoluwe, and D. D. Jambol, “A Review of Geomechanical Risk Management in Well Planning: Global Practices and Lessons from the Niger Delta,” International Journal of Scientific Research in Civil Engineering, vol. 5, no. 2, pp. 104–118, 2021.
A. T. Ofoedu, J. E. Ozor, O. Sofoluwe, and D. D. Jambol, “A Framework for Emission Monitoring and Optimization in Energy-Intensive Floating Oil and Gas Production Systems,” [Journal Not Specified], 2022.
F. C. Okolo, E. A. Etukudoh, O. Ogunwole, G. O. Osho, and J. O. Basiru, “Systematic Review of Business Analytics Platforms in Enhancing Operational Efficiency in Transportation and Supply Chain Sectors,” International Journal of Multidisciplinary Research and Growth Evaluation, vol. 4, 2023.
A. U. Farooq, A. B. N. Abbey, and E. C. Onukwulu, “Optimizing Grocery Quality and Supply Chain Efficiency Using AI-Driven Predictive Logistics,” Iconic Research and Engineering Journals, vol. 7, no. 1, pp. 403–410, 2023.
J. Caceres-Cruz, P. Arias, D. Guimarans, D. Riera, and A. A. Juan, “Rich vehicle routing problem: Survey,” ACM Comput Surv, vol. 47, no. 2, Sep. 2014, doi: 10.1145/2666003.
W. Hu, X. He, L. Luo, and P. M. Pardalos, “A branch-and-price approach for the nurse rostering problem with multiple units,” Comput Ind Eng, vol. 198, Dec. 2024, doi: 10.1016/j.cie.2024.110629.
M. Zhao, X. Liu, and Z. Sun, “Development of decision support tool for clustering urban regional risk based on R-ArcGIS Bridge,” Appl Soft Comput, vol. 110, Oct. 2021, doi: 10.1016/j.asoc.2021.107621.
K. S. Adeyemo, A. O. Mbata, and O. D. Balogun, “Combating Counterfeit Drugs in the US Pharmaceutical Supply Chain: The Potential of Blockchain and IoT for Public Health Safety,” 2024.
F. U. Ojika, O. Onaghinor, O. J. Esan, A. I. Daraojimba, and B. C. Ubamadu, “Developing A Predictive Analytics Framework for Supply Chain Resilience: Enhancing Business Continuity and Operational Efficiency through Advanced Software Solutions,” 2023.
E. O. Alonge, N. L. Eyo-Udo, B. C. Ubamadu, A. I. Daraojimba, and E. D. Balogun, “Real-Time Data Analytics for Enhancing Supply Chain Efficiency,” vol. 3, 2023.
Esan, U. O. J., O. O. T., O. O., G. O. Omisola, and J. O, “Policy and operational synergies: Strategic supply chain optimization for national economic growth,” J., Uzozie, O. T., Onaghinor, O., Osho, G. O., & Omisola, J. O. (2022). Policy and operational synergies: Strategic supply chain optimization for national economic growth. International Journal of Social Science Exceptional Research, vol. 2022), 2022.
Y. Yang, C. Peng, E. Z. Cao, and W. Zou, “Building Resilience in Supply Chains: A Knowledge Graph-Based Risk Management Framework,” IEEE Trans Comput Soc Syst, vol. 11, no. 3, pp. 3873–3881, Jun. 2024, doi: 10.1109/TCSS.2023.3334768.
A. Y. Onifade, R. E. Dosumu, A. A. Abayomi, O. A. Agboola, and J. C. Ogeawuchi, “Systematic Review of Data-Integrated GTM Strategies for Logistics and Postal Services Modernization,” Int J Sci Res Sci Technol, vol. 11, no. 4, pp. 587–604, 2024, doi: 10.32628/ijsrst241151215.
Osamika, A. D., K.-A. B. S., M. M. C., A. Y. Ikhalea, and N, “Predictive analytics for chronic respiratory diseases using big data: Opportunities and challenges,” S., Kelvin-Agwu, M. C., Mustapha, A. Y., & Ikhalea, N. (2023). Predictive analytics for chronic respiratory diseases using big data: Opportunities and challenges. International Journal of Multidisciplinary Research and Growth Evaluation, vol. 2023), 2023.
Y. Zhang, “Correlated Storage Assignment Strategy to reduce Travel Distance in Order Picking,” IFAC-PapersOnLine, vol. 49, no. 2, pp. 30–35, 2016, doi: 10.1016/j.ifacol.2016.03.006.
G. Zhang, X. Shang, F. Alawneh, Y. Yang, and T. Nishi, “Integrated production planning and warehouse storage assignment problem: An IoT assisted case,” Int J Prod Econ, vol. 234, Apr. 2021, doi: 10.1016/j.ijpe.2021.108058.
A. Y. Onifade, R. E. Dosumu, A. A. Abayomi, O. A. Agboola, and J. C. Ogeawuchi, “Systematic Review of Data-Integrated GTM Strategies for Logistics and Postal Services Modernization,” Int J Sci Res Sci Technol, vol. 11, no. 4, pp. 587–604, 2024, doi: 10.32628/ijsrst241151215.
O. E. Akpe, J. C. Ogeawuchi, A. A. Abayomi, O. A. Agboola, and E. Ogbuefi, “Systematic Review of Last-Mile Delivery Optimization and Procurement Efficiency in African Logistics Ecosystems,” Iconic Research and Engineering Journals, vol. 5, no. 6, pp. 377–388, 2021, [Online]. Available: https://www.irejournals.com/paper-details/1708521
A. A. Kovacs, B. L. Golden, R. F. Hartl, and S. N. Parragh, “The generalized consistent vehicle routing problem,” Transportation Science, vol. 49, no. 4, pp. 796–816, Nov. 2015, doi: 10.1287/TRSC.2014.0529.
E. Berhan, B. Beshah, D. Kitaw, and A. Abraham, “Stochastic Vehicle Routing Problem: A Literature Survey,” Journal of Information and Knowledge Management, vol. 13, no. 3, Sep. 2014, doi: 10.1142/S0219649214500221.
I. O. Oluwafemi, T. Clement, O. S. Adanigbo, T. P. Gbenle, and B. I. Adekunle, “Coolcationing and climate-Aware Travel a Literature Review of Tourist Behaviour in Response to Rising Temperatures,” International Journal of Scientific Research in Civil Engineering, vol. 6, no. 6, pp. 148–156, 2022.
O. O. Sofoluwe, O. J. Ochulor, A. Ukato, and D. D. Jambol, “AI-enhanced subsea maintenance for improved safety and efficiency: Exploring strategic approaches,” International Journal of Science and Research Archive, vol. 12, pp. 114–124, 2024.
A. C. Mgbame, O. E. Akpe, A. A. Abayomi, E. Ogbuefi, and O. O. Adeyelu, “Building Data-Driven Resilience in Small Businesses: A Framework for Operational Intelligence,” Iconic Research and Engineering Journals, vol. 5, no. 9, pp. 695–712, 2022, [Online]. Available: https://www.irejournals.com/paper-details/1708218
B. I. Ashiedu, E. Ogbuefi, U. S. Nwabekee, J. C. Ogeawuchi, and A. A. Abayomi, “Telecom Infrastructure Audit Models for African Markets: A Data-Driven Governance Perspective,” Iconic Research and Engineering Journals, vol. 6, no. 6, pp. 434–448, 2022, [Online]. Available: https://www.irejournals.com/paper-details/1708536
A. Odeshina, O. Reis, F. Okpeke, V. Attipoe, and O. Orieno, “Leveraging Big Data Analytics for Market Forecasting and Investment Strategy in Digital Finance,” International Journal of Social Science Exceptional Research, vol. 3, pp. 325–333, 2024, [Online]. Available: https://www.researchgate.net/publication/391835563
O. Ogunwole, E. C. Onukwulu, M. O. Joel, and A. I. Ibeh, “Data-Driven Decision-Making in Corporate Finance: A Review of Predictive Analytics in Profitability and Risk Management,” Iconic Research and Engineering Journals, vol. 7, no. 11, 2024.
E. Ogbuefi, A. C. Mgbame, O. E. Akpe, A. A. Abayomi, and O. O. Adeyelu, “Data Democratization: Making Advanced Analytics Accessible for Micro and Small Enterprises,” International Journal of Management and Organizational Research, vol. 1, no. 1, pp. 199–212, 2022, doi: 10.54660/ijmor.2022.1.1.199-212.
B. Adebisi, E. Aigbedion, O. B. Ayorinde, and E. C. Onukwulu, “A Conceptual Model for Predictive Asset Integrity Management Using Data Analytics to Enhance Maintenance and Reliability in Oil & Gas Operations,” International Journal of Multidisciplinary Research and Growth Evaluation, vol. 2, 2021.
J. O. Ojadi, E. C. Onukwulu, C. S. Odionu, and O. A. Owulade, “AI-Driven Predictive Analytics for Carbon Emission Reduction in Industrial Manufacturing: A Machine Learning Approach to Sustainable Production,” International Journal of Multidisciplinary Research and Growth Evaluation, vol. 4, 2023.
I. O. Oluwafemi, T. Clement, O. S. Adanigbo, T. P. Gbenle, and B. I. Adekunle, “Artificial Intelligence and Machine Learning in Sustainable Tourism: A Systematic Review of Trends and Impacts,” Iconic Research and Engineering Journals, vol. 4, no. 11, pp. 468–477, 2021.
D. Knoll, M. Prüglmeier, and G. Reinhart, “Predicting Future Inbound Logistics Processes Using Machine Learning,” Procedia CIRP, vol. 52, pp. 145–150, 2016, doi: 10.1016/J.PROCIR.2016.07.078.
R. Carbonneau, K. Laframboise, and R. Vahidov, “Application of machine learning techniques for supply chain demand forecasting,” Eur J Oper Res, vol. 184, no. 3, pp. 1140–1154, Feb. 2008, doi: 10.1016/j.ejor.2006.12.004.
C. O. Ozobu, F. E. Adikwu, O. Odujobi, F. O. Onyekwe, and E. O. Nwulu, “Leveraging AI and Machine Learning to Predict Occupational Diseases: A Conceptual Framework for Proactive Health Risk Management in High-Risk Industries,” Journal Name–Not Provided, vol. 1, 2023.
E. O. Alonge, N. L. Eyo-Udo, B. C. Ubanadu, A. I. Daraojimba, E. D. Balogun, and K. O. Ogunsola, “Enhancing data security with machine learning: A study on fraud detection algorithms,” Journal of Frontiers in Multidisciplinary Research, vol. 2, no. 1, pp. 19–31, 2021, doi: 10.54660/.IJFMR.2021.2.1.19-31.
M. Wang, R. Q. Zhang, and K. Fan, “Improving order-picking operation through efficient storage location assignment: A new approach,” Comput Ind Eng, vol. 139, Jan. 2020, doi: 10.1016/j.cie.2019.106186.
A. Silva, K. J. Roodbergen, L. C. Coelho, and M. Darvish, “Estimating optimal ABC zone sizes in manual warehouses,” Int J Prod Econ, vol. 252, Oct. 2022, doi: 10.1016/j.ijpe.2022.108579.
P. I. Egbumokei, I. N. Dienagha, W. N. Digitemie, E. C. Onukwulu, and O. T. Oladipo, “Sustainability in Reservoir Management: A Conceptual Approach to Integrating Green Technologies with Data-Driven Modeling,” International Journal of Multidisciplinary Research and Growth Evaluation, vol. 5, 2024.
A. A. Abayomi, B. C. Ubanadu, A. I. Daraojimba, O. A. Agboola, T. P. Gbenle, and O. O. Ajayi, “Optimizing Business Intelligence in Global Enterprises: Advances in Data Mart Architecture Using Cloud Data Platforms,” International Journal of Management and Organizational Research, vol. 2, no. 2, pp. 143–150, 2023, doi: 10.54660/ijmor.2023.2.2.143-150.
D. Bihani, B. C. Ubamadu, A. I. Daraojimba, G. O. Osho, and J. O. Omisola, “AI-Enhanced Blockchain Solutions: Improving Developer Advocacy and Community Engagement through Data-Driven Marketing Strategies,” Iconic Research And Engineering Journals, vol. 4, no. 9, 2021.
J. O. Ojadi, E. C. Onukwulu, C. S. Odionu, and O. A. Owulade, “Natural Language Processing for Climate Change Policy Analysis and Public Sentiment Prediction: A Data-Driven Approach to Sustainable Decision-Making,” IRE Journals, vol. 7, no. 3, pp. 731–749, 2023, [Online]. Available: https://www.irejournals.com
D. Nyangoma, E. M. Adaga, N. J. Sam-Bulya, and G. O. Achumie, “Operational excellence in SMEs: A conceptual framework for optimizing logistics and service delivery systems,” Journal of Frontiers in Multidisciplinary Research, vol. 5, no. 1, pp. 149–156, 2024, doi: 10.54660/.IJFMR.2024.5.1.149-156.
J. O. Ojadi, C. S. Odionu, E. C. Onukwulu, and O. A. Owulade, “Big Data Analytics and AI for Optimizing Supply Chain Sustainability and Reducing Greenhouse Gas Emissions in Logistics and Transportation,” International Journal of Multidisciplinary Research and Growth Evaluation, vol. 5, no. 1, pp. 1536–1548, 2024, doi: 10.54660/.IJMRGE.2024.5.1.1536-1548.
O. Ogunbiyi-Badaru, O. B. Alao, O. F. Dudu, and E. O. Alonge, “Blockchain-enabled asset management: Opportunities, risks and global implications,” Comprehensive Research and Reviews in Multidisciplinary Studies, vol. 2, no. 2, pp. 14–22, 2024, doi: 10.57219/crrms.2024.2.2.0042.
A. Odeshina, O. Reis, F. Okpeke, V. Attipoe, and O. H. Orieno, “Project Management Innovations for Strengthening Cybersecurity Compliance across Complex Enterprises,” International Journal of Multidisciplinary Research and Growth Evaluation, vol. 2, pp. 871–881, 2021, [Online]. Available: https://www.researchgate.net/publication/390695420
O. Uchendu, K. O. Omomo, and A. E. Esiri, “The Concept of Big Data and Predictive Analytics in Reservoir Engineering: The Future of Dynamic Reservoir Models,” Computer Science & IT Research Journal, vol. 5, no. 11, pp. 2562–2579, 2024.
E. O. Nwulu, F. E. Adikwu, O. Odujobi, F. O. Onyeke, and C. O. Ozobu, “Financial Modeling for EHS Investments: Advancing the Cost-Benefit Analysis of Industrial Hygiene Programs in Preventing Occupational Diseases,” vol. 1, 2024.
R. Q. Zhang, M. Wang, and X. Pan, “New model of the storage location assignment problem considering demand correlation pattern,” Comput Ind Eng, vol. 129, pp. 210–219, Mar. 2019, doi: 10.1016/j.cie.2019.01.027.
Y. Tian, M. Zhao, M. Liu, Y. Liao, C. Huang, and M. Hu, “Hybrid modeling methodology for integrating customers’ behaviors into system simulation to improve service operations management,” Simul Model Pract Theory, vol. 115, Feb. 2022, doi: 10.1016/j.simpat.2021.102445.
F. U. Ojika, O. Onaghinor, O. J. Esan, A. I. Daraojimba, and B. C. Ubamadu, “Developing A Predictive Analytics Framework for Supply Chain Resilience: Enhancing Business Continuity and Operational Efficiency through Advanced Software Solutions,” 2023.
B. I. Adekunle, E. C. Chukwuma-Eke, E. D. Balogun, and K. O. Ogunsola, “A predictive modeling approach to optimizing business operations: A case study on reducing operational inefficiencies through machine learning,” International Journal of Multidisciplinary Research and Growth Evaluation, vol. 2, 2021.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 International Journal of Scientific Research in Computer Science, Engineering and Information Technology

This work is licensed under a Creative Commons Attribution 4.0 International License.